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2-D wave modelling and reverse-time migration by a new finite 
difference scheme based on the Galerkin method 

Xiang Du and John C. Bancroft  

SUMMARY 

 
Full wave equation 2-D modeling and migration using a new finite difference scheme 

based on the Galerkin method are presented. Since it involves semi-discretization by the 
finite element method (FEM), it is also called finite element and finite difference method 
(FE-FDM). Using the semi-discretization technique of the finite element method (FEM) 
in the z direction with the linear element, the original problem can be written as a coupled 
system of lower dimensions partial differential equations (PDEs) that continuously 
depend upon time and space in the x direction. A fourth-order finite difference method 
(FDM) is used to solve these PDEs. The concept and principle are introduced in this 
paper. Compared with the explicit finite-different method of the same accuracy, the 
stability condition is less constrained and shows its advantage over the conventional 
FDM. An absorbing boundary condition of fourth-order accuracy is used to prevent 
boundary reflections. In numerical experiments, a comparison is made between a FE-
FDM numerical solution and an analytic solution of the quarter-plane. Here, FE-FDM is 
shown to be accurate in numerical computation; in addition, a constant velocity model 
with two irregular interfaces is simulated to get the poststack seismic section, which is 
then successfully migrated. These examples show the potential of FE-FDM in modeling 
and reverse-time migration. 

INTRODUCTION 

 
The finite element–finite difference method (FE–FDM), a numerical method using the 

FEM and FDM in the spatial domain to solve partial differential equations, was first put 
forward by Dong (2001). In contrast to FEM, the FE-FDM semi-discretizes the PDE in a 
partial spatial domain. This yields a coupled system of PDEs, which still depend 
continuously upon both time and space (although not all the space dimensions), and are 
solved with FDM. Thus, the strengths of FEM (the adaptation to the arbitrary domain and 
boundary) are retained. The shortcomings of the FEM (large demand on computer 
memory and high computation costs) are reduced because of the semi-discretization. In 
fact, when the lumped global mass matrix of FEM is used and other spatial domains and 
temporal domain are solved by FDM, it is equivalent to the FDM in nature. So, this 
method actually is a finite difference scheme based on Galerkin method.  

Earlier applications employed semi-discretization along x direction by FEM. However,   
considering that the spatial sampling interval in the x direction is greater than that in the z 
direction, the wave equation is semi-descretized along the z direction by the FEM. 
Another development new to this study is that we employ the fourth order rather second-
order FDM for computing along the x direction. This allows us to derive a new and 
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accurate stability condition for the FE-FDM and we show that it is less constrained 
compared with a full FDM of the same order. The fourth-order absorbing boundary 
condition (Clayton and Engquist, 1977) is used to prevent boundary reflections. Some 
examples of 2-D wave equation modeling and migration are given as well to demonstrate 
the potential of this method through some comparison with analytical solution and other 
methods.

PRINCIPLE 

 
Consider the hyperbolic model problem, with the 2-D scalar wave equation: 
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where ),,( tzxu denotes the wave displacement in the horizontal coordinate x, vertical 
coordinate z (where the z axis points downward) and time t, respectively, and a(x, z) is 
the medium velocity.  

FEM semi-discretization in the z direction              

Semi-discretizing the vertical coordinate (z) in the region of [0, Z], one constructs a 
finite element function space as 
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where N  is the nodal number. According to the Galerkin method (Lu and Guan, 1987), 
one can write the semi-discretized PDEs as: 
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where e represents the each nod, and Ne is the total number of elements. In this paper, the 
line element is considered for the semi-discretiztion along the z direction. The 

interpolation function is ( ) ( ,   1 )N x ξ ξ= − , here 1iz z
l

ξ + −= , and 1i il z z+= − . It can be seen 

that the matrices M, K and H are all symmetric and tridiagonal. 
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FDM solution of matrix PDEs 
A set of indices i, j and n is chosen to establish a discretization model with different 

grid spacing x∆ , y∆ and t∆  in x, y and t, respectively: 

xix ∆−= )1(              Ii ,...,2,1=  

yjy ∆−= )1(             Jj ,...,2,1=  

   tnt ∆−= )1(              Nn ,...,2,1= , 

where I, J and N are the number of samples in x, y and t, respectively. One of the explicit 
schemes, the three-point central scheme, is selected to solve this problem. The difference 
equation has the form: 
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where n
jiu ][  represents the discrete value of the wavefield at the grid point (i, j) and at 

