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Footprint:  A look at seismic acquisition geometries using 3D 
prestack depth migration. 

Gary F. Margrave 

ABSTRACT 
The acquisition footprint of a 3D survey refers to any imprint or modulation of the 

amplitude and phase of the final migrated depth image that is directly attributable to the 
survey geometry, that is, the positions of sources and receivers.  Since processing 
algorithms differ in their ability to deal with geometric problems, the footprint is 
generally also a function of the processing flow.  This paper examines some of the factors 
affecting footprint for a typical land 3D geometry when imaged with prestack source-
record migration.  As a preliminary, a brief overview is given of some of the sampling 
issues concerning possible spatial aliasing with respect to the sampling intervals of 
receivers, receiver lines, sources, and source lines.  The footprint is then examined 
through a numerical simulation that consists of (1) image-source modeling of the 
reflection response of a uniform horizontal reflector, (2) prestack depth migration of each 
source record, and (3) summation of the migrated source records with and without 
illumination compensation.  Two different models of illumination estimation are 
examined.  One is the direct thresholding of the rectified migration response for each 
source record and the other is the thresholding of the rectified, normalized 
crosscorrelation of the source and receiver functions.  Illumination compensation was 
undertaken by dividing the source-record stack by the corresponding stack of 
illumination estimates.  Simulation results for both PP and PS recording are shown.  
Some general conclusions are: (1) some form of footprint is unavoidable, (2) direct 
stacking of migrated source record without illumination compensation leaves a strong 
aperture imprint (3) illumination compensation lessens the aperture imprint but can 
worsen the imprint of the geometry (4) the spatial aliasing due to course source and 
receiver line spacings is roughly compensated if the lines are orthogonal (5) the geometry 
is very effective against both random and coherent noise although the latter is more 
problematic (6) strong levels of coherent noise dramatically worsen the footprint effect.  
The Matlab script files for this simulation are released with this paper and are intended to 
allow exploration of parameter interactions that are beyond the scope of this introductory 
paper. 

INTRODUCTION 

A frequent observation from experienced seismic interpreters is that the acquisition 
geometry of a seismic survey can leave an imprint on the final seismic image. Such 
imprints are often called the acquisition footprint and that term is used here. On the 
simplest level, this is an obvious, almost trivial observation. Of course the finite spatial 
and temporal apertures impose limits on the resulting seismic image. Of course, the 
sampling grids for sources and receivers have an impact on resolution. However, there 
are much more subtle effects that are not so easily recognized or anticipated. For 
example, the source and receiver lattices (i.e. the set of all source or receiver locations)  
are generally different from each other and have different aliasing and resolution 
properties. Furthermore, the particular data processing algorithms used can interact with 
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these sampling lattices in complicated, algorithmically specific ways. So we would 
expect conventional processing followed by poststack migration to have a different 
footprint that prestack migration. Moreover, since there are many different prestack depth 
migration methods, we should expect each one to have a different footprint. 

The situation in 3D is potentially more difficult, and has greater impact, because 3D 
lattices are more likely to be sub-optimal than 2D. In the 2D case, the lattices are 1D 
linear arrays and the receiver lattice is almost always regular and sufficiently dense. The 
source lattice is more problematic, with missed source locations and insufficient density 
being frequent occurrences. This is known to cause fold and image quality variations that 
can be considered as a 2D footprint. In 3D, sufficiently dense sampling to avoid aliasing 
is extremely difficult to achieve because the lattices are now 2D and require a dense array 
over an area rather than a line. The cost of adequate spatial sampling for both sources and 
receivers is usually prohibitive and various compromise strategies have evolved. 

This paper recounts the initial steps in an investigation of the footprint resulting from 
prestack depth migration using typical 3D land acquisition strategies.  This is very 
relevant to the research priorities of our imaging group as we develop advanced imaging 
algorithms and move them into 3D. Since we hope to develop methods that improve the 
quality of land 3D seismic images, we need to understand what strategies are required to 
deal with the source and receiver lattices that are typically employed. This paper begins 
with a theoretical discussion of sampling issues in 3D prestack depth migration. Then the 
construction of a Matlab code that simulates an idealized 3D prestack depth migration is 
described. Two different schemes for calculating illumination are presented and the use 
of illumination estimates to normalize a 3D image is discussed. Finally a variety of 
graphical displays from a series of tests for both PP and PS migrations are presented. 

MIGRATION THEORY AND SAMPLING ISSUES 
Figure 1 shows a typical 3D acquisition geometry for a land seismic survey.  The 

