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Testing pseudo-linear Zoeppritz approximations: 
Multicomponent and joint AVO inversion 

Charles P. Ursenbach 

ABSTRACT 
Formulas for AVO (Amplitude Variation with Offset) inversion are briefly reviewed 

and two new expressions are presented. AVO inversion of P-wave, converted-wave, and 
joint data is carried out using experimental parameters and three theoretical techniques. It 
is shown that inversion of converted-wave data is more accurate than other sources. The 
accuracy of multicomponent inversion can be further improved using the pseudo-linear 
approximation presented here. 

INTRODUCTION 
AVO inversion can be used to extract elastic data in a variety of forms. One common 

objective is the extraction of impedance contrasts.  These are given as ∆IP/IP = ∆α/α + 
∆ρ/ρ and ∆IS/IS = ∆β/β + ∆ρ/ρ, where IP and IS are P-wave and S-wave impedances, α 
and β are P-wave and S-wave velocities, and ρ is the density. Contrasts of the form ∆A/A 
are defined as the difference in A across the interface, divided by its average across the 
interface. Fatti et al. (1994) demonstrated that one could reasonably extract IP and IS 
contrasts and discard ρ information. Goodway et al. (1997) showed that IP and IS could be 
profitably converted to the Lamé parameters, λ and µ. These references highlight some of 
the current interest in impedances. 

In this study we consider the extraction of impedance contrast from conventional and 
converted-wave data using three theoretical methods (some of these presented here for 
the first time). In this study we employ a large sample of experimental interface 
parameters. 

We have previously put forward a “pseudo-linear” (Ursenbach, 2002) and “pseudo-
quadratic” (Ursenbach, 2003a) expression for the P-wave reflectivity, RPP, for use in 
AVO inversion. In these approximations to the Zoeppritz coefficients, RPP is expanded to 
linear or quadratic order in ∆ρ/ρ and ∆β/β, but retains exact dependence on ∆α/α. The 
latter was found to be important for accuracy near the critical point. It was also shown 
that relatively simple expressions can still be preserved. For instance, the pseudo-linear 
expression has the same linear structure as the Aki-Richards approximation, but the 
coefficients are explicitly dependent upon ∆α/α – hence the “pseudo”. An attempt was 
also made to obtain comparable expressions for converted-wave reflectivity, RPS, 
(Ursenbach, 2002), but these were somewhat more cumbersome. We here present new 
pseudo-linear (P-L) and pseudo-quadratic (P-Q) expressions for RPS that are quite 
compact, and we test them against the traditional Aki-Richards (A-R) method, paying 
particular attention to their value in estimating impedances. 

 



Ursenbach 

2 CREWES Research Report — Volume 15 (2003)  

THEORY 
Using symbolic mathematics software it is straightforward to obtain a Taylor 

expansion of RPS, but some effort is still required to reduce the formal result down to a 
compact and useful expression.  We present the result of this effort below, and refer to it 
as the pseudo-quadratic approximation, in that it has the form of an approximation which 
is quadratic in ∆β/β and ∆ρ/ρ, but the coefficients are in fact nontrivially dependent upon 
∆α/α. 
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(Note that elsewhere this expression was incorrectly labelled as RPP instead of RPS 
(Ursenbach, 2003b).) In this expression θ 1 and θ 2 are the P-wave reflection and 
transmission angles, and ϕ 1 and ϕ 2 are the same for S-waves. We also employ the 
following definitions: 
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To reduce Equation (1) to the pseudo-linear expression we simply replace by unity each 
of the two bracketed quantities of the form [ 1 ± … ]. 

The approximation that we have just termed pseudo-quadratic might in practical terms 
also reasonably be termed pseudo-linear, in the sense that we may view it as being linear 
in ∆β/β and ∆ρ/ρ, but with coefficients that depend, not only on ∆α/α, but also linearly 
on ∆β/β and ∆ρ/ρ. 