time n, and τ, and l are the time and space steps, assumed constant. In the following 
numerical examples, considering of the computation accuracy, we choice five points 
central scheme to solve the PDEs, and it has the form: 
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The local truncation error of this scheme has the form of O ( 42 l+τ ) (Durran, 1999). 
Figure 1 is the temporal and spatial grid computation. In contrast to the central FDM, 
each grid computation at time τ−t or τ+t has a relationship with the fifteen points at t , 
which will affect the stability condition. 

 

Figure 1. Grid computation in the spatial and time domain 

Analysis of stability condition 

The computational error can be expanded in a Fourier series as 
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n
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n
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where 1ι −=  and n
qp,Γ  is a complex coefficient. It is sufficient to consider only a 

component 
      )exp(ι)exp(ι, zqjxpie nn
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Substituting the Equation (6) into Equation (4), we obtain  

                  nnn AΓ+Γ−=Γ −+ 211 ,                                                 (8) 

where  
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part of nΓ  satisfy the same equation. So we can simply treat nΓ as a real quantity. 
Equation 9 is replaced by 
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Stability is assured if 11 ≤≤− A  as indicated by the computation result of Wu et al. 
(1996). This requirement on A yields the result that 

1))cos(
6
2

6
4)(

6
30)cos(

6
16)2cos(

6
1(,2

1

)1)(cos(,11

≤∆+−∆+∆−+

−∆+≤−

yqxpxpX
jig

xqZ
jig

  .        (11) 

We assume 
h

tv
g ji

ji

22
,

,
)(∆

= , with 

22 )(
1

)(
1

2

zx

h

∆
+

∆

=  

If hzx =∆=∆ , the expression (11) reduces to  

[ ] 1
)30)cos(16)2cos()(cos(2(

36
1

)1)(cos(
11 , ≤













−∆+∆−∆+

+−∆
+≤−

xpxpyq

yq
g ji    (12) 

Therefore the stability condition should satisfy 

                 
13
8, ≤

∆
h

tv ji ,                                                 (13) 

which is much weaker than the stability condition for a second order central FDM and 
forth order central FDM(Larry Lines, etc, al., 1999). The comparison is shown as 
following Figure 2.  
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Figure 2. The comparison between FE-FDM and traditional FDM 

Hence, according to the above analysis of the stability condition, one finds that the 
algorithm based on the FE-FDM has a much less constraint stability condition than those 
based on conventional FDM under the same accuracy condition. 

Absorbing boundary condition 
The approach of the absorbing boundary condition (Clayton and Engquist, 1977) gives 

the fourth-order accuracy boundaries as following: 
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For the migration, the value of the top boundary is the seismic section used to extrapolate 
the wavefield. So, the bottom boundary, left boundary and right boundary conditions are 
needed, which are same as the boundary conditions used with the wave modeling. 

NUMERICAL EXAMPLES 

In order to validity the algorithms of FE-FDM, some cases are chosen for modelling 
and migration. The numerical solution of modeling in a quarter-plane is compared with 
the corresponding analytical solution. One numerical case is designed to show the 
stability condition advantage of FE-FDM over FDM. For migration, a constant velocity 
model with two irregular interfaces is chosen to do modeling first and then migration.  
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Case I: Comparison between the numerical solution and analytical solution 
The quarter-plane problem is a particular case of the infinite-wedge problem. As 

underlined by Wait (1959), the solution can be found by image theory. A source S inside 
the medium induces three virtual image sources, as shown in Figure 3. Two images xS  
and zS  are symmetric with respect to the real source along the x-axis and z-axis edges. 
The third image cS  is symmetric of the real source with respect to the corner. For grid 
boundary condition on the two edges, one can write the solution at the point ),( zxM  as 

)(),,,,,( ssss tftzxtzxG ∗ - )(),,,,,( ssss tftzxtzxG ∗− -
)(),,,,,( ssss tftzxtzxG ∗− + )(),,,,,( ssss tftzxtzxG ∗−− . 