horizontal lines with red symbols denote source locations and the vertical lines with blue 
symbols are receiver locations. The set of all red symbols is the source lattice while all 
blue symbols form the receiver lattice. The sampling compromise is that the receivers are 
laid out in dense linear arrays along receiver lines while the interval between receiver 
lines is relatively coarse. The source locations are also laid out in a similar fashion except 
that the source lines are orthogonal to the receiver lines. Thus the receiver sampling is 
excellent in a direction which is chosen as the x-axis and very poor in the y direction. In 
contrast, the source sampling is excellent in y but poor in x.  Such layouts have been 
called symmetric sampling by Vermeer (1998) who considers them to have optimal 
properties.  It is obviously hoped that this orthogonal compromise will have beneficial 
effects in that the source and receiver lattices will somehow compensate for each others 
shortcomings.  Three different variations of the geometry of Figure 1 will be considered 
in this paper.  Denote the receiver spacing as rδ , the receiver line spacing as rlδ , the 
source spacing as sδ  and the source line spacing as slδ .  When r rl s slδ δ δ δ= = =  the 
geometry will be called complete.  When r rl sδ δ δ= =  but sl sδ δ>  the geometry will 
be called source reduced.  When r sδ δ=  but rl sl s rδ δ δ δ= > =  the geometry will be 
called source-receiver reduced.  Typically the receiver and source spacings will be 10 m 
and the reduced line spacings will be 100 m . 
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Figure 1.  The nominal geometry for the experiments reported here.  The blue lines are the 
receiver lines and the red lines are the source lines.  This is called the source-receiver reduced 
geometry.  When the additional receiver lines are in-filled to make the receiver line spacing equal 
the receiver spacing, the result is called the source-reduced geometry.  When the sources are 
also in-filled, the result is called the complete geometry. 

The prestack depth migration algorithm chosen for simulation here is source-record 
migration.  In this scheme, each individual source record is migrated as an independent 
experiment and then all migrated source records are stacked (summed) together. This is a 
common scheme and has the virtue that the migration process is nicely restricted to 
subsets of the total dataset, and thus has obvious potential for distribution of the 
computing load across a parallel computation cluster.  The basic paradigm of source-
record migration is that the reflection coefficient, as a function of lateral position, is 
estimated at each depth from the ratio of two fields 
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where j  is a source index, nω  is the number of frequency samples, jU  is the upward 

scattered, or reflected, field, jD  is the downward traveling, or incident field, kω  is a 
discrete temporal frequency, and the summation is over frequency.  While equation (1) is 
the usual definition of reflection coefficient, in practice, a stabilized version is used (to 
avoid possible division by zero) given by 
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where the overbar denotes complex conjugation, and ε  is a small positive number.  The 
field jU  is calculated by downward extrapolation of the recorded data through an 

estimated background velocity model.  The field jD  is calculated by downward 
extrapolation of a mathematical model of the source for this particular source record.  
Both equations (1) and (2) are called deconvolution imaging conditions because the 
appearance of the source model in the denominator effectively deconvolves the source 
signature from the final estimate.  While theoretically preferable, a deconvolution 
imaging condition can cause unacceptable noise amplification and therefore the 
crosscorrelation imaging condition given by 

 ( ) ( ) ( )1, , , , , , , ,j j k j k
k

r x y z U x y z D x y z
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ω ω= ∑  (3) 

is sometimes preferred.  Though equation (3) does not correct for source signature or for 
geometric spreading it is still very commonly used for its gentle treatment of background 
noise. (See the discussion in “Results” about random noise for more information. 

Regardless which imaging condition is used, the final prestack depth migration image is 
calculated as a normalized summation over all available sources 
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where the normalization term ( ), ,I x y z  is so-named to suggest its interpretation as an 
illumination estimate.  Two different illumination estimates will be investigated here, 
given by equations (20) and (22), and will be described below. 

An essential feature of this method is the wavefield extrapolation process. In the 
simplest possible method, which will be completely sufficient for this paper, the 
wavefield, either jU  or jD , at depth z z+∆  is calculated from that at depth z  by a 

phase shift operation in the Fourier domain.  For jU  this is 

 ( ) ( ) ( ) ( )
2

ˆ ˆ, , , , , , , , , x yi k x k y
j j x y x y x yU x y z z U k k z W k k z e dk dkω ω ω ++∆ = ∆∫\  (5) 

and there is a corresponding formula for jD .  In equation (5), ˆ
jU  is the 2D Fourier 

transform of jU , ( ),x yk k  are the Fourier dual variables (wavenumbers) corresponding to 

( ),x y , and Ŵ  is the wavefield extrapolator in the Fourier domain given by 
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where v  is the constant background wavespeed appropriate for the depth interval 

[ ],z z z+∆ .  The first form of the wavefield extrapolator, valid for 2 2
x yv k kω > + , 

describes the behavior of propagating waves, while the second form describes evanescent 
waves.  The phenomenon of evanescence is central to considerations here because the 

exponential damping of wavenumbers for which 2 2 1
x yk k vω −+ >  forms a natural 

spectral bandlimiting in the spatial frequencies.  Thus, ideally, we would like spatial 
sample intervals, xδ  and yδ , such that 

 max
x y v

ωπ π
δ δ
= >  (7) 

Solving for the sample intervals and converting to max max / 2f ω π=  gives the condition 

 
max

,
2

vx y
f

δ δ <  (8) 

by which it is meant that both spatial sample intervals should satisfy this inequality.  In 
the simulations to be described below, the usual maximum frequency was max 60Hzf =  
and 3000m/sv= , which leads to the conclusion that both sample intervals should be 
smaller than 25 m .  Equivalently, from (7) we can say that wavenumbers from zero to 

1 1
max / 25 .126mvω π− −= ≈  are expected to contain reflection signal. 
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Figure 2.  (a) The spectral setting in the analog setting as described in the text. The circle 
represents the width of the propagating wavelet spectrum for 60 Hz and a velocity of 3000 m/s.  
The various tic marks indicate potential Nyquist wavenumbers, of the form /π δ± , where δ  is a 
sample interval in meters.  (b) The spectrum in (a) after sampling in x at 10 meter intervals.  The 
box indicates the original spectrum while the circles to the left and right are the first two, of 
infinitely many, aliases. (c) The spectrum in (b) after sampling in y at 10 m intervals.  (d) The 
spectrum in (b) after sampling in y at 100 m intervals.  Only the first two aliases in either direction 
are shown. 

