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A simple way to improve AVO approximations 

Charles P. Ursenbach 

ABSTRACT 

Some twenty years ago it was suggested that the average angle, 1 2( ) / 2θ θ θ= + , in the 
Aki-Richards approximation could itself be approximated by the angle of incidence, 1θ . 
The newly updated CREWES Reflectivity Explorer is a useful tool for exploring such 
questions. Using this tool, some numerical observations are described which suggest that 
approximating θ  by 1θ  actually increases the accuracy of the theory at low angles 
(although the θ  formulation is still superior near the critical angle). A theoretical study is 
outlined which is successful in explaining this interesting result. The theoretical study 
also suggests a means by which the strengths of both the θ  and 1θ  formulations may be 
combined into one theory. This new theory is given, and is shown to be accurate over a 
wider range of angles than the 1θ  formulation. It is therefore promising for use with pre-
critical AVO studies. The same approach can be applied to various derivatives of the 
Aki-Richards approximation, such as the Fatti and Smith-Gidlow approximations. 

INTRODUCTION 
The Zoeppritz equations (see Aki and Richards, 1980, pp 149-151) are well-known to 

give the reflection and transmission coefficients of P and SV plane waves at an interface. 
These are complicated expressions and, while suitable for AVO modeling, simplifications 
of them have been found useful for AVO inversion. The best known is the Aki-Richards 
approximation (Aki and Richards, 1980, pp 153-154), which is linearized in the 
following quantities: 
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where α, β, and ρ are the P-wave velocity, S-wave velocity, and density, and subscripts 1 
and 2 refer to the media above and below the interface. The iR quantities are referred to as 
reflectivities, and the /x x∆  quantities are referred to as relative contrasts, being the ratio 
of the difference across the interface and the average across the interface. These three 
ratios, together with  
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and the angle of incidence define both the sixteen Zoeppritz coefficients and their Aki-
Richards approximations. The two Aki-Richards approximations of most interest in 
exploration seismology can be written as 
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where the linear dependence on the reflectivities is apparent. 

Shuey (1985) rearranged A-R
PPR of equation (3) into three terms with increasing powers 

of sinθ . A similar exercise can be carried out with A-R
PSR and together these yield 
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He then notes that, in practical applications between 0° and 30°, the incident angle 1θ  can 
be used in place of the average angle θ  in equation (4). The resulting approximation is 
much less accurate near the critical point. However, it is shown below that it can, for low 
angles, not only be equally as accurate as the original Aki-Richards approximation, but 
can in fact yield results superior to those of equation (4)*. It is also shown that a 
theoretical explanation exists for this observation. Furthermore, this understanding can be 
used as a basis for the simple method of improving PP and PS AVO approximations. 

EMPIRICAL OBSERVATIONS 
A few years ago, CREWES introduced the Reflectivity Explorer. This Java applet is 

similar to the better known Zoeppritz Explorer (see “Explorer Programs” link at 
www.crewes.org), but is designed specifically to explore a variety of AVO-related 
approximations to the Zoeppritz RPP and RPS coefficients. It is thus an ideal tool for 
investigating the claims raised in the Introduction. An updated version of the Reflectivity 
Explorer was recently introduced, and it includes various forms of the Aki-Richards 
approximations, including the θ -dependent form (which is equivalent to the three-term 
Shuey approximation) and the 1θ -dependent form. 

A comparison of both approximations with the original Zoeppritz theory is shown in 
the applet output in Figure 1. This is a Class I AVO model with a critical angle of 48.59°. 
Figure 2 shows the parameters entered into the Explorer’s control panel. From Figure 1 it 
                                                 
* This effect may have been noted previously, but the author has been unable to find reference to it in the 
literature. If such a reference exists, he would appreciate it being brought to his attention. 
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appears that the θ -dependent theory matches Zoeppritz more accurately, particularly as 
one approaches the critical angle. After the critical angle, 2θ  becomes complex, and is 
given by 

 1 2
2 1
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cosh sin ,
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⎝ ⎠
 (5) 

as shown in Appendix A. Thus 1 2( ) / 2θ θ θ= +  is complex as well. This is why the θ -
expression has a critical angle, while the 1θ -expression does not. 

