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Estimation of Thomsen’s anisotropy parameters using NMO 
equations and neural networks 

Amber C. Kelter and John C. Bancroft 

ABSTRACT 
Many models in exploration seismology naively presume that the earth is isotropic, 

that is, seismic velocities do not vary with direction. Yet individual crystals and most 
common earth materials are observed to be anisotropic with elastic parameters that vary 
with orientation (Shearer, 1999). Thus, it would be surprising if the earth was entirely 
isotropic. Further, it is now commonly accepted that most upper crustal rocks are 
anisotropic to some extent (Crampin, 1981) and more recently it has become apparent 
that anisotropy is evident in many other parts of the earth (Shearer, 1999). In addition, 
alternating layering of high and low velocities where the thickness of the layer is less 
than the wavelength of the seismic signal will also appear anisotropic (Backus, 1991).  

Although seismic processors have been aware of anisotropy, it was ignored because its 
effect was successfully absorbed into the stacking velocity when processing horizontally 
layered media. However, erroneous assumptions of an isotropic velocity lead to flawed 
images and thus incorrect interpretations where targets can appear shifted both laterally 
and vertically (Isaac et al., 2004). 

NEURAL NETWORKS 
An artificial neural network (ANN) is an information processing algorithm that is 

inspired by the way biological nervous systems process information. In the simplest sense 
a neural network is a mathematical algorithm that can be trained to solve a problem. The 
key element is the novel structure of the information processing system. It is composed of 
a large number of highly interconnected processing elements (neurons) working in unison 
to solve specific problems (Haykin, 1999). Artificial neural networks, like people, learn 
by example. An ANN is configured for a specific application, such as pattern recognition 
or data classification, through a learning process. The learning process in biological 
systems involves adjustments to the synaptic connections that exist between the neurons. 
This is true of ANN’s as well. In the work that follows ANN’s are referred to simply as 
neural networks or NN.  

Multilayer feedforward network 
The architecture of a multilayer feedforward network is illustrated in FIG. 1. A layer 

consists of a weight matrix, a bias vector, neuron(s) and an output vector.  
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FIG. 1. Flowchart of a multilayer feedforward network with m inputs, k neurons and 1 output 
(adapted from Russell, 2005). 

A hidden layer resides between the input and output layer. There can be any number 
of ‘hidden’ layers, however it has been shown that networks with biases, a single sigmoid 
layer (hidden layer) and a single linear layer (output layer) are capable of approximating 
any function with a finite number of discontinuities provided that there are enough 
neurons (Higham and Higham, 2000). A single hidden layer is used in all of our 
applications. To distinguish between the weights, outputs, etc., for the different layers we 
append the number of the layer as a superscript to the variable of interest.  

From FIG. 1 and following Russell (2004) the input to the multilayer feedforward 
network is a vector, x , of m attributes where j =1,…,N is indicative of the number of 
seismic samples. Weights for the first layer connect inputs and neurons and are written 
as 1

ikw , where i represents the input attribute number and k represents the neuron number. 
Each neuron, 1

KN , consists of weights, a summation step, and a transfer function. The 
weighting and summation step in the first layer is written as 
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In Equation 1, a bias term, Kw0 , has been included by letting 1=ojx . The sum of the 
weighted inputs and the bias forms the input to the transfer function f. The transfer 
function is written as  

 )( )1()1()1(
KjKj yfz = . (2) 

The output from layer 1 is then fed into layer 2. Again a bias term is incorporated by 
letting 1)1(

0 =jz , thus the input into the output layer will have k+1 weights and can be 
expressed as  

 
Nlzwy

k

K
KjKj ,...,1,

0

)1()2()2( == ∑
= . (3) 

The output is written as 
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Two commonly used non-linear transfer functions are the tan-sigmoid and log-

sigmoid functions. A tan-sigmoid function is defined as 1
1

2)( 2 −
−

= − ne
nf  and a log-

sigmoid function is defined as ne
nf −+

=
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Backpropagation 
Backpropagation is used to train feedforward networks. In the backpropagation 

algorithm input vectors and the corresponding output target vectors are used to train a 
network until it can approximate a function. During training the weights and biases of the 
network are iteratively adjusted to maximize the network minimizing the difference 
between estimated and known values. 