For the migration of a single source, the sampling issues are clear.  Figure 2a shows a 
symbolic spectral plot representing the ideal unsampled (analog) case.  The coordinate 
axes are the two horizontal wavenumbers and the circle around the origin has a radius of 

1/ 25mπ −  representing the expected reflection data.  Also shown are tic marks on the xk  
and yk  axes at /10π±  representing the Nyquist wavenumbers for 10 meter sampling 

and on the yk  axis only are tic marks at /100π±  representing the Nyquist for 100 meter 
sampling.  Consider first the effect of sampling in x only at 10mxδ = .  As is well 
known, this introduces spectral replicas along xk , called aliases, at intervals of 

2 /10nπ±  where n is a positive integer.  The first two aliases are shown in Figure 2b.  
Since the aliases of the signal circle do not intersect with the original, this circumstance is 
said to be unaliased.  Next consider sampling in the y direction at 10myδ = .  This 
introduces spectral aliases in the yk  direction as shown in Figure 2c.  There is still no 
aliasing.  Finally consider sampling in the y direction at 100myδ = , corresponding to 
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the interval between receiver lines in the receiver-reduced geometry, and the spectral 
picture becomes aliased as shown in Figure 2d. 

At first thought, the aliasing of Figure 2d seems a hopeless circumstance; yet, the 
corresponding acquisition geometry has been used successfully many times.  Since the 
source-reduced geometry is orthogonal to the receiver reduced geometry, there is some 
reason to hope that the composite image, formed by stacking all migrated source records, 
might somehow be less hopelessly aliased.  While a complete analysis of the effect of 
these sampling lattices in prestack depth migration is presently elusive, several lines of 
reasoning suggest themselves.  First, one might appeal to source-receiver reciprocity 
arguments.  While the full vector reciprocity relationship for elastic wavefields are 
sufficiently complicated that they are difficult to interpret, there are simple, approximate 
scalar reciprocity arguments in common use that do help.  For example, it is well known 
that common receiver gathers are very similar in all respects to common source gathers.  
In fact, a common migration algorithm that gives very similar results to source-record 
migration treats common source and common receiver gathers as completely equivalent 
at all algorithm steps.  Second, the conventional process of NMO removal, stack, and 
post-stack migration admits a simple argument showing that the final image 
wavenumbers come in equal parts from sources and receivers.  To understand this point, 
let ( ), ,s rψ ω  be a single frequency from a 2D wavefield with sources at coordinates s 
and receivers at r.  Furthermore, assume that NMO has already been removed.  Define 
midpoint, m, and half-offset, h, coordinates via ( ) / 2m s r= +  and ( ) / 2h r s= − , then 
represent stacking as integration over h 

 ( ) ( ), , ,stk m m h m h dhψ ω ψ ω= − +∫\  (9) 

Now represent ( ), ,s rψ ω  in terms of its inverse Fourier transform 

 ( ) ( ) ( )
2
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s r s rs r k k e dk dkψ ω ψ ω += ∫\  (10) 

and insert equation (10) into equation (9) to get 
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 (11) 

which can be re-arranged to give 

 ( ) ( ) ( ) ( )( )
2

ˆ, , , s r r si k k m k k h
stk s r s rm k k e dk dk dhψ ω ψ ω + + −= ∫ ∫\ \

, (12) 

the h integration gives a delta function and we get 

 ( ) ( ) ( ) ( )
2

ˆ, 2 , , s ri k k m
stk s r r s s rm k k k k e dk dkψ ω π ψ ω δ += −∫\ . (13) 

From here we can do either the sk  or the rk  integral and the delta function forces 

s rk k= .  The following conclusions are immediate: (a) the diagonal entries (i.e. r sk k= ) 
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of ( )ˆ , ,s rk kψ ω  form the spectrum of stkψ , (b) the wavenumbers, mk , corresponding to 
midpoint come in equal part from sk  and rk , (c) since 2 2m r sk k k= =  the bandwidth in 
the image is double that in source or receiver gathers.  Though this was developed in 2D 
for convenience, the conclusions also hold for 3D. 

The argument just given actually suffices for the experiment to be described in this 
paper because conventional processing (NMO removal, stack, poststack migration) is 
essentially equivalent to prestack migration for horizontal, uniform reflectors.  However, 
it is not a complete description of the spectral properties of a general prestack depth 
migration.  That more complete theory will have to wait.  For now, a few comments upon 
the implications of sampling in the conventional processing argument are warranted.  
First, “symmetric” sampling (Vermeer, 1990, 1998), where source and receiver lattices 
are identical (and in 3D orthogonal), seems optimal because of the equal status of the 
alternate gathers.  In the 2D case, if 2s rδ δ=  (a common shooting strategy), then only 
the lower half of the mk  spectrum is formed from unaliased data while the upper half 
receives unaliased contributions from receivers but aliased from sources.  A reasonable 
expectation for 3D geometries is that, with the source-receiver reduced geometry 
(described at the beginning of this section, see also Figure 1) the xk  wavenumbers of the 
final image receive unaliased contributions from receivers and aliased from sources while 
the yk  wavenumbers are unaliased from the sources but aliased from the receivers.  Since 
it is generally the case that aliased data migrates incoherently, a reasonable expectation is 
that the source-receiver reduced geometry will perform acceptably provided that there is 
sufficient illumination to overcome noise. 