 

FIG. 1. The graphical output of the CREWES Reflectivity Explorer displaying RPP and RPS for 
parameters specified in Figure 2 (below). The θ-dependent approximation (red) appears to 

describe the Zoeppritz results (black) more accurately than the θ1-approximation (blue), 
particularly when approaching the critical angle at 48.59°. 
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FIG. 2. A screen capture of the Reflectivity Explorer control panel showing the parameters 
employed to obtain Figure 1 (above). Note that the lower layer properties have been replaced 
with relative contrasts defined in equation 1. 

However, considering the lower angles in detail yields different conclusions. Figure 3 
shows the detail for RPP and Figure 4 the detail for RPS. It is clear in both cases that the 
initial slopes are more accurately described by the 1θ -dependent approximation. 
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FIG. 3. A detailed view of RPP(θ) with the same earth parameters as in Figures 1 and 2, but 

displaying only up to 30°. Note that the abscissa has been changed from θ1 to sin2θ1 so that the 

behavior near θ1 = 0 is linear rather than quadratic. The θ1-expression (blue) is clearly a better 

approximation than the θ-expression (red) at low angle. (The exact Zoeppritz comparison is 
shown in black.). 
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FIG. 4. A detailed view of RPS(θ) with the same earth parameters as in Figures 1 and 2, but 

displaying only up to 30°. Note that the abscissa has been changed from θ1 to sinθ1, but both of 

these behave linearly near θ1 = 0, and are very similar over this range. The θ1-expression (blue) is 

clearly a better approximation than the θ-expression (red) at low angle. (The exact Zoeppritz 
comparison is shown in black.). 
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Figures 1-4 display results for only one set of earth parameters, so it is important to 
know if these results hold generally. The reader can easily put this to the test by accessing 
the Reflectivity Explorer on the software release accompanying this Research Report. No 
installation is required; the application is simply run by opening REcrewes.html or 
REtest.html in a browser window. The following points can then be verified: 

• PS 1( )R θ  is more accurate than PS( )R θ  at low angles for virtually all earth 
parameter selections. 

• PP 1( )R θ  is more accurate than PP ( )R θ  at low angles for earth parameter 
selections roughly satisfying the mudrock trend (i.e., for which Rα  and Rβ  

possess the same sign and R Rβ α≥ ), and for which 0.35γ ≥ . Violating 

either of these conditions leads to regimes where PP ( )R θ  is more accurate than 

PP 1( )R θ , as shown in Figure 5. The value of Rρ however does not appear to 
affect the accuracy much. 

• Differences between 1θ  and θ  formulations vanish at low angles for 0Rα = . 
This is true for both PPR  and PSR . There is no similar sensitivity, however, to 
Rβ , Rρ , and γ . 

With these empirical observations in mind, we now turn to a theoretical analysis. 

   

FIG. 5. Plots of RPP for the same parameters as shown in Figure 2 except that in a) γ  is set to 

0.3, in b) Rβ (or ∆β /β ) has its sign reversed, and in c) Rβ is reduced by an order of magnitude. 

Comparing these with Figure 3 shows how changing γ and Rβ can reverse the order of accuracy 

of RPP(θ1) and RPP(θ). 

a) γ new = 0.3 c) Rβ
 new = 0.1Rβ b) Rβ

 new = –Rβ 
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THEORETICAL EXPLANATION 
To find a theoretical explanation of our observations, we begin with the Zoeppritz 

equations. A standard reference (free of the typographical errors which plague many 
references) is Aki and Richards (1980, pp 149-151). These give the coefficients in terms 
of 1 1 1 2 2 2, , , , ,  andα β ρ α β ρ . However there is redundant information in these six 
parameters, and the coefficients may be equivalently specified by the four ratios 

, , ,  andR R Rα β ρ γ . For theoretical work and development of approximations it would be 
convenient to have the exact Zoeppritz coefficients expressed in terms of these ratios. 
Such expressions have been used in the past by the author, and for convenience they are 
given in this report in Appendix B. It is straightforward to encode the expressions in 
Appendix B into a symbolic mathematics program, such as MAPLE, and to then 
manipulate them in various ways. 

