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Linearized AVO and poroelasticity  

Brian H. Russell∗, David Gray*, Daniel P. Hampson* and Laurence R. Lines 

ABSTRACT 
This study combines the technique of amplitude variations with offset, or AVO, 

analysis with the theory of poroelasticity to derive a linearized AVO approximation that 
provides the basis for the estimation of fluid, rigidity and density parameters from the 
weighted stacking of pre-stack seismic amplitudes.  The method proposed is a 
generalization of the two AVO approximations introduced by Gray et al. (1999) using the 
formulation introduced by Russell et al. (2003).  After a review of linearized AVO 
theory, we present the theory of our approach.  We then apply our method to both model 
and real datasets. 

INTRODUCTION 
When an incident P-wave wave strikes a boundary between two elastic media at an 

angle greater than zero, a phenomenon called mode conversion occurs, in which reflected 
and transmitted P and S-waves are created on both sides of the boundary, as shown in 
Figure 1. 

 

 

FIG. 1. Mode conversion of an incident P-wave. 

The amplitudes of the reflected and transmitted waves can be derived by solving the 
following matrix equation (Zoeppritz, 1919): 
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Notice that the necessary parameters for the solution of the problem involve the 
individual P-wave velocity, S-wave velocity and density values on each side of the 
boundary, as well as the incident, reflected and transmitted angles, all of which can be 
derived from the incident P-wave angle using Snell’s law.  Although equation (1) will 
give precise values of the amplitudes of the reflected and transmitted waves, it does not 
provide an intuitive understanding of the effects of the parameter changes on the 
amplitudes, and is also difficult to invert (that is, given the amplitudes, what are the 
underlying elastic parameters which caused those amplitudes.)  For these reasons, much 
current amplitude variation with offset (AVO) work and pre-stack inversion is based on 
linearized approximations to equation (1).  These linearized approximations will be 
discussed in the next section, and we will discuss how we can re-parameterize the 
equations for various combinations of three physical parameters: P-wave velocity, S-
wave velocity and density; P-wave reflectivity, S-wave reflectivity and density 
reflectivity; P-wave velocity, Poisson’s ratio and density; the two Lamé coefficients and 
density; bulk modulus, shear modulus, and density. 

Although the discussion of the various linearized approximations in the next section is 
a summary of existing work, it sets the stage for the next part of our development, in 
which we consider not only the velocities and densities themselves, but the effect of the 
fluid component of the velocity and density of the reservoir rock.  In the theory 
developed independently by Biot (1941) and Gassmann (1951), we consider four 
components of the reservoir rock: its matrix, pore/fluid system, saturated state, and dry 
state.  This is illustrated in Figure 2. 

  

 

 

 

 

 

 

 

 
 

FIG.  2.  In Biot-Gassmann theory, a cube of rock is characterized by four components:  the rock 
matrix, the pore/fluid system, the dry rock frame, and the saturated frame. (Russell et al., 2003). 
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Based on these considerations the poroelasticity theory of Biot and Gassmann allows 

us to incorporate a term for the fluid component of the in-situ reservoir rock into the 
expression for the P-wave velocity.  This will be discussed in the section on 
poroelasticity theory.  Finally, we will combine poroelasticity theory and linearized AVO 
in such a way that the fluid component of the in-situ reservoir rock can be estimated 
using standard AVO least-squares extraction techniques.  We will finish with both model 
and real data case studies that illustrate the method.  

LINEARIZED AVO APPROXIMATIONS 
It has been shown (Bortfeld, 1961, Richards and Frasier, 1976, Aki and Richards, 

2002) that, for small changes in the P-wave velocity, S-wave velocity and density across 
a boundary between two elastic media, the P-wave reflection coefficient for an incident 
P-wave as a function of angle can be approximated by the following linearized sum of 
three terms: 
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where VP, VS and ρ are the average velocity and density values across the boundary, ΔVP, 
ΔVS and Δρ are the differences of the velocity and density values across the boundary, 
θ is the average of the incident and refracted angles, and γsat = VP/VS for the in-situ 
(saturated) rocks.  By “small” changes, we mean that equation (1) is valid where each 
ratio Δp/p (which we refer to as “reflectivity” terms) is less than approximately 0.1.  If we 
know the relationship between offset and angle for a seismic CMP gather, equation (1) 
can be used to extract estimates of the three reflectivities from the gather using a 
weighted least-squares approach.  Equation (2) has also been used to perform Bayesian 
inversion for velocity and density (Buland and Omre, 2003).   Since equation (2) was 
developed independently by Bortfeld, Aki and Richards, we will refer to it as the 
Bortfeld-Aki-Richards (B-A-R) equation.  
 