BUILDING THE NUMERICAL SIMULATION CODE 

Since the issues surrounding the footprint are complex and highly dependent upon a 
great many variables, a numerical simulation code seems like a reasonable initial 
investigative tool.  The simulation is written in Matlab in the form of a series of scripts 
and is available to interested persons at sponsor companies; however, it is not intended to 
be a user-friendly, mass-release product.  At present, the simulation is limited to 
orthogonal source and receiver lines.  The aperture, receiver spacing, receiver line 
spacing, source spacing, and source line spacing are all modifiable parameters.  The earth 
model is limited to a single horizontal reflector, at user specified depth, with constant 
velocity above.  At present, the reflection coefficient is limited to a constant value 
independent of incidence angle.  While obviously unphysical especially in the PS case, 
this featureless reflector means that any variation seen in the migrated image is a 
footprint effect. 

The forward modeled data are created in the temporal frequency domain by a simple 
modeling technique.  For PP data, an image source is placed beneath the reflector at a 
depth equal to twice the reflector depth and the data is then created as a simple frequency 
domain Green’s function of the form 
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where j denotes a particular source at ( ), ,0j jx y , c is the reflection coefficient, pv  is the 
p-wave velocity, 

 ( ) ( )2 22
04 j jz x x y yρ= + − + − , (15) 

and ( )s ω  is the spectral shape function of the source.  In all simulations here ( )s ω  was 
taken as a raised cosine function extending from prescribed values of minω  to maxω .  

For PS data, raytracing software is used to determine the location of the PS conversion 
point and then the distances from source to conversion point, 1ρ , and receiver to 
conversion point, 2ρ , are calculated.  Using this information equation (14) is modified to 
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( )1 2/ /
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1 2
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p si v v

j PS
eU x y z c s

ω ρ ρ

ω
ρ ρ
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= =
+
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This data model is very approximate but at least it gets the correct traveltimes and 
approximately the correct spreading.  A more accurate model would avoid the conversion 
point calculation (because it is correct only in the high-frequency limit) and angle and 
position dependent reflection coefficients.  Better modeling is under investigation. 

Both random and coherent noises are simulated.  For random noise, a “noise-to-
signal” ratio, η , is specified as the ratio of random noise to peak signal strength at the 
dominant frequency.  Thus each frequency gets a unique random number field but the 
power of this field is independent of frequency.  For coherent noise, a linear noise train 
(non-dispersive) is available.  The strength of the noise and its velocity are parameters 
and it’s spectral shape function is prescribed independently of the shape function for the 
signal.  The noise is modeled as 

 ( ) ( )
02 /

; , , 0
2

i h v

j surfnoise surf surf
eU x y z a s

h

ω
ω

−
= =  (17) 

where surfa  is the noise strength, ( )surfs ω  is the spectral shape function, h  is the source-

receiver half-offset, and 0v  is the velocity of the noise. 

The modeling and migration are done simultaneously frequency-by-frequency and 
source-by-source.  In general, only 1/4 of the sources need to be explicitly calculated 
because the others follow from symmetry operations.  Implementation of the imaging 
condition, equation (2), at the reflector requires three preliminary calculations:  
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i. The receiver data are regularized by some sort of interpolation process to fill in 
missing receivers between receiver lines.  After interpolation, the receiver data 
are available on a square grid whose spacing is the receiver interval. 

ii. The receiver data are extrapolated down to the reflector using equation (5). 

iii. The source must be forward modeled to the reflector. 

Regarding issue (i) there are many possibilities and the solution chosen here was a 
simple Fourier-domain interpolation that does not unalias data.  For issue number (ii) a 
simple constant velocity phase shift is used.  The phase shift velocity is pv  for p-wave 

data and sv  for s-wave data.  Finally, for point (iii) the source is directly forward 
modeled at the reflector using the Green’s function 

 ( ) ( )
0 /

; 0
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, ,
pi v
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eD x y z z s

ωρ
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= =  (18) 

where 

 ( ) ( )2 22
0 0 j jz x x y yρ = + − + − . (19) 

The same source model works for both PP and PS data. 

As each source is completely modeled and migrated, its individual frequencies are 
summed (as in equation (2)) and the total source is then summed into the output volume.  
As this happens, two alternate estimates of illumination are also computed.  These are 
two possible generalizations of the concept of stacking fold.  In principle, each source 
record can provide a reflectivity estimate at every point on the reflector, since scattered 
energy goes everywhere.  However, in practice, the estimates are only reliable if come 
from a sufficiently strong signal.  This suggests that the strength of jr  itself as estimated 
from equation (2) might be a good indicator.  This motivates the first illumination 
estimate 
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where µ  is an adjustable parameter presently taken to be around 0.4, and 

( )( )max max , ,jr r x y z=  . The name ;r jI  is meant to indicate that this estimate comes 

from the reflectivity estimate for the jth source. The form of equation (20) is such that the 
illumination has a value of unity whenever the absolute value of the reflectivity estimate 
exceeds µ  times the maximum absolute value of the reflectivity found anywhere in the 
migrated source record.  Otherwise, it tapers smoothly to zero.  This definition of 
illumination is similar to that proposed by Rickett (2003) who defines illumination as the 
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result of a prestack migration of a synthetic dataset divided by the actual model 
reflectivity.  Since the model reflectivity is a constant in this case, the result seems 
similar.  However, Rickett (2003) did not propose thresholding and his definition could 
well exceed unity or be negative. 