For completeness we also include the exact Zoeppritz given in a pseudo-linear form, 
analogous to that given for RPP in Ursenbach (2003a): 
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CALCULATIONS 
We employ the velocity and density data given in Table 1 of Castagna and Smith for 

25 sets of shale, brine sand, and gas sand.  For each set we consider the shale-over-brine, 
brine-over-shale, shale-over-gas, gas-over-shale, and gas-over-brine interfaces.  This 
yields a set of 125 interfaces.  For each interface we calculate three contrasts and β/α.  
Figure 1 contains a snapshot of these four quantities, and we observe no strong 
correlations.  A weak Gardner correlation (slope = 1/4) is present between ∆α/α and 
∆ρ/ρ, and a weak linear correlation appears to be present between ∆α/α and ∆β/β, but in 
both cases there is considerable scatter.  This valuable data set then represents a broad 
sampling of earth interface models. 
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FI
G. 1: A snapshot of data for 125 interfaces generated from Table 1 of Castagna and Smith. For 
each interface we calculate ∆α/α, ∆β/β, ∆ρ/ρ, and β/α.  Data for each interface is plotted above, 
with ∆α/α and ∆β/β forming the axis coordinates, and ∆ρ/ρ being proportional to the length of 
each line (red negative, black positive). β/α is related to the angle of each line, with β/α = 0.45 
given by horizontal lines, β/α = 0.60 given by vertical lines, and intermediate values (which form 
the bulk of the data) distributed linearly between with positive slopes. The trend from red to black 
with increasing ∆α/α is evidence of Gardner’s relation. 
 

To carry out inversion, synthetic amplitudes were generated from the exact Zoeppritz 
expressions for RPP and RPS at θ = 0°, 1°, 2°, … , 30°. The various theories (A-R, P-L, P-
Q) are then each used to construct a matrix relating the contrasts to the synthetic 
amplitudes. For A-R and P-L methods we require background β/α and ∆α/α values. The 
P-Q method requires these and also ∆β/β and ∆ρ/ρ. We begin by using the exact β/α and 
setting all contrasts initially to zero. This system is inverted using a simple least squares 
procedure to obtain the estimated contrasts. The contrasts thus obtained are substituted 
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back into the matrix of coefficients, which are again inverted. We iterate in this manner 
until convergence is reached. In some cases convergence is not achieved. We have found 
that this happens more frequently when inverting RPP and joint data than when inverting 
RPS data alone. Convergence problems are also more frequent for the Aki-Richards 
method than for the new methods presented here. There is little difference though 
whether one is inverting for velocities or directly for impedances. For this study we will 
simply discard the unconverged values. For the majority of parameters, convergence is 
obtained, yielding an ensemble of estimated contrasts that can then be analyzed. 

 

In Figure 2 we display the error in prediction of ∆ρ/ρ, ∆α/α, ∆IP/IP, ∆β/β, and ∆IS/IS 
for the familiar Aki-Richards inversion of RPP data. At least two interesting features 
appear in these plots. First, a systematic trend combined with scatter is apparent for all 
variables, especially for the impedance.  This is because errors have been plotted against 
∆IS/IS,exact which appears to be the dominant factor in determining the error. In contrast, 
when the same data is plotted against ∆IP/IP,exact or ∆ρ/ρexact, the errors appear not to 
follow a significant trend. 
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FIG. 2: Errors in ∆α/α, ∆β/β, ∆ρ/ρ, ∆IP/IP, and ∆IS/IS, as obtained from synthetic RPP amplitudes by 
theAki-Richards theory. 
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The second point of interest is the thorough cancellation of errors apparent in the P-
impedance contrast. As ∆α/α is usually larger than ∆ρ/ρ, this indicates that the latter will 
normally have the larger percentage error, as is widely observed in 3-parameter 
inversions. There is also some cancellation of errors in summing ∆β/β and ∆ρ/ρ to obtain 
∆IS/IS (or equivalently in differencing ∆β/β and ∆α/α to obtain ∆(β/α)/(β/α) or the 
Poisson ratio contrast), but it is not nearly as complete. It is in the S-impedance then that 
we would be most anxious to find improved methodology. Thus we next consider other 
inversion approaches. 

