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SUMMARY 
We have observed that Vibroseis wavelets behave very much as if they are minimum 

phase. This was discovered by applying a minimum-phase Wiener deconvolution to the 
separated Vibroseis-VSP downgoing waves and observing that the result is effectively a 
band-limited spike. Our observation was further confirmed by the similarity between 
Vibroseis-VSP downgoing waves and their minimum-phase equivalents. This finding 
contradicts the conventional assumption; therefore, it is necessary to investigate the 
reason for this phase property. By a simple model test, we show that both stationary and 
nonstationary minimum-phase filters result in an effective minimum-phase wavelet. If the 
Klauder wavelet is broadband, the phase of the wavelet embedded in the trace will be 
determined mainly by the minimum-phase factors including instrument and receiver 
response, far-field differential operators, and earth filtering. Furthermore, we applied a 
minimum-phase Gabor deconvolution to the correlated Vibroseis data and sweep-
removed Vibroseis record, with the residual wavelet being close to minimum phase. For 
the synthetic data, the deconvolved traces from both approaches are consistent with the 
input reflectivity. For a real shot-gather, there are few differences between the 
deconvolved gathers from these two methods. These comparisons further confirm that the 
nonstationary wavelet embedded in the correlated surface Vibroseis seismic data is 
effectively minimum phase. 

INTRODUCTION 
In the 1980s and earlier, the wavelet embedded in correlated Vibroseis data was 

assumed to be the zero-phase autocorrelation of the sweep (see Brötz et al., 1987; Bickel, 
1982). This assumption has been challenged by Sallas (1984) and Baeten and Ziolkowski 
(1990) who argued that the far-field wavelet is not an autocorrelation function but the 
crosscorrelation between the pilot sweep and the time derivative of the ground force, 
which can be estimated from a weighted sum of the vertical acceleration of the base plate 
and the reaction mass. Thus, the embedded Vibroseis wavelet for propagation in an 
elastic medium is not zero phase. This argument ignores attenuation. Others (e.g., Brittle, 
2001) have stated that the presence of earth-attenuation results in a mixed-phase wavelet 
that is the convolution of the Klauder wavelet and the earth-attenuation minimum-phase 
filter, but this assumption is not verified. Therefore, the phase property of the wavelet 
embedded in the Vibroseis trace is still an unsolved problem. Fortunately, the phase of 
the wavelet can be examined empirically by studying the result of the minimum-phase 
deconvolution or the minimum-phase equivalent of the observed wavelet. 

In a time-domain Wiener spiking deconvolution, if the wavelet is minimum phase and 
the reflectivity is white, the output of the deconvolution will resemble a band-limited 
zero-phase impulse located at the wavelet arrival time. Conversely if the output of this 
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deconvolution is close to the band-limited zero-phase impulse, we can infer that the 
wavelet is effectively minimum phase. Alternatively, the difference between the observed 
wavelet and its minimum-phase equivalent shows how close the observed wavelet is to 
the minimum-phase one. 

In this investigation, first the phase property of the Vibroseis wavelet is examined on 
the directly observed wavelet. We then propose an uncorrelated Vibroseis trace model 
and show how the Klauder wavelet and the other minimum-phase filters affect the phase 
of the embedded wavelet.  

REAL DATA EXAMPLE AND PHASE EXAMINATION  

Rosedale, Alberta  
Provided by EnCana, the first dataset consists of five Vibroseis source points recorded 

simultaneously into VSP and surface spreads. Receivers were positioned in the borehole 
between 322 and 1820 m depth at an interval of 20 m. An additional 78 receivers were 
placed on the surface between 30 and 2310 m from the borehole at 30-m intervals. The 
five source points were located 27, 430, 960, 1350, and 1700 m from the borehole and a 
12-s, 10–96 Hz linear sweep was used. Sixteen-second long, uncorrelated surface records 
and VSP records were recorded at a 2-ms sample rate. 

The downgoing Vibroseis wavelets (DVWs) were directly estimated from the 
correlated VSP data using standard wavefield separation methods and are shown, time-
aligned and normalized, in Figure 1a. Wiener spiking deconvolution was then applied to 
the DVWs. The Wiener inverse operator was designed with data from 0.2 to 0.3 s of 
Figure 1a. Operator length was 0.12 s and the stabilization factor was 0.0001. Figure 1b 
shows that the normalized, deconvolved wavelets are nearly identical approximations to 
band-limited zero-phase wavelets. This suggests that the observed DVWs are effectively 
minimum phase.  