We are interested investigating the differences in initial slopes (B and AS from 
equation 4) for the θ  and 1θ  formulations. We have noted that these differences vanish 

for Rα = 0. To pursue this we apply a Taylor expansion in 1sinθ  to the exact Zoeppritz 
coefficients to obtain exact nonlinear analogues of B and AS. (For completeness, the exact 
expressions for A, B, and AS are given in Appendix C.) We then apply a second Taylor 
expansion to linearize these results in Rβ  and Rρ . We do not linearize in Rα  as the 

differences we are studying vanish for Rα = 0, and so we wish to explore in greater detail 
the behavior with respect to this variable. The result of these manipulations yields 
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The quantities in square brackets in equation 6 contain all of the linear terms of equation 
4, plus each contains a nonlinear term as well. For a number of reasons we will assume 
that this non-linear term does not play a significant role in differentiating between the two 
theories. The first reason is that this term should be small for typical earth parameters. 
Secondly, the terms are identical in both B expressions and in both AS expressions, and 
thus provide no ability to discriminate between the two methods. Thirdly, if these terms 
were key then the differences should vanish for Rρ = 0, whereas they only vanish for Rα = 
0. Fourthly, we will show that we are able to find a completely satisfactory explanation of 
the differences without reference to them. Therefore we eliminate these terms, yielding 
equation 7: 
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Now the non-linearity is expressed in solely through overall factors, and we note that 
1 2/ (1 )B B Rθθ

α= −  and 1/ (1 )S SA A Rθθ
α= − . Since PP PP 1( ) ( )R Rθ θ= and PS PS 1( ) ( )R Rθ θ= , 

this implies that 

 1sin 1
sin

Rα
θ
θ
= −  (8) 

to first order. This result is reasonable and agrees to first order with the exact relation, 
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1sin sin
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θ θ
θ

−
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+
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which is derived in Appendix D. This leads to a straightforward explanation of the 
observations regarding RPS. PS 1( )R θ  clearly has the correct slope, while PS( )R θ  has an 
extra factor of 1 Rα−  which is missing from the Shuey expression (and, implicitly, from 
the Aki-Richards expression).  

Turning now to B, we note that, to linear order in Rα , the factor in 1Bθ  is 1 2Rα+ , 
while the factor in Bθ  is simply 1. This suggests that the θ  formulation should now be 
the most accurate, and this is sometimes observed, as noted above, but only in cases of 
minimal interest for exploration seismology. Elsewhere the reverse holds true. To explain 
this more complicated behavior it is necessary to derive an additional expression. 
Beginning again with the exact B, obtained from expressions in Appendix B, we assume 
that the key effects are independent of Rρ  (based on empirical observations), and set this 
quantity to zero. With no further approximation, we now have the new expressions 

 1

2 3 2( 8 )(1 ) 16
(nonlinear in ; 0)

1
R R R R

B R R
R

α β α βθ
β ρ

α

γ γ− + +
= =

−
 (10) 

and 

 1 2(1 )B B Rθθ
α= − . (11) 

These are similar to equation 7 (with Rρ  = 0) but now have an additional 3 2Rβγ  term. (We 
note that carrying this procedure out on AS does not yield an analogous higher-order 
term.) When either γ  or Rβ  is small then this additional term will become negligible and 
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the PP ( )R θ  expression will be more accurate, as predicted by equation 7. Consider 
however the simple case of γ  = ½ and R Rβ α= . Then equations 10 and 11 simplify to 

 1B Rθ
α≈ − , (12) 

 2(1 )B R Rθ
α α≈ − − . (13) 

For comparison if we apply γ  = ½, Rρ  = 0, and R Rβ α=  to the Shuey B we obtain Rα− , 
so that for earth parameters in the vicinity of these conditions, it is once again the 1θ  
formulation that will be more accurate, in accord with observations. 

