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Joint simultaneous inversion of PP and PS angle gathers 

Brian H. Russell, Daniel P. Hampson, Keith Hirsche, and Janusz Peron 

ABSTRACT 
We present a new approach to the joint simultaneous inversion of PP and PS angle 

gathers for the estimation of P-impedance, S-impedance and density.  Our algorithm is 
based on three assumptions. The first is that the linearized approximation for reflectivity 
holds.  The second is that PP and PS reflectivity as a function of angle can be given by 
the Aki-Richards linearized equations (Aki and Richards, 2002). The third is that there is 
a linear relationship between the logarithm of P-impedance and both S-impedance and 
density. Given these three assumptions, we show how a final estimate of P-impedance, S-
impedance and density can be found by perturbing an initial P-impedance model.  After a 
description of the algorithm, we then apply our method to both model and real data sets. 

INTRODUCTION 
The goal of pre-stack seismic inversion is to obtain reliable estimates of P-wave 

velocity (VP), S-wave velocity (VS), and density (ρ) from which to predict the fluid and 
lithology properties of the subsurface of the earth.   This problem has been discussed by 
several authors.  Simmons and Backus (1996) invert for linearized P-reflectivity (RP), S-
reflectivity (RS) and density reflectivity (RD), where 
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and  

 ρ
ρ∆=DR

. (3) 
Simmons and Backus (1996) also make three other assumptions: that the reflectivity 

terms given in equations (1) through (3) can be estimated from the angle dependent 
reflectivity RPP(θ) by the Aki-Richards linearized approximation (Aki and Richards, 
2002, Richards and Frasier, 1976), that ρ and VP  are related by Gardner’s relationship 
(Gardner et al. 1974), given by 
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and that VS  and VP are related by Castagna’s equation (Castagna et al., 1985), given by 
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.16.1/)1360( −= PS VV
 (5) 

The authors then use a linearized inversion approach to solve for the reflectivity terms 
given in equations (1) through (3). 

Buland and Omre (2003) use a similar approach which they call Bayesian linearized 
AVO inversion.  Unlike Simmons and Backus (1996), their method is parameterized by 
the three terms ρρ / and ,/,/ ∆∆∆ SSPP VVVV , again using the Aki-Richards 
approximation.  The authors also use the small reflectivity approximation to relate these 
parameter changes to the original parameter itself.  That is, for changes in P-wave 
velocity they write 
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where ln represents the natural logarithm.  Similar terms are given for changes in both S-
wave velocity and density.  This logarithmic approximation allows Buland and Omre 
(2003) to invert for velocity and density, rather than reflectivity, as in the case of 
Simmons and Backus (1996).   

In the present study, we present a new approach that allows us to invert directly for P-
impedance (ZP=ρVP), S-impedance (ZS=ρVS), and density through a small reflectivity 
approximation similar to that of Buland and Omre (2003), and using constraints similar to 
those used by Simmons and Backus (1996).  It is also our goal to extend an earlier post-
stack impedance inversion method (Russell and Hampson, 1991) so that this method can 
be seen as a generalization to pre-stack inversion.  The input data used to extract 
impedance and density consists of PP and, optionally, PS angle gathers, so we refer to the 
method as joint simultaneous inversion. 

THEORY 
We start by reviewing the principles of model-based post-stack inversion (Russell and 

Hampson, 1991).  First, by combining equations (1) and (6), we can show that the small 
reflectivity approximation for the P-wave reflectivity is given by 
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where i represents the interface between layers i and i+1.  If we consider an N sample 
reflectivity, equation (7) can be written in matrix form as 
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where LPi = ln(ZPi).   
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Next, if we represent the seismic trace as the convolution of the seismic wavelet with 
the earth’s reflectivity, we can write the result in matrix form as 
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where Ti represents the ith sample of the seismic trace and wj represents the jth term of an 
extracted seismic wavelet.  Combining equations (8) and (9) gives us the forward model 
which relates the seismic trace to the logarithm of P-impedance: 
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, (10) 
where W is the wavelet matrix given in equation (9) and D is the derivative matrix given 
in equation (8).  If equation (10) is inverted using a standard matrix inversion technique 
to give an estmate of LP from a knowledge of T and W, there are two problems.  First, the 
matrix inversion is both costly and potentially unstable.  More importantly, a matrix 
inversion will not recover the low frequency component of the impedance.   An alternate 
strategy, and the one adopted in our implementation of equation (10), is to build an initial 
guess impedance model and then iterate towards a solution using the conjugate gradient 
method. 

We can now extend the theory to the pre-stack inversion case.  The Aki-Richards 
equation was re-expressed by Fatti et al. (1994) as 
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where θ2
1 tan1 +=c , θγ 22

2 tan8−=c , PS VV /=γ , θγθ 222
3 sin2tan5.0 +−=c , and the 

three reflectivity terms are as given by equations (1) through (3).   