Pikes Peak, Saskatchewan 
This experiment was conducted by Husky Energy over the Pikes Peak heavy-oil field 

in west-central Saskatchewan. Receivers were placed in a borehole at 7.5 m intervals 
from 27 m to 514.5 m. The vibration point was 23 m from the well and the sweep was 
linear from 8 to 200 Hz. Figure 2a shows the DVWs isolated from the correlated data, 
comparable to Figure 1a. Though the results of Wiener deconvolution on these wavelets 
were also symmetrical, band-limited impulses, we choose to show an alternate test of 
minimum phase. In Figure 2b, we show the minimum-phase equivalent wavelets (MPEs) 
for each observed wavelet in Figure 2a. These were calculated by inverting the operator 
obtained by running the Levinson algorithm on the DVWs, using all autocorrelation lags, 
with a white-noise stabilization factor of 0.0001. The MPEs are nearly identical to the 
observed DVWs; and to demonstrate this, we show the difference plot in Figure 2c. The 
differences were calculated after careful alignment of the wavelets using a 
crosscorrelation. Figure 2d shows that the correlation coefficients of the MPEs with 
DVWs are close to unity which means DVWs are effectively minimum phase. 
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Ross Lake, Saskatchewan 
This experiment was conducted by Husky Energy and CREWES over the Ross Lake 

oilfield in southwest Saskatchewan. Receivers were placed in a borehole at 7.5 m 
intervals from 198 m to 1165 m. The vibration point was 54 m from the well and the 
sweep was linear from 8 to 180 Hz. Figure 3a shows the downgoing wavelets isolated 
from the correlated data, comparable to Figure 1a. Though the results of Wiener 
deconvolution on these wavelets also gave symmetrical, band-limited impulses, we 
choose again to show an alternate test of minimum phase. In Figure 3b we show the MPE 
for each observed wavelet in Figure 3a. The MPEs are nearly identical to the observed 
DVWs; and to demonstrate this, we show the difference plot in Figure 3c. The 
differences were calculated after careful alignment of the wavelets using a cross 
correlation. Again, the very small differences indicate that the DVWs are actually 
minimum phase. 

A THEORETICAL PERSPECTIVE 
An uncorrelated Vibroseis trace model, without multiples, can be written as 

 ,* rQDRIWX filtiffecnsvob •∗∗∗∗=  (1) 

where vW  represents either the Klauder wavelet or the wavelet resulting from frequency 
domain sweep deconvolution (Brittle and Lines, 2001); nsI  and ecR  are instrument and 
receiver responses, respectively; iffD  is the far-field differential operator (Baeten and 
Ziolkowski, 1990); filtQ  is the nonstationary earth filter; r  is the reflectivity; and the 
ellipsis (…) symbolizes any other possible filters required to make our theory more 
realistic. We explicitly assume that all terms on the right-hand side of equation (1) are 
minimum phase except for vW  which is zero phase and r  which is random phase. Also 
symbol ∗  stands for stationary convolution while •  represents nonstationary convolution. 
Working in a local window, the amplitude spectrum of obX  is approximately 

 filtiffecnsvob QDRIWX ˆˆˆˆˆˆ = , (2) 

where the hat (^) indicates the Fourier transform and we assume that the amplitude 
spectrum of r  is unity. This represents the amplitude spectrum of the embedded wavelet 
in our model and is what a perfect deconvolution algorithm would estimate. The 
deconvolution algorithm would then calculate a phase by the Kolomogorov technique 
which gives 

 ( ) ( ) ( )filtnsv QHIHWH ˆlnˆlnˆlnmin +++=φ . (3) 

where H  denotes the Hilbert transform. Equation (3) is also the phase of the MPE 
associated with the embedded wavelet. Since, by assumption, all filters are minimum 
phase except the first, which is zero phase, this differs from the true phase only by the 
first term. It follows that we can explain our observations if 
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 ( ) ( ) ( )ˆˆ ˆln ln lnv ns filtH W H I H Q<< + + . (4) 

This is in fact usually true because ˆ 1vW =  , and hence ˆln 0vW =  , for all frequencies 

except those near the end of the sweep. The effect of the end of the sweep is not large 
because the Hilbert transform is effectively a local operator. 