There are several important algebraic re-arrangements of equation (2).  First, it can be 
transformed into the three term sum given by 

 
2 2 2( ) sin tan sin ,PPR A B Cθ θ θ θ= + +

 (3) 

where ⎥
⎦

⎤
⎢
⎣

⎡ Δ+Δ==
ρ
ρ

P

P
P V

VRA
2
1

0  is a linearized approximation to the zero-offset P-

wave reflection coefficient, 
ρ
ρ

γγ
Δ−Δ−Δ= 22

24
2 satS

S

satp

P

V
V

V
VB , and 

p

P

V
VC

2
Δ= .  This 

equation, which was initially derived by Wiggins et al. (1983), is the basis of much of the 
empirical amplitude variations with offset (AVO) work performed today and has the 
advantage that an estimate of γsat is not needed in the weighting coefficients used to 
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extract the three parameters (generally called the intercept, gradient, and curvature 
terms).   

A second re-arrangement of equation (1), by Fatti et al. (1994) (based on an earlier 
equation by Smith and Gidlow (1986)), is given by 
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where RP0 is equal to the A term from equation (3), ⎥
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approximation to the S-wave reflectivity, and
ρ
ρΔ=DR  is the linearized density 

reflectivity term from equation (2).  Equation (4) has been used both to extract the 
reflectivity terms from a CMP gather and as the basis for impedance inversion (Simmons 
and Backus, 1996, Hampson et al., 2006), although it does require an estimate of γsat in 
the weighting coefficients.   Since equation (4) was developed by Smith, Gidlow and 
Fatti, we will call it the Smith-Gidlow-Fatti (S-G-F) equation. 

Another way of re-formulating equation (1) involves transforming to parameters 
which are nonlinearly related to velocity and density.  This involves the use of 
differentials as well as algebra.  For example, Shuey (1982) transformed the second term 
in equation (3) to from dependence on VS and ΔVS to dependence on Poisson’s ratio σ = 
(γ – 2)/(2γ -2) and changes in Poisson’s ratio (Δσ).  Shuey’s gradient term B is written 
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not provide his derivation of this term, and we are not aware of its publication anywhere 
in the literature, the derivation is given in Appendix A. 

More recently, Gray et al. (1999) re-formulated equation (1) for two sets of 
fundamental constants: λ, μ and ρ, and K, μ and ρ, where we recall the following 
relationships: 
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and 
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. (7) 
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As with Shuey’s work, this re-formulation required the use of both algebra and 
differentials relating λ, μ and K to VP, VS and ρ.  Gray et al.’s two formulations are given 
as 
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The similarity between equations (8) and (9) can be easily noted.  The only differences 
are that the 1/2 factor in the first and second terms in equation (8) changes to 1/3 in the 
first and second terms in equation (9).  To understand the significance of this observation, 
we will first review the elements of poroelasticity theory as presented by Russell et al. 
(2003). 

 

POROELASTICITY THEORY 
The purpose of the present study is to show how the two formulations from Gray et al. 

can be generalized using the work of Russell et al. (2003).  In that study, the authors used 
poroelasticity theory (Biot, 1941, and Gassmann, 1951) to equate the λ, μ, ρ and Κ, μ, ρ 
sets of parameters using the model shown in Figure 2.  Biot (1941) used the Lamé 
parameters and showed that (Krief et al, 1990) 

 
Mdrysat

2βλλ +=
, (10) 

where λsat is the 1st Lamé parameter for the saturated rock, λdry is the 1st Lamé parameter 
for the dry frame, β is the Biot coefficient, or the ratio of the volume change in the fluid 
to the volume change in the formation when hydraulic pressure is constant, and M is the 
modulus, or the pressure needed to force water into the formation without changing the 
volume.  Conversely, Gassmann started with the bulk and shear moduli, and derived the 
following relationship (Krief et al, 1990): 

 
MKK drysat

2β+=
, (11) 

where Ksat is the bulk modulus of the saturated rock, Kdry is the bulk modulus of the dry 
rock, and β and M are the same as in equation (10).  By equating equations (10) and (11), 
and using equation (6) to derive the relationships among Κ, λ and μ, the following result 
can be derived: 

 
drysat μμ =

. (12) 
That is, the shear modulus is unaffected by the pore fluid.  This theoretical result has a 
strong intuitive basis, since we know that fluids do not support shear stresses, only 
compressive stresses.   
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Gassmann further showed that 

 m

dry

K
K

−= 1β
, (13) 

and 
   

 flm KKM
φφβ +−=1

, (14) 

where Km is the bulk modulus of the matrix material and Kfl is the bulk modulus of 
thefluid.  The advantage of using the Gassmann formulation given in equations (12) 
through (14) is that we can model our particular gas sand using these parameters, 
although it is often difficult to obtain reliable estimates for Kdry unless an in-situ S-wave 
log has been measured.   It should also be noted that the Kfl term can be derived from 
knowledge of the water and hydrocarbon components by the equation 

 w
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fl K
S
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S
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, (15) 

where SW is the water saturation and Khc and Kw are the hydrocarbon and water bulk 
modulii, respectively.  These equations will be used in a later section to perform 
modeling. 