Data are trained in batch mode where the weights and biases of the network are 
updated only after the entire training set has been applied to the network. In the 
application of the backpropagation algorithm two distinct passes of computation are 
performed; first a forward pass and second a backward pass (Haykin, 1999; Freeman and 
Skapura, 1991). In the forward pass the weights remain unaltered throughout the network 
and are used to compute the output of the network on a neuron by neuron basis.  The 
output is then compared with the desired response to obtain an error signal. The 
backward pass, on the other hand, starts at the output layer by passing the error signals 
leftward through the network, layer by layer, and recursively computing the local 
gradient in weight space for each neuron such that a correction is computed for the 
weights that is proportional to the partial derivatives.  The basic procedure is embodied 
by Freeman et al. (1991) as: 
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1. Apply an input vector to the network and calculate the corresponding output 
values 

2. Compare actual outputs with the correct outputs and determine a measure of 
the error 

3. Determine in which direction to change each weight in order to reduce the 
error 

4. Determine the amount by which to change the weight 
5. Apply the corrections to the weights 

 
Repeat 1-5 with all training samples until the error is reduced to an acceptable value. 
 
 

 
FIG. 2. Geological model used to create synthetic seismic section. Model consists of 9 horizontal 
layers each with unique material properties 

 

Table 1. Material properties of the synthetic model 

Layer 
P-wave  
Velocity 

S-wave 
Velocity Density ε δ 

  (m/s) (m/s) (kg/m3) (unitless) (unitless) 
1 1000 500 1.1 0 0.2 
2 1200 600 1.2 0.05 0.25 
3 1500 750 1.3 0.1 0.3 
4 2000 1000 1.5 0.15 0.1 
5 2500 1250 1.7 0.2 0.15 
6 3000 1500 1.9 0.25 0.2 
7 4000 2000 2.2 0.3 0.25 
8 5000 2500 2.4 0.2 0.3 
9 6500 3250 2.6 0.1 0.3 
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SYNTHETIC MODELLING 
Synthetic seismograms were generated using NORSAR2D. The geologic model 

consists of nine horizontal layers each with its own unique material properties. The model 
was 20.0 km long and 6 km deep. The thinnest layer was 0.25 km and the thickest 1.0 
km. The material properties of P-wave velocity, S-wave velocity, density, ε and δ, were 
assigned for each layer as listed in Table 1. 

Ray tracing was performed on the model using NORSAR2D’s anisotropic ray tracer. 
Two seismic surveys were simulated. Velocities were estimated from short offset 
semblance analysis and combined with vertical well-log velocity information to estimate 
the anisotropic parameters ε and δ. Note that if anisotropy is present these velocity values 
will differ; the amount of difference is dependant on the degree of anisotropy. Velocities 
used in these algorithms are interval velocities that are derived from the RMS velocities.  

A summary of the parameters used in the neural network analysis is provided in Table 
2. Data type refers to the type of data used to acquire interval velocities i.e. P-wave data 
(PP), PS-wave data (PS) or P- and PS- wave data (PP & PS), output is the anisotropic 
parameter that is being estimated, number of neurons is the number of neurons in the 
hidden layer, training/inputs are the inputs to the network and transfer function is the type 
of transfer function used in each layer. The first type listed is the transfer function in the 
hidden layer and the second the type listed is the transfer function used in the output 
layer. The number of neurons in the output layer is always equivalent to the number of 
outputs being estimated.  

 

Table 2. Summary of parameters used in neural networks 

Data 
Type Output Number of Neurons Training/Inputs Transfer Functions 

PP δ 29 Vp(0), Vs(0), Vp_int Tan-sigmoid, 
Linear 

PP δ,ε  88 Vp(0), Vs(0), Vp_int Tan-sigmoid, 
Linear 

PP ε 32 Vp(0), Vs(0), Vp_int, δ  Linear, Linear 

PS δ 9 Vp(0), Vs(0), Vps_int Tan-sigmoid, 
Linear 

PS δ,ε  3 Vp(0), Vs(0), Vps_int Tan-sigmoid, 
Linear 

PS ε 4 Vp(0), Vs(0), Vps_int, δ Tan-sigmoid, 
Linear 

PP & PS δ 2 Vp(0), Vs(0), Vp_int, Vps_int Log-sigmoid, 
Linear 

PP & PS δ,ε  30 Vp(0), Vs(0), Vp_int, Vps_int Log-sigmoid, 
Linear 

PP & PS ε 62 Vp(0), Vs(0), Vp_int, Vps_int, 
δ Linear, Linear 
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The number of neurons and type of transfer functions were chosen by varying the 
combination of transfer functions as: 