For a given angle trace T(θ) we can therefore extend the zero offset (or angle) trace given 
in equation (10) by combining it with equation (11) to get 
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,  (12) 

where LS = ln(ZS) and LD = ln(ρ).  Note that the wavelet is now dependent on angle.  
Equation (12) could be used for inversion, except that it ignores the fact that there is a 
relationship between LP and LS and between LP and LD. Because we are dealing with 
impedance rather than velocity, and have taken logarithms, our relationships are different 
than those given by Simmons and Backus (1996) and are given by 
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and   
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DcPD LmZmZ ∆++= )ln()ln(

. (14) 
That is, we are looking for deviations away from a linear fit in logarithmic space.  This 

is illustrated in Figure 1. 

 

 
                (a)                (b)    

FIG. 1. Crossplots of (a) ln(ZD) vs ln(ZP) and (b) ln(ZS) vs ln(ZP) where, in both cases, a best 
straight line fit has been added.  The deviations away from this straight line, ∆LD and ∆LS, are the 
desired fluid anomalies. 

Combining equations (12) through (14), we get 

 
DSP LDcWLDWcDLWcT ∆+∆+= 321 )()(~)(~)( θθθθ

, (15) 

where 3211 )2/1()2/1(~ mckccc ++=  and 22 )2/1(~ cc = .  Equation (15) can be 
implemented in matrix form as 
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If equation (16) is solved by matrix inversion methods, we again run into the problem 
that the low frequency content cannot be resolved.  A practical approach is to initialize 

the solution to [ ] ( )[ ]T
P

T
DSP ZLLL 00ln 0=∆∆ , where ZP0 is the initial impedance 

model, and then to iterate towards a solution using the conjugate gradient method. 

We will now extend the previous derivation to include pre-stack converted-wave 
measurements (PS gathers) that have been converted to PP time.  We will use the 
linearized form of the equation was developed by Aki, Richards, and Frasier (Aki and 
Richards, 2002, Richards and Frasier, 1976).  It has been shown by Margrave et al. 
(2001) that this equation can be written as 
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where [ ]φθγφ
γ

φ coscos4sin4tan 2
4 −=c , [ ]φθγφ

γ
φ coscos2sin21

2
tan 2

5 −+−=c ,

PS VV /=γ , and ( )θγφ sinsin 1−= .  The reflectivity terms RS and RD given in equation 
(17) are identical to the terms those given in equations (2) and (3).  Using the small 
reflectivity approximation, we can therefore re-write equation (17) as: 

 
DSPS DLWcDLWcT )()(),( 54 φφφθ +=

. (18) 
Next, using the relationships between S-impedance, density and P-impedance given in 

equations (13) and (14), equation (18) can be further re-written as 

 
,)()()(~),( 544 DSPPS LDWcLDWcDLWcT ∆+∆+= φφφφθ
 (19) 

where  .~
544 mckcc +=  

Note that equation (19) allows us to express a single PS angle stack as a function of 
the same three parameters given in equation (15).  Also, equation (19) is given at a single 
angle φ.  When we generalize this equation to M angle stacks, we can combine this 
relationship with equation (16) and write the general matrix equation as 
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Equation (20) gives us a general expression for the simultaneous inversion of N PP angle 
stacks and M PS angle stacks.  Note that we extract a different wavelet for each of the PS 
angle stacks, as was done for each of the PP angle stacks. 

MODEL EXAMPLE 
We will now apply this method to a model data example.  To create this model, we 

started with a measured set of well logs (P-wave, S-wave, density, and computed 
Poisson’s ratio) for a well in which the in-situ case was a partially saturated gas sand.  
We then used the Biot-Gassmann equations to perform fluid substitution and create a 
number of model scenarios ranging from the 100% wet case to the 100% gas case, in 
increments of 10% saturation (except between SW values of 90% and 100%, where we 
inserted the 95% case).   We created the equivalent well log curves for each case, as well 
as a model synthetic, using a wave equation modeling algorithm with a 40 hertz Ricker 
wavelet.  The model synthetic was then used as the input data for a series of inversions at 
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each value of SW.  A detailed analysis of the two end members (the gas case and wet case) 
is shown in Figures 2 and 3. 

Figure 2(a) shows the well log curves for a gas sand on the left (in blue), with the 
initial guess curves (in red) set to be extremely smooth so as not to bias the solution.  On 
the right we show the model synthetic angle gather computed from the inversion 
algorithm, the input computed angle gather from the full well log curves, and the error, 
which is almost identical to the input.  The far angle trace for the model and input angle 
synthetics is 60o. 