If equations (13) and (14) are substituted into equation (11) the result is the expression 
often seen in rock-physics textbooks (e.g. Mavko et al 1998).  However, we have chosen 
to retain the use of the term β2M for the difference between the dry and saturated cases to 
emphasize its independence from the first term.  Using β2M, we can rewrite the equation 
for P-wave velocity (equation (6)) for the saturated case with lambda and mu as 

 sat
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M
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βμλ 22 ++
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, (16a) 

or with the bulk and shear modulii as 

 sat
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Both equations (16a) and (16b) can be written more succinctly as: 

 sat
P

sfV
ρ

+=
, (17) 

where f is a fluid/porosity term equal to β2M, and s is a dry-skeleton term which can be 
written either as μ3

4+dryK  or μλ 2+dry .  Note that in equations (16) and (17) we have 
assumed that drysat μμμ == .  In Russell et al. (2003) this formulation was applied to 
inverted seismic data, where we estimated the P and S-wave impedances, ZP and ZS, 



Linearized AVO and poroelasticity 

 CREWES Research Report — Volume 18 (2006) 7 

rather than velocities VP and VS.  However, in this study, we will assume that the 
velocities are of prime importance.   Therefore, note that we can extract the terms f and s 
by re-arranging equations (7) and (17) to get 

 
( ) satSdrysatP VVf )( 222 ργρ −=

, (18) 
and 
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Russell et al., but we have chosen to emphasize its physical significance in this study) 
Finally, notice that by dividing f through by μ and realizing that satSV )( 2ρμ = , we 
get 22/ drysatf γγμ −= . 

 There are several approaches to estimating γdry
2.  The first is to estimate the dry-rock 

Poisson's ratio, σdry, noting that this is given by 

 22
2

2

2

−
−

=
dry

dry
dry γ

γ
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. (20) 

Generally, the accepted value of σdry is in the order of 0.1, which corresponds to a 
VP/VS ratio of 1.5, or a 2

dryγ  value of 2.25. 

A second approach is to perform laboratory measurements.  Murphy et al (1993) 
measured the Kdry/μ ratio for clean quartz sandstones over a range of porosities and found 
that this value was, on average, equal to 0.9.  This corresponds to a c value of 2.233.  If 
the Kdry/μ value is rounded to 1.0, this implies a σdry of 0.125, and a corresponding 2

dryγ  
value of 2.333. 

Thus, there are a range of values of γdry
2 that depend on the particular reservoir being 

studied.  Table 1 shows a range of these values and the range of their equivalent elastic 
constant ratios.  The value of γdry

2 in this table ranges from a high of 4, meaning that 
λdry/μ is equal to 2, to a low of 1 1/3, meaning that Kdry/μ is equal to 0.   

 

 

 

 



Russell et al. 

8 CREWES Research Report — Volume 18 (2006)  

Table 1.  A table of various values of the dry rock VP/VS ratio squared and their relationship to 
other elastic constants.   

 

 

THE GENERALIZED ELASTIC CONSTANT AVO EQUATION 
As shown in Appendix B, if we start with the Aki-Richards formulation given in 

equation (2) and use the differential given by 
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we can re-parameterize equation (2) using the parameters γdry
2  and γsat

2.  The final 
equation is written 
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Equation (22) will be referred to as the f-m-r (fluid-mu-rho) equation since it gives us 
new physical insight into the relationship between linearized AVO and poroelasticity and 
is a generalization of the equations of Gray et al. (1999). The first thing to note about this 
equation is that the scaling parameter in front of the fluid term Δf/f  proportional to one 
minus the ratio of the saturated and dry VS/VP ratios.  If 22

drysat γγ = this term goes to zero, 
implying that there is no fluid component to the reservoir (i.e. we are dealing with a 
perfectly “dry” rock).   Also, since we can never have a situation in which γsat/γdry > 1 
(since, as seen from equations (10) and (11), the saturated values for K or λ will always 
be greater or equal to the dry values), the scaling coefficient for the fluid term will always 
be positive or zero.  Secondly, if we let 22 =dryγ , equation (22) reduces to the λ, μ, ρ 

formulation as given in equation (8).  Finally, if we let 3/42 =dryγ , it reduces to the K, μ, 
ρ formulation given in equation (9).   