We have previously described the important role of 2Rβ  corrections in the 
improvement of AVO theories (Ursenbach, 2004a,b). The necessity of invoking them 
here to explain near-offset PPR  behavior further illustrates their significance. 

A SIMPLE IMPROVEMENT TO AVO THEORIES 

The observations and explanations above confirm the following conclusion: The 1θ  
expression is generally more accurate at low angles, while the θ  expression is more 
accurate near the critical point. It is of course of interest at this point to investigate 
whether this understanding can translate into a new expression which includes the 
strengths of both. One way to accomplish this objective is to modify the original Aki-
Richards expressions by multiplying each occurrence of sinθ  in the initial gradients by 
1 Rα− . This will retain the superior low-angle behavior, while still producing a critical 
angle at the correct location. We can implement and write this new expression as 

 new 2 2 2 2 2
PP 1 (1 ) tan 4 (1 ) sin (2 ),R R R R R R Rρ α α α β ρθ γ θ⎡ ⎤= + + − − − +⎣ ⎦  (14) 

 ( )new
PS (1 ) tan 2 cos (2 ) .R R R R Rα ρ β ργ ϕ γ θ ϕ⎡ ⎤= − − + − +⎣ ⎦  (15) 

Because Rα  now appears in the coefficients, these expressions are explicitly nonlinear. 
However we note that the original Aki-Richards expressions are already implicitly 
nonlinear, in that Rα  is required in order to calculate θ . This value of Rα  is typically 
obtained from the background α , given, for instance, by the velocity analysis. Therefore 
no additional information is required for these new expressions. 

In Figures 6 and 7 below we plot these new expressions along with those previously 
considered. Figure 8 shows these quantities plotted over their full range, analogous to 
Figure 1. (These figures were created by a customized Reflectivity Explorer, for which 
the new theories are given by a magenta line. This modified Explorer is available in 
REtest.html in the software release accompanying this Research Report.) We make three 
observations regarding these figures: 1) The accuracy at low angles is similar to that of 
the 1θ  formulation. 2) The accuracy at the critical angle is similar to PS( )R θ , but not as 
good as PP ( )R θ . 3) Because of the critical behavior, the low-angle accuracy extends over 
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a wider range than in the 1θ  formulation. To demonstrate this clearly, the plots extend to 
50° rather than 30° as in Figures 3-6. These expressions should therefore be more 
efficacious than either of the previous formulations for precritical AVO analyses. 

 

 

 

FIG. 6. A comparison of RPP approximations, namely, RPP
A-R(θ) (red), RPP

A-R(θ1) (blue), and the 
new method of equation 14 (magenta). The comparison is with the exact Zoeppritz expression 
(black). Compare with Figure 3. 
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FIG. 7. A comparison of RPS approximations, namely, RPS
A-R(θ) (red), RPS

A-R(θ1) (blue), and the 
new method of equation 15 (magenta). The comparison is with the exact Zoeppritz expression 
(black). Compare with Figure 4. 
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FIG. 8. A comparison of RPP (thick lines) and RPS (thin lines) approximations, namely, the θ-

formulation (red), the θ1-formulation (blue), and the new method of equations 14 and 15 
(magenta). The comparison is with the exact Zoeppritz expression (black). Compare with Figure 
1. 
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DISCUSSION AND CONCLUSIONS 

We have discussed the approximation of replacing θ  by 1θ  in the Aki-Richards 
approximation. This worsens the approximation near the the critical angle, but, in the 
case of RPS, improves it at low angles (0°-30°). In the case of RPP, the influence of 2Rβ  
terms in the exact gradient expression must be accounted for to explain the observation 
that PP 1( )R θ  is more accurate than PP ( )R θ  for typical earth parameter combinations, but 
that PP ( )R θ  is more accurate than PP 1( )R θ  for atypical combinations. 