In Figure 3 we plot the errors in ∆IS/IS obtained by the Aki-Richards method from 
three different data types. The red points are the same as those in Figure 2b, but their 
trend is more obvious on this scale. They are compared with values from inversion of RPS 
amplitudes, and from joint inversion. The latter methods show more scatter in their 
trends, but also exhibit less error overall.  To illustrate, the average %-error of the three 
result sets are 8.6% for RPP, 8.2% for RPS, and 7.2% for joint inversion. Thus we see a 
modest improvement when converted-wave data is employed. 

 

FIG. 3: Error in ∆IS/IS, as obtained by the Aki-Richards theory from synthetic RPP amplitudes, RPS 
amplitudes and joint data. 
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Next we analyze results from alternate theoretical methods, with results displayed in 
Figures 4 and 5.  The pseudo-linear results are similar in their trends to the Aki-Richards 
results, but the RPS inversion result is somewhat more accurate.  The average %-errors in 
this case are 13% for RPP, 3.2% for RPS, and 3.6% for joint inversion. The pseudo-
quadratic result shown in Figure 5 is different than the others in appearance, as its 
principle error should be of cubic order rather than quadratic. Its average %-errors are 
2.0% for RPP, 0.22% for RPS, and 0.50% for joint inversion, so once again RPS yields the 
best overall values.  

 

FIG. 4: Error in ∆IS/IS, as obtained from synthetic RPP amplitudes, RPS amplitudes and joint data 
by the pseudo-linear theory. 
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FIG. 5: Error in ∆IS/IS, as obtained from synthetic RPP amplitudes, RPS amplitudes and joint data 
by the pseudo-quadratic theory. 

 
The RPS inversion results for all three methods are displayed on a logarithmic scale in 

Figure 6.  Visually one can see that the pseudo-linear method is more accurate than Aki-
Richards, and pseudo-quadratic is more accurate still. 

 

DISCUSSION AND CONCLUSIONS  
 

We are seeking to address the question of obtaining improved estimates of impedance, 
particularly the shear-wave impedance. We have found that inversion of RPS and joint 
amplitudes yields more accurate results than inversion of RPP. We have also found that 
methods such as the pseudo-linear and pseudo-quadratic techniques, which have been 
derived as part of this study, can extract higher accuracy from the RPS and joint inversion 
than can the traditional Aki-Richards method. This is encouraging from a practical point 
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of view as the pseudo-linear method can be easily implemented in place of the Aki-
Richards method, requiring identical inputs. 

 

FIG. 6: Error in ∆IS/IS, as obtained from synthetic RPS amplitudes by various inversion methods. 

The work in this study suggests several further directions of inquiry. A strong 
dependence of the errors upon ∆IS/IS,exact has been noted. This suggests other possibilities, 
such as the development of empirical corrections (Ursenbach, 2003a) to ∆IS/IS values 
obtained by inversion. Another important target of AVO inversion is the density contrast. 
Figure 7, analogous to Figure 6, shows a calculation of this quantity from converted-
wave amplitudes. The pseudo-quadratic method shows considerable promise for this 
purpose. (The Aki-Richards result may also be compared to the density contrast 
displayed in Figure 2, which shows the converted-wave result to have more scatter than 
that of the compressional-wave.) It will also be of considerable interest to assess the 
degree to which the conclusions of this study hold when noise is added to various 
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components of the inversion. Further investigation of all these issues is justified by the 
great value of more accurately delineating fundamental rock properties in exploration 
targets. 

 

FIG. 7: Error in ∆ρ/ρ, as obtained from synthetic RPS amplitudes by various inversion methods. 
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