Figure 2(b) then shows the same displays after 20 iterations through the conjugate 
gradient inversion process.  Note that the final estimates of the well log curves match the 
initial curves quite well for the P-impedance, ZP, S-impedance, ZS, and the Poisson’s ratio 
(σ).  The density (ρ) shows some “overshoot” above the gas sand (at 3450 ms), but 
agrees with the correct result within the gas sand. The results on the right of Figure 2(b) 
show that the error is now very small.  

 
FIG. 2. The results of inverting a gas sand model, where (a) shows the initial model before 
inversion, and (b) shows the results after inversion. 

The equivalent wet model for the gas sand shown in Figure 2 is shown in Figure 3.  
We again performed inversion on this model dataset.  Figure 3(a) shows the well log 
curves for the wet sand on the left, with the smooth initial guess curves superimposed in 
red.  On the right we show the model synthetic angle gather computed from the inversion 
algorithm, the input computed angle gather from the full well log curves, and the error, 
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which is almost identical to the input.  The far angle trace for the model and input angle 
synthetics is again 60o.  

Figure 3(b) then shows the same displays after 20 iterations through the conjugate 
gradient inversion process.  As in the gas case, the final estimates of the well log curves 
match the initial curves quite well, especially for the P-impedance, ZP, S-impedance, ZS, 
and the Poisson’s ratio (σ).  The density (ρ) shows a much better fit at the wet sand 
(which is at 3450 ms) than it did at the gas sand in Figure 2.  

 
FIG. 3. The results of inverting a wet sand model, where (a) shows the initial model before 
inversion, and (b) shows the results after inversion. 

The results shown in Figures 2 and 3 show us that the inversion algorithm is 
performing very well.  However, it should be pointed out that this is noise-free data with 
an angular aperture of 60 degrees, which is very optimistic when compared with real data 
apertures. 

Finally, Figure 4 shows the inverted results at each of the twelve different values of 
water saturation.  Figure 4(a) shows the P-impedance values in colour, with the colour 
scale on the left.  Figure 4(b) shows the VP/VS ratio results in colour, with the colour 
scale again on the left.   In both Figures, the seismic inversion results at the wells have 
been duplicated five times for clarity, but the original P-wave velocity log has been 
shown only once. 
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In Figure 4, notice that both the P-impedance and VP/VS ratio results are consistent 
with the fact that the gas sand is changing to a wet sand as we move from left to right 
along the plots.  

  

 
(a) 

 
(b) 

FIG. 4. The results of inverting a variable sand model, from 100% gas on the left to 100% wet on 
the right where (a) shows the P-impedance results, and (b) shows the VP/VS ratio results. 

PP DATA EXAMPLE 
We will next look at a real data example, consisting of a shallow Cretaceous gas sand 

from central Alberta.  Figure 5 shows the computed VP/VS ratio from this dataset, where 
the anomalous gas sand is encircled by the black ellipse.  Notice the drop in VP/VS 
associated with the gas sand.  

 

FIG. 5. The inverted VP/VS ratio for a shallow gas sand from Alberta, where the ellipse indicates 
the anomalous region. 
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Figure 6 then shows a comparison between the input gathers over the sand (where a 
clear AVO Class 3 anomaly is evident), and the computed synthetic gathers using the 
inverted results.   

 

 
(a) 

 

 
(b) 

 
FIG. 6. The CDP gathers over the gas sand anomaly from Fig.4, where (a) shows the input 
gathers and (b) shows the synthetic gathers after inversion. 

 
Note that the results given in Figure 6 show that a very good fit to the original real 

data can be obtained by applying forward modeling to the well logs obtained from the 
inversion process.  This can be considered as an excellent diagnostic, but is not to be 
interpreted as indicating that our result is absolutely correct, since there is possible non-
uniqueness in the answer. 

PP-PS DATA EXAMPLE 
In this final example, we will show a joint PP-PS inversion using a case study from 

northeastern Alberta.  The workflow for this example involved the following steps: 

1. Correlate the PP and PS data to wells 
2. Pick the corresponding horizons on both datasets. 
3. Use horizon based event matching to convert PS data to PP time. 
4. Invert PP and PS data using simultaneous inversion. 

 
Figure 7(a) shows the correlated PP data and Figure 7(b) shows the correlated PS data 

from our example, where the P-wave, S-wave, and density logs are shown on the left of 
each figure, and the stacked data (PP or PS) is shown on the right.  The synthetic trace 
(blue) to seismic trace (red) correlation is shown between the logs and the stacked data.  
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Note that the ties are quite reasonable in both cases shown.  The wavelets used to create 
the synthetic were extracted from the seismic data shown. 

 

 
(a) 

 
(b) 

FIG. 7. The correlation results, where (a) shows the logs on the left and the PP stack on the right, 
and (b) shows the logs on the left and the PS stack on the right.  The blue trace shows the 
synthetic and the red trace shows the extracted seismic. 