1. Tan-sigmoid, Linear 
2. Tan-sigmoid, Tan-sigmoid 
3. Log-sigmoid, Linear 
4. Log-sigmoid, Log-sigmoid 
5. Linear, Linear 

and the number of neurons from 1 to 150 and selecting the combination that gave the 
lowest root mean squared (RMS) error.   

As an example for the first network listed in Table 2 the interval velocities are 
obtained from P-wave data and the network estimates δ. The input is a 3 x 8 matrix where 
Vp(0), Vs(0) and Vp_int have been established for all 8 layers of the geological model. 
Vp(0), Vs(0) are the vertical P- and S-wave velocities respectively found, theoretically, 
from VSP or well log data. Vp_int is the interval velocity found from semblance analysis. 
The hidden layer has 29 neurons and a tan-sigmoid transfer function. The output layer 
has 1 neuron and a linear transfer function. The output of the network is a 1 x 8 vector 
that estimates δ for all 8 layers of the geological model. An illustration of this network is 
displayed in FIG. 3. 
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FIG. 3. Estimation of δ from P-wave data using neural networks. 

Validation was done to ensure that the neural networks were running properly, data 
from layers 1, 3, 5 and 7 of the geological model were chosen as training data and a 
simulation performed all 8 layers. Results from this training and simulation are seen in 
FIG. 4, where the resultant δ for each geological layer is plotted. Trained results are those 
from training the network and simulated from applying the trained network to the data. 
Data used for training is a set of ‘true’ values and data used for simulation are values 
found from modeling. Discrepancies between trained and simulated values are a result of 
velocity picking errors or the difference between the actual and picked velocities.  
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FIG. 4. A QC check when the network is trained on layers 1, 3, 5 and 7 and then incorporated to 
recover results for all layers. 

Solving for δ from PP data 

For the PP survey, δ values were found from three different methods 

1. applying NMO equation (PP NMO δ) 
2. neural network inversion estimating δ (PP NN estimating δ) 
3. neural network inversion estimating ε and δ (PP NN estimating δ and ε) 

Results are listed in Table 3.  
 

Table 3. True and estimated values of δ after applying P-wave inversion methods. 

Layer Interval 
Velocity 

True δ PP NMO
δ 

PP NN 
Estimating δ 

PP NN 
Estimating δ and ε 

1 1180.9 0.2 0.197 0.198 0.198 
2 1458.9 0.25 0.239 0.242 0.242 
3 1880.1 0.3 0.286 0.288 0.290 
4 2178 0.1 0.093 0.096 0.092 
5 2835 0.15 0.143 0.146 0.142 
6 3523.8 0.2 0.190 0.195 0.191 
7 4794.8 0.25 0.218 0.237 0.233 
8 6382.3 0.3 0.315 0.305 0.303 
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Table 4. Root mean squared errors of P-wave inversion methods used to estimate δ. 

Method PP NMO
δ 

PP NN 
Estimating δ 

PP NN 
Estimating δ and ε 

RMSE 0.0148 0.0076 0.0091 

Solving for ε from PP data 
The parameter ε was estimated from P-wave data in two different ways 

1. neural network inversion estimating ε (PP NN estimating ε) 
2. neural network inversion estimating ε and δ (PP NN estimating δ and ε) 

 Numerical results are listed in  
Table 5.  

 

Table 5. Results for ε using P-wave inversion methods. 

Layer True ε PP NN 
Estimating ε 

PP NN 
Estimating ε and δ 

1 0 -0.010 0.00 
2 0.05 0.046 0.051 
3 0.1 0.094 0.103 
4 0.15 0.143 0.146 
5 0.2 0.226 0.196 
6 0.25 0.263 0.247 
7 0.3 0.342 0.311 
8 0.2 0.170 0.169 

 
Table 6. Root mean squared errors of P-wave inversion methods used to estimate ε. 