Therefore, we expect, from theoretical grounds, that the phase of the minimum-phase 
equivalent should be nearly equal to the phase of the Vibroseis wavelet because: 

• The Vibroseis effect is contained in a filter that has a broad-band, unit amplitude 
spectrum and is zero phase. 

• The Hilbert transform will calculate a very small phase from such a result. 

• All other filters involved are minimum phase or nearly so. 

 Now we merge all the stationary minimum-phase filters and write an effective 
minimum-phase wavelet as 

 minWWW veff ∗=   (5) 

where minW  denotes merged minimum-phase equivalent. Figure 4 shows the amplitude 
and phase spectra of vWW ,min  and effW  for simple assumed forms for the first two. It 
indicates that the Klauder wavelet makes a very small contribution to the phase of the 
convolved result which is effectively a minimum-phase equivalent. 

To investigate the influence of the nonstationary earth filter, here we build an 
uncorrelated Vibroseis record modelled as the nonstationary convolution of the pilot 
sweep, the constant-Q attenuation function, and reflectivity, and written as (adapted from 
Margrave et al., 2003) 

 ( ) ( ) ( ) ( )[ ] ωττωταω
π

ωτωτ dederstx ii
d ∫ ∫ −= ,ˆ

2
1 , (6) 

where ( )tx d  represents the uncorrelated trace, ŝ  denotes the spectrum of the sweep, r  is 
reflectivity, and α  is the Q attenuation function (Margrave et al., 2003). 

When the resulting wave travels in a horizontally layered, constant-Q medium, with Q 
equal to 60 for all the layers, it will be attenuated, reflected, and finally recorded on the 
surface. This process can be simulated by the nonstationary convolution of the sweep, the 
constant-Q attenuation function and the reflectivity as shown in Equation (6). Figure 5 
shows the procedure described by Equation (6). 

Usually we correlate ( )tx d  with the sweep to get a correlated trace, or do frequency 
domain sweep deconvolution (FDSD) on ( )tx d  to remove the sweep (Brittle and Lines, 
2001). Figure 6 shows the traces and their amplitude spectra after crosscorrelation and 
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FDSD. Since the sweep is linear, two synthetic traces from the different approaches are 
actually identical, which means that the wavelets embedded in these two traces are 
similar to each other. The difference between the two amplitude spectra is caused by 
numerical errors in calculation. 

The Gabor deconvolution (Margrave and Lamoureux, 2002) is now applied to the 
sweep-removed synthetic Vibroseis trace. Figure 7 shows the nonstationary wavelet 
estimate from the Gabor deconvolution and the impulse response of the earth filter. Here, 
we found that the shape of the wavelet estimate is quite close to that of the minimum-
phase earth filter. It indicates that the amplitude spectrum of the reflectivity has less 
influence on the wavelet estimate in Gabor deconvolution.  

We next applied Gabor deconvolution to both the sweep-removed and the correlated 
synthetic Vibroseis traces. Figure 8 shows the deconvolved traces and reflectivity. The 
results from both approaches are quite close to the input reflectivity and do not show 
large, spurious, phase rotations. It implies that the wavelet embedded in the correlated 
data is actually nonstationary minimum-phase as shown in Figure 7.  

Figures 9a and 9b show the results of Gabor deconvolution on the traces from the 
crosscorrelation and the FDSD respectively. Figure 9c shows the difference between 
these data. If the wavelet in the sweep-removed data is minimum-phase, it can be inferred 
from the small and random differences shown in Figure 9c that the nonstationary wavelet 
embedded in the correlated surface Vibroseis data is close to being minimum phase. 

DISCUSSION 

These results may seem confusing since they seem to contradict theoretical 
expectations. It is a fundamental point of signal theory that a composite signal, formed as 
a convolution of two primitive signals, can only be minimum phase if both of the 
primitive signals are minimum phase. The uncorrelated data model expressed by equation 
(6) is conceptually rsxd •∗= α , where s is the sweep, α  is the earth filter, r is the 
reflectivity. It follows immediately that the correlated trace is rwxc •∗= α  , where w  is 
the zero-phase Klauder wavelet. Therefore, it seems inescapable that correlated Vibroseis 
data cannot be minimum phase. Yet, our observations speak for themselves. The 
reconciliation may lie in the fact that a perfect impulse is mathematically both zero and 
minimum phase. That is, if the amplitude spectrum is unity for all frequencies, then the 
natural logarithm is zero and the Hilbert transform gives zero. As a sweep becomes more 
and more broadband, its corresponding Klauder wavelet (autocorrelation) must approach 
a spike. On the other hand, the earth filter is a strong, nonstationary, minimum-phase 
process. It seems plausible that the minimum-phase nature of the earth filter plays a much 
more important role in shaping the Vibroseis wavelet than the zero-phase Klauder 
wavelet. If this is the case, we do not yet understand why our final example seems to be 
getting less minimum-phase with increasing depth. This may have something to do with a 
progressively decreasing highest signal frequency, something we did not try to account 
for in our computation of the minimum-phase equivalents. While the Vibroseis wavelet 
cannot, in theory, be minimum phase, our experimental evidence suggests that it is so in a 
practical sense.  
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CONCLUSIONS 
We have presented a combination of synthetic and real field experiments that support 