We then performed two different types on inversion.  The first type of inversion, 
which we will call independent inversion, involved building independent P and S-
impedance models for the PP and PS stacks and using a model-based inversion algorithm 
to independently invert the two datasets.  These models were created by interpolating 
well log values from eight wells which intersected the well log survey.  This assumes that 
the PP stack is a good approximation to zero-offset P-reflectivity, and that the PS stack is 
a good approximation to zero-offset S-reflectivity. 

The second inversion is referred to as joint inversion, and applies the theory discussed 
in earlier in this paper, specifically in equation 10.   Notice that we have only two inputs: 
the PP stack and the PS stack. Thus, the problem is under-determined and we therefore 
decided not to invert for density, only for P and S-impedance.   We assume that the PP 
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stack is equivalent to a PP angle gather at zero degrees and that the PS stack is equivalent 
to a PS angle stack at 20 degrees.  The value of 20 degrees was arrived at by cross-
correlating the traces in the PS stack with model traces at various angles. 

To check the validity of the inversion, we performed cross-validation of the results at 
each of the eight wells which intersected the dataset.  Cross-validation consists of leaving 
each well in turn out of the model-building process and then “blindly” predicting each 
well from the inversion results.  This results of the cross-validation process are shown in 
Figure 8, where 8(a) shows the independent inversion results and 8(b) shows the joint 
inversion results for VP/VS ratio. 

 

 
(a) 

 

 
(b) 

 
FIG. 8. The cross-validation of the inversion results at each of the well locations, where (a) shows 
the results of independent inversion, and (b) shows the results of joint inversion.  The parameter 
being plotting is Vp/Vs ratio. 
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It is clear from Figure 8 that the joint inversion has created a better visual fit at the 
wells than independent inversion.  To quantify this observation, Figure 9 shows the cross-
correlation values at the wells, where Figure 9(a) corresponds to the independent 
inversion of Figure 8(a) and Figure 9(b) corresponds to the joint inversion of Figure 8(b).  
Notice that for the independent inversion (Figure 9(a)), the correlation coefficients are 
centered on a value of 0.25, whereas for the joint inversion (Figure 9(b)) the correlation 
coefficients are closer to a value of 0.75.  It can be seen that only two of the wells drop 
below a 0.5 correlation for joint inversion, and these are the same two wells with a 
correlation close to zero on the independent inversion.  This validates our qualitative 
observation from Figure 8, that the joint inversion has done a better job than the 
independent inversion. 

 

 
     (a)      (b)    

 
FIG. 9. A display of the cross-correlation between the known Vp/Vs ratios from the wells and the 
inverted results of (a) Figure 8(a), the independent inversion, and (b) Figure 8(b), the joint 
inversion. 

Finally, the results of applying the two inversion algorithms to the seismic datasets are 
shown in Figure 10, where the results have been shown for the VP/VS ratio.  Figure 10(a) 
shows the result of independent inversion and Figure 10(b) shows the result of joint 
inversion.  Note that the VP/VS ratio in colour on the inserted well log matches the colour 
on the inversion results and that the scale in shown on the right hand sides of the plots. 

On the independent inversion results of Figure 10(a), note that the match between the 
well values and the seismic result is not very good, especially at the top of the section, 
between 300 and 350 ms, and the middle part of the section between 420 and 470 ms.  
The mismatch at the base of the section is due to the fact that the well log data has not 
been recorded below about 530 ms.  On the joint inversion results of Figure 10(b) there is 
good agreement in the two zones just described, suggesting that the inversion has done a 
better job of matching the well results. 

Based on the results seen in Figures 8 through 10, it seems clear that the joint 
inversion algorithm, in which the PP and PS data are coupled in the algorithm, is superior 
to the independent inversion, in which there is no coupling between the two datasets. 
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(a) 

 
(b) 

FIG. 10. The final inverted results for Vp/Vs ratio extracted from the seismic data using (a) 
independent inversion and (b) joint inversion. 

CONCLUSIONS 
We have presented a new approach to the joint simultaneous inversion of pre-stack 

seismic data which produces estimates of P-impedance, S-Impedance and density. This 
method allows us to incorporate both PP and PS data into the solution, if we have first 
calibrated both datasets to PP time.  The method is based on three assumptions: that the 
linearized approximation for reflectivity holds, that reflectivity as a function of angle can 
be given by the Aki-Richards equations, and that there is a linear relationship between the 
logarithm of P-impedance and both S-impedance and density.  Our approach was shown 
to work well for modelled gas and wet sands, for a real PP seismic example which 
consisted of a shallow Creataceous gas sand from Alberta, and for a joint PP-PS dataset 
from northeast Alberta.  In the first two data examples, pre-stack PP seismic data was 
used.  In the joint PP-PS dataset the prestack data was not available and we applied the 
method to full stacks.  Future work will involve the incorporation of pre-stack PS data. 
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