The second choice investigated as an illumination measure is to use the normalized 
crosscorrelation of the source and receiver wavefields as estimated at each depth.  This 
crosscorrelation is defined as 
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where 2
j j jU U U=  and similarly for 2

jD .  Though similar to the reflectivity estimate in 
equation (2), this is not the same.  Then a crosscorrelation-based illumination estimate is 
defined in a similar way as before with 

 ( )
( )

( )
max

;

max

1.0 , ,
, , , ,

otherwise
cc j

cc x y z cc
I x y z cc x y z

cc

ν

ν

⎧⎪ >⎪⎪⎪=⎨⎪⎪⎪⎪⎩

…

…
 (22) 

where again a threshold, ν , must be chosen, with .9ν =  having been used in this study. 

As each source is modeled and migrated, the two different illumination functions are 
also calculated.  Along with the stacks of the migrated sources, two different illumination 
function stacks are also made.  An illumination compensated reflectivity estimate then 
corresponds to 

 ( )
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r
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 (23) 

or 

 ( )
;

, ,
jj

Icc
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r
r x y z

I
=

∑
∑

. (24) 

Four scripts have been written in total and are available to CREWES sponsors.  The 
scripts footprintPP.m and footprintPS.m perform the tasks just discussed and make plots.  
However the displays are limited to the final results corresponding to equations (23) and 
(24) plus the uncompensated reflectivity stack and the two illumination stacks.  Scripts 
illumination_functionsPP.m and illumination_functionsPS.m are similar to the other 
scripts except that only four sources are explicitly modeled and a great many plots of 
intermediate results are possible. 
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RESULTS 
In all of the results presented in this section, there was a single horizontal reflector at 

500 m depth, with a constant reflection coefficient of 0.1 for both PP and PS.  The p-
wave velocity was 3000 m/s and the s-wave velocity was 1500 m/s.  The survey aperture 
was 600 meters in each direction, the receiver and source spacings were 10 meters, and, 
for the reduced geometries, the receiver and source line spacings were 100 meters.  The 
source bandwidth was taken to be from 10-60 Hz with a raised-cosine spectral-shaping 
function (see equation (14)).  The figures shown here are all direct outputs from the 
scripts and can be recreated by the reader with access to Matlab. 

As a first example of the results from these scripts, Figures 3-6 show the results for the 
complete geometry in both the PP and PS cases.  While the complete geometry would 
never be used for economic reasons, it is instructive to examine the results as limiting 
cases.  In Figure 3a, the stack of the migrated source records is shown, normalized by the 
number of sources (3600).  Although the actual reflection coefficient is a constant across 
the aperture of the survey, the estimate shows strong variation that is directly related to 
the illumination issue.  At this time, the modeling algorithm is not sufficiently realistic to 
expect the precise reflection coefficient to be estimated.  A more realistic expectation is 
that the bet result will be off by a constant scale factor.  Clearly, Figure 3a shows an 
estimate that is incorrect by much more than a constant scale factor.  This is an example 
of a footprint.  In Figure 3b is the illumination stack for the rI  estimate of equation (20).  
Its maximum value is about 3600 but that tapers off to well less than 1000 near the 
corners of the survey.  Figure 3c shows the illumination normalized stack (equation (23)).  
This is the result of dividing Figure 3a by 3b and then multiplying by 3600 (because 3a 
was normalized by 3600).  The illumination normalization has broadened the “plateau” of 
the reflectivity estimate but at the expense of introducing a roughly square artifact in the 
footprint.  In Figure 4, the same displays are show except for the case of PS migration.  
Since the PS conversion point is closer to the receiver than the PP conversion point, the 
reflectivity estimate is flatter over the central region.  This is similar to the effect seen in 
a PP survey for a shallower reflector (not shown).  The illumination compensated PS 
estimate (Figure 4c) shows a footprint but a satisfyingly large central plateau.  Figures 5 
and 6 are similar to 3 and 4 except that the ccI  illumination estimate was used.  There 
seems to be a slight preference for ccI  on PP and rI  on PS but this could simply be due 
to suboptimal choices for the thresholds in equations (20) and(22).  This is a subject for 
future investigation. 
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Figure 3.  The results of a PP experiment using the complete geometry and no coherent or 
random noise.  The illumination estimates are rI  (equation (20)).  (a) The raw reflectivity 
estimate or direct stack of the migrated sources normalized by the number of sources.  (b) The 
illumination stack. (c) The illumination compensated reflectivity estimate. (d) The illumination 
compensated reflectivity estimate using a smoothed illumination stack. 

 

Figure 4.  Similar to Figure 3 except that the PS algorithm was used. 
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Figure 5. The PP algorithm results (similar to Figure 3) except that the ccI  illumination estimates 
(equation (22)) were used. 

 

Figure 6. PS algorithm results (similar to Figure 4) except that the ccI  illumination estimates 
(equation (22)) were used. 