the conjecture that the embedded wavelet found in correlated Vibroseis data is, for 
practical purposes, minimum phase. This implies that Vibroseis data does not require a 
phase correction to agree with the minimum-phase assumption in a typical deconvolution 
algorithm. 
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FIG. 1. a) Directly observed wavelets (normalized to peak amplitude), and b) the result of 
minimum-phase spiking deconvolution on the wavelets of a). 
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FIG. 2. a) Directly observed wavelets in VSP downgoing waves from Pikes Peak (normalized to 
peak amplitude); b) the minimum-phase equivalents (MPEs) of the wavelets shown in a); c) the 
difference between a) and b); and d) the correlation coefficients of the MPEs with downgoing 
Vibroseis wavelets. 

 

FIG. 3. a) Directly observed wavelets in VSP downgoing waves from Ross Lake (normalized to 
peak amplitude); b) the minimum-phase equivalents of the wavelets shown in a); and c) the 
difference between a) and b). 
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FIG. 4. Spectra of the Klauder wavelet (red), minimum-phase wavelet (blue), and effective 
minimum-phase wavelet (green). 

 

FIG. 5. a) The attenuated sweep, b) reflectivity, and c) uncorrelated trace. 

 a)                                                         b)                          c)
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FIG. 6. a) Synthetic traces by FDSD and crosscorrelation, and b) amplitude spectra of the 
synthetic traces. 

             a)                                                                  b) 

 

FIG. 7. a) Impulse response of the forward Q filter, and b) the wavelet estimates on the sweep-
removed trace. 

a) 
 
 
 
 
 
 
 
 
 
b) 
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FIG. 8. a) The reflectivity, b) the trace after the Gabor deconvolution on the sweep-removed data, 
and c) the trace after the Gabor deconvolution on the correlated data.  

 
 
 
                a)                                       b)                                      c) 

  

FIG. 9. a) The gather after minimum-phase Gabor deconvolution of the correlated data; b) the 
gather after minimum-phase Gabor deconvolution of the uncorrelated data; and c) the differences 
of the data shown in a) and c).  



Examining phase of the Vibroseis wavelet 

 CREWES Research Report — Volume 16 (2004) 11 

REFERENCES 
Baeten, G., and Ziolkowski, A., 1990, The Vibroseis Source: Elsevier Science Publishing Company Inc. 
Bickel, S. H., 1982, The effects of noise on minimum-phase Vibroseis deconvolution: Geophysics, 47, 

1174–1184. 
Brittle, K. F., 2001, Vibroseis Deconvolution: Frequency-Domain: M.Sc. Thesis, University of Calgary. 
Brittle, K. F., and Lines, L. R., 2001, Vibroseis deconvolution: An example from Pikes Peak, Saskatchewan: 

CSEG Recorder, 26, 28–32. 
Brötz, R., Marschall, R., and Knecht, M., 1987, Signal adjustment of Vibroseis and impulsive source data: 

Geophysical Prospecting, 35, 739–766. 
Gibson, B., and Larner, K., 1984, Predictive deconvolution and the zero-phase source: Geophysics, 49, 

379–397. 
Margrave, G. F., Dong, L., Gibson, P., Grossman, J., Henley, D., and Lamoureux, M. P., 2003, Gabor 

deconvolution: extending Wiener’s method to nonstationary: CSEG Recorder, 28, 5– 12. 
Margrave, G. F., and Lamoureux, M. P., 2002, Gabor deconvolution: 2002 CSEG Annual Convention, 

Calgary, AB. 
Sallas, J. J., 1984, Seismic vibrator control and the downgoing P-wave: Geophysics, 49, 732–740. 