The Aki-Richards approximation is not the most commonly used AVO approximation. 
Three more commonly approximations are the two-term Shuey approximation (equation 
4 with 0C = , the Smith-Gidlow approximation (Smith and Gidlow, 1987), and the Fatti 
approximation (Fatti et al., 1994), all of which are derived from the Aki-Richards 
approximation. Traditionally they are expressed in terms of θ . All of these methods, and 
especially their converted-wave analogues, would be benefited by the procedure used to 
obtain equations 14 and 15 from the Aki-Richards approximation.  
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APPENDIX A: COMPLEX SUPERCRITICAL TRANSMISSION ANGLE 

By Snell’s law, 2 2 1 1sin ( / )sinθ α α θ= . If 2 1α α> , then a critical angle is located at 

1 1 2sin /θ α α= , which implies 2sin 1θ = . Beyond the critical angle, 2sin 1θ > , i.e., it is 

positive real, but greater than unity. Then 2 2
2 2 2cos 1 sin 1 sinθ θ θ= − = − −  

2
21 sini θ= − , i.e., it is positive imaginary. 

These two conditions place constraints on the form of 2θ . Let us assume that it is in 
general complex, i.e., 2 , ,x iy x y Rθ = + ∈ . Then  
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Applying the previously obtained conditions we have 
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These conditions can only be simultaneously satisfied if  
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(The cosh–1 operation is double-valued, which we indicate by the notation ±cosh–1.) At 
the critical angle n = 0, so we can then write 

 1 2
2 1

1

cosh sin .
2

i απθ θ
α

− ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
  

This result also holds formally for precritical angles, but in that case the cosh–1 operation 
yields imaginary results. 
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APPENDIX B: ZOEPPRITZ COEFFICIENTS GIVEN IN REFLECTIVITIES 
Aki and Richards (1980, pp 149-151) give expressions for the Zoeppritz coefficients. 

Below we give similar expressions, but in terms of reflectivities (defined in equation 1) 
rather than in terms of earth parameters. We use the same notation for angles as Aki and 
Richards, namely,  
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The expressions for PP 1( , , , ; )R R R Rα β ρ γ θ  and PS 1( , , , ; )R R R Rα β ρ γ θ  are as follows: 
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The above expressions may be programmed into a symbolic language (such as MAPLE 
or MATHEMATICA) in the order given. For a computing language (such as FORTRAN 
or C) they are programmed in the reverse order. 



A simple way to improve AVO approximations 

 CREWES Research Report — Volume 17 (2005) 17 

APPENDIX C: EXACT EXPRESSIONS FOR INTERCEPT AND GRADIENTS 
The RPP intercept and gradient, A and B, and the RPS gradient, AS, can be obtained 

exactly in terms of reflectivities from the expressions in Appendix B. For completeness 
these quantities are given here. 

 1
R R
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R R

α ρ

α ρ

+
=

+  
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Here we have defined 

 22R R R R Rµ β ρ β ρ≡ + +  

(Note that we normally define 2µ ρβ≡ , which leads to 

  2 2 2(2 ) /(1 ) /(1 )R R R R R R R R R R R Rµµ β ρ β ρ β β ρ β β ρ≡ + + + + = + + .  

We use the overbar notation to indicate that the quantities Rµ  and Rµ  are similar but not 
identical.) 
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APPENDIX D: EXACT RELATION BETWEEN SINES OF INCIDENT AND 
AVERAGE ANGLES 

We derive the relation between 1sin  and sinθ θ , beginning with the definition of sinθ : 
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= +

 

Squaring this yields 

 [ ]2
1 2 1 2

1sin 1 cos cos sin sin
2

θ θ θ θ θ= − + , 

which may be recast as 

 
2

2 2 2 2
1 1 1

1 12sin 1 sin 1 sin 1 sin
1 1

R R
R R
α α

α α

θ θ θ θ
⎛ ⎞+ +

− − = − − − ⎜ ⎟− −⎝ ⎠
. 

Squaring again and simplifying gives 

 
2

2 2 2 2 2
12

1 cos sin sin sin cos
(1 ) 1

R
R R

α

α α

θ θ θ θ θ
⎡ ⎤⎛ ⎞
⎢ ⎥+ =⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦

 

which may be rearranged to 

 ( )2
2 2

1 2 2

1
sin sin

1 tan
R

R
α

α

θ θ
θ

−
=

+
. 

Equation 9 then follows from the positive square root. 

 

 