Footprint 

 CREWES Research Report — Volume 17 (2005) 15 

At this point, there are a number of directions for possible exploration and, given 
constraints on time and space, only a few can be explored.  Of interest would be 

 the effects of random noise and surface noise.  Different noise levels and noise 
spectra (for coherent noise) are of interest. 

 the performance of the source-reduced and source-receiver reduced 
geometries. 

 the variation of footprint effects for different depth/aperture ratios. 

 the efficacy of further reductions in source effort. 

 non-orthogonal line geometries. 

No doubt the interested reader can add to this list.  However, before digressing on any 
of these points, it is instructive to take a closer look at the details of imaging just four 
select sources.  Figure 7 shows the location of the four sources to be examined, of course, 
by symmetry these four sources actually represent thirteen source locations in the survey 
aperture.  Figure 8 shows PP data frequencies at 10 Hz as modeled at the surface using 
equation (14)).  There was no noise of any kind in the simulation shown in Figures 8-18 
and the full receiver geometry was used.  Except for a bulk scale factor provide by the 
source shape function, ( )s ω , all frequencies will look identical at the surface.  Figures 9 
and 10 show 10 Hz. and 60 Hz. respectively after extrapolation to the reflector depth.  
The extrapolation has the effect of focusing the data in a zone about the specular 
reflection points.  It might be expected that this would correspond to the expected S-R 
midpoints, that is the classical fold, but the grey boxes on each figure show that the 
correspondence is only approximate.  Since ray theory is a high frequency theory, it is 
reassuring that the correspondence seems better at 60Hz than at 10.  Figure 11 shows the 
forward modeled source at 10 Hz as evaluated at the reflector depth.  This is an example 
of ( ), , 500,jD x y z ω=  as required in equation (2).  In Figures 12 and 13 are the 
reflectivity estimates calculated at 10 Hz and 60 Hz.  Again the grey boxes show the limit 
of conventional fold.  While this simulation is actually done for the 10-60 Hz band, 
Figure 14 is inserted to show that at 250 Hz, the estimate is almost entirely within the 
conventional fold box. 

Figure 15 shows the final broadband reflectivity estimates formed by stacking together 
the estimate for each frequency between 10 and 60 Hz.  In addition to having 
considerable power outside the classical fold box, the estimate has a particular geometric 
shape that is roughly an octagon.  The illumination estimate ;r jI  corresponding to 
equation (20) is shown in Figures 16 and 17 while 18 and 19 document the illumination 
estimate ;cc jI  of equation (22).  The crosscorrelation estimate seems surrounded by 
problematic rings that could lead to later difficulties.  Since both illumination estimates 
are entirely positive, they will not have the same noise reduction ability as the direct stack 
of the broad band reflectivity estimates (i.e. the migrated shot records). 
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Figure 7.  The locations of four test sources are shown. 

 

Figure 8:  For the source locations of Figure 7, the magnitude of the forward modeled data at 
10Hz is shown.  All other frequencies will look the same (see equation (14)).  The source 
locations are denoted by white stars. 
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Figure 9. The data of Figure 8 after downward extrapolation to the reflector.  This is 
( ), , 500, 2 10jU x y z ω π= =  in equation (2).  The grey boxes indicate the extent of the 

classical fold as determined by the source-receiver midpoints. 
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Figure 10.  The data at 60 Hz. after downward extrapolation to the reflector. This is 
( ), , 500, 2 60jU x y z ω π= =  in equation (2).  The grey boxes indicate the extent of the 

classical fold as determined by the source-receiver midpoints. 

 

Figure 11 The source estimate (magnitude) at the reflector for 10 Hz. This is 
( ), , 500, 2 10jD x y z ω π= =  in equation (2).  All other frequencies will look the same. 
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. 

 

Figure 12.  The reflectivity estimate for 10 Hz (see equation (2).  The grey boxes indicate the 
extent of the classical fold as determined by the source-receiver midpoints. 

 

Figure 13.  The reflectivity estimate for 60 Hz (see equation (2).  The grey boxes indicate the 
extent of the classical fold as determined by the source-receiver midpoints. 
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Figure 14.  The reflectivity estimate for 250 Hz (see equation (2).  Note that the 
estimate is largely confined to the grey boxes that indicate the extent of the classical fold. 

 

Figure 15.  The broadband reflectivity estimate for 10-60 Hz.  This is the stack of individual 
frequency estimates like those of Figures 12 and 13 for all frequencies between 10 and 60 Hz.  
The grey boxes indicate the extent of the classical fold as determined by the source-receiver 
midpoints. 
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Figure 16.  The raw illumination (before thresholding) corresponding to rI  in equation (20).  

Effectively, this is rI  with the threshold 0µ= . 
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Figure 17.  The result of applying the threshold 0.4µ=  to the raw illumination of Figure 15.  See 
equation (20) also.  The grey boxes indicate the extent of the classical fold as determined by the 
source-receiver midpoints. 

 

Figure 18.  The raw illumination ccI  (equation (22) with 0ν = ). 
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Figure 19.  The illumination ccI  (equation (22)) with .9ν = .  The grey boxes indicate the extent 
of the classical fold as determined by the source-receiver midpoints.  The grey boxes indicate the 
extent of the classical fold as determined by the source-receiver midpoints. 

