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ABSTRACT 
Assuming that noise free auto-correlations or auto-bicorrelations are available to guide 

optimization, signal can be recovered from a noise background to some extent. A 
synthetic example is employed to demonstrate the procedure of noise rejection by signal 
optimization. Except for noise bursts at higher frequencies, the auto-bicorrelation 
approach gives better results. 

 

INTRODUCTION 
High frequency loss due to attenuation decreases bandwidth and resolution. The 

process of frequency enhancement seeks to restore bandwidth and thereby improve 
resolution. Chopra (2003) uses information from VSP’s to compensate frequency loss in 
surface seismic data. Countiss (2002) utilizes a proprietary process to recover high 
frequency signal from under noise. Mendel (1991) in his tutorial on higher-order statistics 
(known as cumulants) states that cumulants are blind to any kind of a Gaussian process 
whereas correlation is not. By contrast, correlation is phase blind but cumulants are not. 
This sounds like an excellent recipe to recover seismic signal from below a random noise 
floor. The first step beyond second-order statistics is bicorrelation (third order statistics). 
Cross-bicorrelation has been used by Lu and Ikelle (2001) to image beyond seismic 
wavelengths. The key to these methods appears to be signal processing in the 
bicorrelation/bispectral domain where Gaussian noise is minimized and resolution is 
increased. This report describes an attempt to recover a synthetic signal from a Gaussian 
noise background. 

 

SIGNAL AND NOISE GENERATION 
The synthetic signal used throughout this study is shown by the green curve in    

Figure 1. Attenuation is modelled by applying an exponential high frequency roll-off. 
Noise is generated employing an algorithm for square distributions found in Numerical 
Recipes (Press et al., 1999). A Gaussian distribution is simulated via the central limit 
theorem. Figure 2 displays the result of adding signal and noise when both are 
normalized to unit maximum absolute amplitude. Total trace length is 2.048 seconds. 
One half of this trace is set to zero in order to prevent wrap-around when computing 
correlations in the frequency domain. No ramping is applied at either end of the nonzero 
trace part which implies a boxcar time domain window. Note that, at this signal-to-noise 
amplitude ratio of unity, the synthetic signal is almost hidden in the noise.  
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AUTO-CORRELATION AND AUTO-BICORRELATION 
The auto-correlations of both the noise free synthetic signal from Figure 1 and the 

noise contaminated synthetic signal from Figure 2 are given in Figure 3. The process of 
auto-correlation reduced the noise level considerably. Increasing the length of the noise 
contribution beyond 1.024 seconds allows the auto-correlation procedure to reduce the 
noise level further. Figure 4 shows the log-magnitude spectra of the auto-correlations of 
Figure 3. A side-lobe of the noise free auto-correlation spectrum is barely visible at 
approximately 45Hz. When looking at the noise contaminated spectrum in Figure 4 it 
appears almost hopeless to attempt signal recovery. 

The normalized auto-bicorrelation of the noise free synthetic signal is displayed in 
Figure 5. An interesting pattern of side-lobes is visible. Note that the depth of troughs is 
limited to a maximum negative excursion for display purposes. The equivalent plot for 
the noise contaminated synthetic signal can be seen in Figure 6. It is not as easy as it was 
for the auto-correlation (Figure 3) to make out the signal. The corresponding normalized 
auto-bicorrelation log-magnitude spectra are shown in Figures 7 and 8. Again, the noise 
contaminated spectrum in Figure 8 appears to be an almost hopeless case. The formulae 
used to compute auto-bicorrelations and auto-bispectra are given by Lu and Ikelle (2001) 
as: 

                                    1 1 2( , ) [ ( ) ( ) ( )]r E x t x t x tτ τ τ τ2 = + +    and  

                                   *
1 2 1 2 1 2( , ) [ ( ) ( ) ( )]B E X X Xω ω ω ω ω ω= +  

where E[ ] is the expectation operator. 

 

SIGNAL OPTIMIZATION 
The assumption made for the optimization procedure is that the auto-correlation and 

auto-bicorrelation of the noise free synthetic signal are known. Given this information, 
the auto-bicorrelation of the noise contaminated synthetic signal can be fitted to the 
“ideal” noise free auto-bicorrelation in, for example, the LSE ( least square error ) sense. 
The procedure is to modify the noisy input signal, one sample at a time, such that the 
LSE is minimized at each step. When all input samples are modified, the algorithm 
returns to the first sample and starts over. Figure 9 displays the result of 99 recursions 
applied to the auto-correlation LSE. The noise level is reduced but the signal optimum     
( red curve ) shows considerable error. By contrast, when applying the procedure to the 
auto-bicorrelation LSE, the signal optimum ( red curve ) matches the original noiseless 
synthetic signal better and the remaining noise level is also lower as can be seen in Figure 
10. Again, 99 recursions are used. Figures 11 and 12 show the log-magnitude spectra 
equivalent to Figures 9 and 10. Clearly, the noise level is reduced in both cases. The 
bispectrum optimization result ( Figure 12 ) matches the original signal more closely in 
the notch between the main-lobe and the first side-lobe. In fact, that match is improved 
considerably when the optimization is allowed to proceed beyond 99 recursions. The 
tuning effect visible in Figure 12 changes little with the number of recursions. At the time 
of writing the cause of this tuning effect is not known. 
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CONCLUSIONS  

 

Assuming that noise free auto-correlations or auto-bicorrelations are available to guide 
the procedure, signal optimization can reduce a noise background to some extent. The 
additional information available in the bicorrelation domain leads to improved noise 
rejection by signal optimization when compared to the second order process of auto-
correlation. A tuning effect is observed at higher frequencies in the optimized bispectrum. 
Whether the assumptions made for signal optimization are too restrictive or bicorrelation 
signal optimization can be expanded to include a reflection coefficient series would be an 
interesting topic for future research.  
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FIG. 1. Normalized synthetic signals. 

 

 

 

FIG. 2. Noise contaminated synthetic signal. 
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FIG. 3. Auto-correlation of synthetic signals. 

 

 

 

FIG. 4. Auto-correlation magnitude spectrum. 
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FIG. 5. Normalized auto-bicorrelation of signal without noise. 

 

 

 

FIG. 6. Normalized auto-bicorrelation of signal with noise. 
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FIG. 7. Normalized auto-bicorrelation spectrum (noise free input). 

 

 

  

FIG. 8. Normalized auto-bicorrelation spectrum (noisy input). 
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FIG. 9. Auto-correlation optimization. 

 

 

 

FIG. 10. Auto-bicorrelation optimization. 
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FIG. 11. Auto-correlation optimization spectrum. 

 

 

 

FIG. 12. Auto-bicorrelation optimization spectrum. 