Method PP NN 
Estimating ε 

PP NN 
Estimating ε and δ 

RMSE 0.021 0.012 

Solving for δ from PS data 
Solving for δ from converted wave data was accomplished with 

1. neural network inversion estimating δ (PS NN estimating δ) 
2. neural network inversion estimating ε and δ (PS NN estimating δ and ε) 
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Table 7. True and calculated δ values from PS-wave inversion methods. 

Layer Interval Velocity
(m/s) 

True δ PS NN 
Estimating δ

PS NN 
Estimating ε and δ 

1 513.9 0.2 0.205 0.197 
2 629.2 0.25 0.246 0.246 
3 762.2 0.3 0.304 0.321 
4 1448.6 0.1 0.113 0.103 
5 1788.7 0.15 0.154 0.151 
6 2072 0.2 0.298 0.226 
7 2798.4 0.25 0.245 0.2497 
8 3068.7 0.3 0.376 0.274 

 

Table 8. RMS errors for PS-wave inversion methods used to estimate δ. 

Method PS NN 
Estimating δ 

PS NN 
Estimating ε and δ 

RMSE 0.0441 0.0152 

Solving for ε from PS data 
Solving for ε from PS-wave data was performed using three methods:  

1. applying NMO equation (PS NMO ε)  
2. neural network inversion estimating ε (PS NN estimating ε) 
3. neural network inversion estimating ε and δ (PS NN estimating ε and δ) 

 The PS NMO ε method uses δ estimated from the P-wave NMO equation, equation 
(2.51a) 

Table 9. True and calculated ε values from PS-wave inversion methods. 

Layer True ε PS NMO
ε 

PS NN 
Estimating ε

PS NN 
Estimating ε and δ

1 0 -0.000 -0.007 -0.186 
2 0.05 0.049 0.0431 0.132 
3 0.1 0.072 0.079 -0.049 
4 0.15 0.138 0.114 0.153 
5 0.2 0.190 0.190 0.201 
6 0.25 0.214 0.189 0.276 
7 0.3 0.262 0.270 0.300 
8 0.2 0.243 0.212 0.303 

 



Kelter and Bancroft 

10 CREWES Research Report — Volume 17 (2005)  

Table 10. RMS errors PS-wave inversion methods estimating ε. 

Method PS NMO
ε 

PS NN 
Estimating ε 

PS NN 
Estimating ε and δ 

RMSE 0.0266 0.0288 0.0968 

 

Solving for δ from joint PP and PS data 

Both compressional wave and converted wave data were used in combination to 
investigate if better results for δ could be achieved. Two types of neural networks were 
invoked for this task;  

1. neural network inversion estimating δ (PP PS NN estimating δ) 
2. neural network inversion estimating ε and δ (PP PS NN estimating ε and δ) 

Results are displayed below in  
Table 11. 

 

Table 11. True and calculated δ values from joint PP and PS-wave inversion methods. 

Layer True δ PP PS NN 
Estimating δ

PP PS NN 
Estimating δ and ε

1 0.2 0.208 0.190 
2 0.25 0.286 0.209 
3 0.3 0.213 0.333 
4 0.1 0.118 0.066 
5 0.15 0.149 0.152 
6 0.2 0.187 0.234 
7 0.25 0.250 0.250 
8 0.3 0.544 0.305 

 

Table 12. RMS error for joint PP and PS-wave inversion methods estimating δ. 

Method PP PS NN 
Estimating δ 

PP PS NN 
Estimating ε and δ 

RMSE 0.0929 0.0256 

When both wave types are considered a neural network that simultaneously solves for 
both parameters gives optimal results. 

Solving for ε from joint PP and PS data 

Similarly, ε was determined by doing a joint inversion on compressional and 
converted wave data. Two types of neural networks were tested;  

1. neural network inversion estimating ε (PP PS NN estimating ε) 
2. neural network inversion estimating ε and δ (PP PS NN estimating ε and δ) 
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Results are provided in Table 13. 

Table 13. True and calculated ε values from joint PP and PS-wave inversion methods. 