Effects of geometry reduction 

Figure 20 shows a PP experiment using the source-reduced geometry (see Figure 1) 
and the rI  illumination estimate.  In comparison to Figure 3, it appears that the estimate 
is hardly affected by the source reduction, which is not surprising given that there is no 
noise at this point.  In Figure 21 is the noise-free estimate from the source-receiver 
reduced geometry in the PP case and not significant vertical striping is seen.  The 
illumination compensation seems to reduce the striping artifact but it is still present even 
after compensation. 

As Figures 22 and 23 show, the situation is similar with the PS case.  Since the 
simulation is done with the same frequency bandwidth as the PP case (10-60 Hz), the 
slower S-wave velocity (1500 m/s instead of 3000 m/s) means that the wavenumber 
spectral width is twice as wide.  This may be somewhat unrealistic since apparent PS 
bandwidths in actual experiments are usually considerably less than the corresponding 
PP.  Nevertheless, the results are instructive.  While the source-reduced geometry 
performs reasonably well, the source-receiver reduced geometry has a somewhat more 
significant vertical striping artifact than in the PP case. 
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Figure 20.  A PP experiment, similar in all ways to Figure 3 except that the source-reduced 
geometry is used. 

 

Figure 21.  A PP experiment, similar in all ways to Figure 20 except that the source-receiver 
reduced geometry was used. 
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Figure 22.  A PS experiment, similar in all ways to Figure 4 except that the source-reduced 
geometry was used. 

 

Figure 23.  A PS experiment, similar in all ways to Figure 22 except that the source-receiver 
reduced geometry was used. 
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As an interesting aside, Figure 24 shows the result of a PP experiment using the 
source-receiver reduced geometry but with the twist that the source lines are parallel and 
on top of the receiver lines.  This result almost seems better than the orthogonal geometry 
and this is not presently understood.  Note that the code released with this paper is not 
immediately capable of producing this result and that a special purpose code was used. 

 

Figure 24.  A PP experiment using source-receiver reduced geometry, and therefore similar to 
Figure 21, except that the source lines are parallel to, and on top of, the receiver lines.  

Effects of random noise 

The footprint codes include the ability to include additive, Gaussian distributed, zero 
mean, random noise.  The noise level is specified via the parameter called “N2S” 
meaning the noise-to-signal level. This is preferred to signal-to-noise level since the 
value N2S=0 has the simple meaning of no noise.  The parameter N2S prescribes the 
ratio of the noise power to the signal power at the dominant frequency of the simulation.  
Since the spectral shape function, ( )s ω  in equation (14), is a raised cosine extending 

from minω  to maxω , then the dominant frequency is ( )max min / 2domω ω ω= + .  Though 
the noise power is specified at the dominant frequency it has the same power at all 
frequencies.  Figure 25 shows the effect of different N2S settings. 

Figure 26 shows the results of a PP experiment using the source-receiver reduced 
geometry with N2S=1, and the rI  illumination calculation.  Figure 27 is similar except 
that the ccI  illumination was used.  The inclusion of such a high level of random noise 
has seriously degraded the estimations.  The apparent symmetry in the noise patterns is 
an artifact of the modeling process which only calculates sources explicitly in one 
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quadrant of the image and deduces the others by symmetry operations.  While both of 
these results are severely degraded relative to Figure 21 for example, it is interesting to 
note how much smoother the ccI  estimate is than the rI .  Since the former is just a 
thresholded, normalized cross-correlation, it suggests that perhaps the crosscorrelation 
imaging condition (equation (3)) would give better results.  Figure 28 shows a repeat of 
the calculation of Figure 26 using the crosscorrelation imaging condition and the results 
are indeed much better. 

 

Figure 25.  The blue curve shows the raised cosine ( )s ω  for the case min 2 10ω π=  and 

max 2 60ω π= .  The various red curves show the noise levels created by the indicated values of 
the parameter N2S. 

Now, returning to the deconvolution imaging condition, Figures 29 and 30 are intended 
to convey the additional noise reduction achieved by using the un-reduced receiver 
geometry.  Figure 29 shows the result of a PP experiment using N2S=0.5 and the source-
receiver reduced geometry.  Figure 30 is similar except that the full receiver geometry 
was used.  Clearly there is greater noise reduction in the second case.  In fact, Figure 31 
used the source-receiver reduced geometry but with N2S=0.1 and the result is similar to 
Figure 30.  Thus it appears that the inclusion of all receivers is similar to lowering the 
N2S level from 0.5 to 0.1.  This effect is illustrated on the four individual source records 
(Figure 7) in the sequence of Figures 32, 33, and 34. 
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Figure 26.  A PP experiment, using the source-receiver reduced geometry and therefore similar to 
Figure 21, with added random noise.  The noise corresponds to N2S=1. The rI  illumination 
calculation was used. 

 

Figure 27.  Similar to Figure 26 except that the ccI  illumination calculation was used. 
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Figure 28.  Similar to Figure 26 except that the crosscorrelation imaging condition was used. 

 

Figure 29.  A PP experiment using source-receiver reduced geometry for N2S=0.5. 
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Figure 30.  Similar to Figure 29 except that the source-reduced geometry was used.  That is, the 
full receiver geometry contributed to the noise reduction. 

 

Figure 31.  Similar to Figure 29 except that the noise level is given by N2S=0.1 . 
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Figure 32.  The broadband reflectivity estimates for the four sources of Figure 7 simulated with 
N2S=0.5 and the receiver reduced geometry.  Compare with Figure 15. 