 

Figure 3. Quarter-plane geometry: Image theory interpretation 

Table 1 gives the physical parameters of the quarter-plane problem. The usual rule of 
using at least ten points for the shortest wavelength of the source is respected for this 
scheme. The seismogram at a given point in Table 1 shows more quantitatively the 
accuracy of the numerical solution by comparison with the analytical solution in Figure 4. 
They are accurately matched except some difference in the amplitude. 

Table 1: Quarter-plane parameters 

Physical parameter 
Velocity 3000m/sec 
Source and  
Observer 
position 

Hzmainf 50= ;  
source position: 250*250m2;  
observe position: 150*150m2.  

Other 
parameters 

dx = 5m, dz =5m,  dt = 1.25E-3s, grid of 
300*300 points 
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Figure 4. Seismogram at a given observer (Table 1). The solid blue line is the solution of 
analytical solution, and the dashed red line is the numerical solution of the FE-FDM 

 

Case II: Comparison of stability condition between the FE-FDM and second order 
central FDM 

To show the advantage of FE-FDM in a stable condition, we designed a homogenous 
model with the parameters in Table 2. According to the parameters and the previous 
analysis of the stability condition, we can know the computation of the 2nd order FDM 
scheme will diverge, while that of FE-FDM can still remain convergent, which is also 
proven from numerical simulation result  of Figure 5 and Figure 6. Figure 5 is the result 
obtained from FE-FDM, and Figure 6 is from 2nd order FDM. From Figure 5, we can 
know the wave propagates outside from the source, while there is obvious numerical 
divergence by the traditional FD scheme from Figure 6. 

Table 2: Parameters for modeling wave propagation 

Physical parameter 
Velocity 1500m/sec 
Source and  
Observer 
Position 

Hzmainf 50= ;  
source position: 150*150m2;  
observer time  : 9ms.  

Other 
parameters 

dx = 2m, dz =2m,  dt = 1.00E-3s, grid of 
300*300 points 
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       Figure 5. Modeling by FE-FDM.         Figure 6. Same modeling by 2nd order central FDM  

Case III: constant velocity migration with irregular interface 
To test the image ability for the irregular interface, a constant velocity model with two 

irregular interfaces is designed, which is shown in Figure 7. The parameters of the model 
are shown in Table 3.  

Table 2: the parameters of constant velocity model 

Physical parameter 
Velocity 3000m/sec 
Source 
and  
Observer 
position 

Ricker wavelet with Hzmainf 50= ;  
source: each point of the interfaces; 
observer: the line in the ground. 

Other 
parameters 

dx = 3m, dz =3m,  dt = 1.0E-3s, grid of 
500*300 points 

 
Using the FE-FDM, the exploding reflection model (ERM) and the parameters shown 

above, one can get the post-stack seismic section, which is shown in Figure 8. Figure 9 is 
the migration result. Compared with the model in Figure 7, there is a good corresponding 
relationship between the migration result and the model. The FE-FDM migration images 
the irregular interfaces and accurately locates the diffraction in the right place. In addition, 
there is some weak diffraction in the migration section because of the truncation, but it 
doesn’t affect the image result. Therefore, the FE-FDM can work well under the cases 
with the constant velocity. 
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Figure 7. The complex velocity model with irregular interfaces 

 
Figure 8. The seismogram generated by the FE-FDM 

 
Figure 9. The migration result from using the FE-FDM 



Modelling and migration by a new FD scheme 

 CREWES Research Report — Volume 16 (2004) 11 

CONCLUSIONS 

 
A numerical method named finite element–finite difference method (FE-FDM) for the 

solution of full 2-D wave equation is presented in this paper.  Numerical examples of 2-D 
acoustic wave equation modeling and reverse-time depth migration were shown 
illustriously that the result is accurate and effective for the simulation of a complex 
wavefield and migration of the irregular interfaces. This method combines FEM and 
FDM based upon the semi-discretization of the spatial domain. The main strengths of 
FEM (adaptation to arbitrary domain) and FDM (computation efficiency) are inherited. 
FE-FDM has a more relaxed stability condition than the FDM with the same accuracy. 
The application of a good absorbing boundary condition contributes to better imaging 
ability in the modelling and migration. It is therefore a useful and promising numerical 
method.  
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