Layer True ε PP PS NN 
Estimating ε

PP PS NN 
Estimating ε and δ

1 0 0.007 0.00 
2 0.05 0.041 0.057 
3 0.1 0.077 0.101 
4 0.15 0.140 0.107 
5 0.2 0.193 0.203 
6 0.25 0.223 0.298 
7 0.3 0.284 0.300 
8 0.2 0.201 0.169 

 

Table 14. RMS errors for joint PP and PS-wave inversion methods used to estimate ε. 

Method PP PS NN 
Estimating ε 

PP PS NN 
Estimating ε and δ 

RMSE 0.0148 0.0255 

 

The best estimation of ε was found from a neural network that estimates only ε. 

The best method to estimate δ was a neural network applied to P-wave data that also 
estimates δ. It was able to delimit δ to within 5% of the true value. Conversely the 
method deemed to best determine ε was a neural networks applied to P-wave data that 
recovered both δ and ε. It was able to delimit ε to within 16% of the true value. 

FIELD DATA 
Inversion methods that were found to give optimal results for the synthetic data are 

applied to the Blackfoot study for estimation of ε and δ. Based on these results, neural 
network inversion is applied to compressional wave data for the recovery of the 
anisotropic parameters. 

Evidence of anisotropy at Blackfoot 
A test for anisotropy in the Blackfoot dataset was performed on the 1999 radial 

component by varying the values of the effective Vp/Vs ratio. No obvious anisotropic 
effects were observed, which is normal when analyzing a flat data set. However the best 
image of the channel was found using 9.0=effγ . Thus, there is anisotropy in the area but 
it is weak (Lu and Margrave, 2001). Similar results were found by Cary and Lu (1999) 
who learned from a similar analysis that a great deal of resolution is lost when the effects 
of layered anisotropy are ignored. Hasse (1998) also explained non-hyperbolic moveout 
through anisotropy after discounting other potential explanations. Estimates of the 
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anisotropic parameters are compared with those obtained by Elapavuluri (2003), who 
used a Monte Carlo inversion. 

Optimal inversion methods are applied to the Blackfoot data to recover ε and δ. 
Following Elapavuluri (2003) anisotropy parameters will be estimated in the formations 
listed in Table 16. Acronyms used to describe these formations are also listed in Table 
16. 

Table 15. Formation naming convention. 

Acronym Formation Name 
BFS Base of Fish Scales 

MANN Blairmore-Upper Mannville 
COAL Coal Layer 

GLCTOP Glauconitic Channel 
MISS Shunda Mississippian 

 

Inversions results are listed in Table 16 and Table 17. For reference results from 
Elapavuluri (2003) are also tabulated.  

Table 16. Calculated δ values from Blackfoot P-wave neural networks and Elapavuluri (2003). 

Formation δ 
(estimated)

δ 
(Elapavuluri)

BFS 0.269 0.230 
MANN -0.005 0.040 
COAL 0.284 0.240 

GLCTOP 0.057 0.060 
MISS -0.121 0.000 

 
Table 17. Calculated ε values from Blackfoot P-wave neural networks and Elapavuluri (2003). 

Formation ε 
(estimated)

ε 
(Elapavuluri)

BFS 0.232 0.060 
MANN -0.020 0.008 
COAL 0.192 0.120 

GLCTOP 0.030 0.006 
MISS 0.010 0.001 

 
Attempts to quantify anisotropy in the Blackfoot field are limited. Comparing our 

results with those obtained by Elapavuluri (2003) showed a reasonable match for the 
estimation of δ. A similar trend is observed in the estimation of  ε. The worst correlation 
is found at the MISS for δ and at the BFS for ε. The best correlation is found in the 
producing formation, GLCTOP, for both parameter estimations. Results are consistent 
with Thomsen (1986) where the sands show little anisotropy and the coals and shales 
display stronger anisotropy. 
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CONCLUSIONS  
A simple and robust algorithm is proposed for the estimation of Thomsen’s anisotropy 

parameters, ε and δ. A neural network that estimates δ had 29 neurons, used vertical 
compressional and shear wave velocities and compressional interval velocity information 
for training and incorporates a tan sigmoid and linear transfer function will give optimal 
results for the estimation of δ. Similarly, a neural network that estimates ε and δ, has 88 
neurons, use vertical compressional and shear wave velocities and compressional interval 
velocity information for training and incorporates a tan sigmoid and linear transfer 
function will give optimal results for the estimation of ε. 
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