 

Figure 33.  Similar to Figure 32 except that the full receiver geometry was used. 
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Figure 34.  Similar to Figure 32 (i.e. using the receiver reduced geometry) except that N2S=0.1.  
Compare also with 33. 

Effects of surface waves 
Surface waves are modeled in the footprint codes as linear events in time with a 

characteristic velocity, spectral shape function, and strength (velocity dispersion is not 
modeled).  In the frequency domain, this becomes equation (17).  The codes require the 
specification of the ratio of the strength of the surface waves to the reflection data at a 
reference offset and reference frequency, called relsurfa .  This allows the calculation of 

the surfa  scalar in equation (17) as 

 
( )

( ) 2 2
04

relsurf ref ref
surf

surf ref ref

ca s h
a

s z h

ω

ω
=

+
. (25) 

Figure 35 shows a PP experiment similar to Figure 20 except that surface waves are now 
present with a strength of 10.relsurfa =   There is very little effect of the surface waves in 
this case.  Figure 36 is similar except that the geometry is now the source-receiver 
reduced case.  In Figure 37, the source-receiver reduced geometry is still present but the 
surface wave strength has increased to 50.relsurfa =   It is apparent that surfaces waves 
are affecting the footprint though much of the effect is confined to the illumination 
estimation. 
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Figure 35.  A PP experiment using the source-reduced geometry and a surface wave factor 
10.relsurfa =   Compare with Figure 20. 

 

Figure 36.  Similar to Figure 35 except that the source-receiver reduced geometry was used. 
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Figure 37.  Similar to Figure 36 except the surface waves are stronger with 50.relsurfa =  

 

Figure 38.  The surface wave and reflection data spectra corresponding to 1.relsurfa =  Red 

curves are surface wave spectra and blue curves are reflection data.  Different curves correspond 
to near middle and far offsets. 
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Figure 39.  Similar to Figure 37 except that 50.relsurfa =  

Figures 38 and 39 are included to illustrate the flexibility in the footprint codes to model 
surface waves and reflection data of differing strengths and bandwidths.  While this gives 
a great deal of modeling flexibility, it is difficult to summarize the effects in a short paper 
such as this. 

In Figures 40-45, we return to examination of the four test sources of Figure 7.  These 
figures track the broadband reflectivity estimate through a sequence of increasingly 
problematic surface waves.  In Figure 40, there are no surface waves and the full receiver 
geometry is used.  In Figure 41, there are still no surface waves but now the reduced 
receiver geometry is used.  Then, in Figures 42-45 surface waves are included in ever 
increasing strength.  In the final instance, with 100relsurfa =  there is clearly a very big 
effect. 

Finally, in Figures 46-51 the effect of the surface wave inclusion is shown on 
individual frequencies and at intermediate stages in the calculation for the case 

10relsurfa = .  Studying these figures indicates that the frequencies where surface waves 
are present are very strongly disrupted.  The broadband reflectivity estimate is largely 
saved by the higher frequencies which are free of the surface waves.  The greater the 
spectral overlap the worse the situation. 
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Figure 40.  The broadband reflectivity estimate for the four test sources of Figure 7.  No surface 
waves and the full receiver geometry was used. 

 

Figure 41.  Similar to Figure 40 except that the receiver reduced geometry was used. 
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Figure 42.  Similar to Figure 41 except that surface waves are now present with strength 
1.relsurfa =  

 

Figure 43.  Similar to Figure 42 except that surface wave strength has increased to 
10.relsurfa =  
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Figure 44. Similar to Figure 43 except that surface wave strength has now increased to 
50.relsurfa =  

 

Figure 45.  Similar to Figure 44 except that surface wave strength is now 100.relsurfa =  
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Figure 46.  For the case summarized in Figure 43 ( 10.relsurfa = ), this is 10 Hz data at the 

reflector. 

 

Figure 47.  Similar to Figure 46 except that this is the 60 Hz data at the reflector. 
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Figure 48.  The reflectivity estimate at 10 Hz made from the data of Figure 46 using a 
deconvolution imaging condition. 

 

Figure 49.  The reflectivity estimate at 60 Hz made from the data of Figure 47 using a 
deconvolution imaging condition. 
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Figure 50.  The illumination estimate ;r jI  made from the broadband reflectivity estimate of Figure 

43. 

 

Figure 51.  Similar to Figure 50 except that the illumination estimate ;cc jI  is shown. 
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CONCLUSIONS 
A flexible and realistic set of Matlab scripts has been developed to model 3D prestack 

depth migration with realistic land acquisition geometries and noise effects.  Both PP and 
PS imaging can be simulated.  Two alternative calculations of illumination compensation 
has been explored.  It is intended for these scripts to serve as guides in assessing 
acquisition geometry designs.  Clear evidence of acquisition footprint effects is present in 
all simulations, even those with little or no noise.  Though the reduced receiver and 
source lattices are severely aliased, they compensate for one another because of the 
orthogonal line geometry.  To some extent the aliasing caused by the course line spacing 
it therefore overcome.  Illumination compensation of prestack migrated volumes seems to 
reduce the aperture effect but can exaggerated other footprint artifacts.  It may be that a 
better choice of the illumination threshold would improve things.  This technique seems 
effective in modeling spatial aliasing, the effects of finite bandwidth, random noise 
levels, coherent noise levels, and source-receiver spacings. 
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