γ dry^2 (Vp/Vs)dry σ dry Kdry/ μ λ dry/ μ
4.000 2.000 0.333 2.667 2.000
3.333 1.826 0.286 2.000 1.333
3.000 1.732 0.250 1.667 1.000
2.500 1.581 0.167 1.167 0.500
2.333 1.528 0.125 1.000 0.333
2.250 1.500 0.100 0.917 0.250
2.233 1.494 0.095 0.900 0.233
2.000 1.414 0.000 0.667 0.000
1.333 1.155 -1.000 0.000 -0.667
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But do these values of 2 and 4/3 make physical sense?  As discussed by Russell et al. 
(2003), these values are not appropriate for typical saturated rocks since, if we refer back 
to Table 1, a value of 4/3 implies a dry rock Poisson’s ratio of -1 and a value of 2 implies 
a dry rock Poisson’s ratio of 0, neither of which is physically realistic.  A value of 2.333, 
which implies from Table 1 that (K/μ)dry = 1 and the dry rock Poisson’s ratio is 0.125, is 
more appropriate for rocks such as sandstones.  In fact, Dillon et al. (2003) measured 

2
dryγ values as high as 3 for unconsolidated sandstones in Brazil.  

Next, note that the scaling term for Δμ/μ is also dependent on both 2
dryγ and 2

satγ .   

However, the 1/ 2
satγ term can be factored out of both terms in the brackets and can be 

thought  of as an overall scaling factor, leaving a first term dependent on 2
dryγ minus a 

second term that  is independent of  either velocity ratio.  Thus as the 2
dryγ value goes up, 

this scaling coefficient increases. 

Lastly, the density term is independent of 2
dryγ and 2

satγ , and is only a function of sec2θ.   
Thus, the density scaling will always have the same values as a function of angle, 
regardless of 2

dryγ and 2
satγ , and will always change from positive to negative at θ = 45o 

(where cos2θ = ½).  Physically, this makes sense since both 2
dryγ and 2

satγ  are functions of 
a velocity ratio, in which the density term cancels.   Note, however, that this is not the 
same as saying that the extracted density term Δρ/ρ is independent of fluid, since its 
value will depend on the actual amplitudes of the seismic data. 

The computed curves for the various cases are shown in Figures 3 and 4.  In Figure 3, 
the coefficients for the three terms are shown for 2

satγ = 4 and three different values of 
2
dryγ  (1.333, 2.0 and 2.333).   As discussed in the previous paragraph, the density term 

does not change, and so in Figure 3 can be used as a reference for the other two curves. 
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(a)      (b)    

 

(c) 
FIG.  3. Weighting coefficients for Δf/f, Δμ/μ, and Δρ/ρ as a function of angle, with 2

satγ  = 4  in all 

cases and for (a) 2
dryγ  = 1.333, (b) 2

dryγ = 2.0, and (c) 2
dryγ  = 2.333. 

We can make several general observations based on the three separate plots shown in 
Figure 3.  First, the weighting of the fluid term increases as we go out to higher angles, 
but the value of this term goes down as the 22 / satdry γγ ratio increases, as was mentioned 
earlier.  Second, the weighting on the rigidity term decreases out to about 50 degrees but 
then starts to increase.  Also, the overall weighting on this term increases as the 

22 / satdry γγ term increases.  Finally, the weighting on the density term decreases as a 
function of angle and eventually becomes negative at 45 degrees, as predicted. 

In Figure 4, the weighting coefficients for Δf/f and Δμ/μ are shown separately, as a 
function of the three values of 2

dryγ , again with a constant value of 2
satγ .   This figure 

makes it clearer than Figure 3 that the weighting for Δf/f goes down as 2
dryγ  increases, but 

the weighting for Δμ/μ goes up as 2
dryγ  increases.  This makes physical sense if we recall 
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that 2
dryγ  represents the square of the dry rock VP/VS velocity ratio and 2

satγ  represents the 

square of the saturated rock VP/VS velocity ratio.  Thus, as 2
dryγ increases for a fixed value 

of 2
satγ , their product decreases, reducing the effect on Δf/f,  but increasing the effect on 

the Δμ/μ term. 

 

 

(a) (b)    
FIG. 4. Weighting coefficients for (a) Δf/f, and (b) Δμ/μ as a function of angle with 2

satγ  
= 4  in all cases, and for 2

dryγ  = 1.333, 2.0 and 2.333. 

WEIGHTED PARAMETER EXTRACTION 
It should also be noted that equation (22) is similar to equations (2), (3), (4), (8) and 

(9) in that all of these three term linearized AVO expressions can be expressed as 

 
,)( 321 cpbpapRPP ++=θ
 (23)  

,or wet)(dry  / and  of functions are and,,where 22
SP VVcba θ are ,, and 321 pandpp  

.or  ,,,,, of functions μσρ fVV SP   The only differences among the equations are the 
parameters we wish to compute and the values needed to compute the constants a, b and 
c.  Table 2 summarizes these various values, where B-A-R stands for the Bortfeld-Aki-
Richards equation, and S-G-F stands for the Smith-Gidlow-Fatti equation. 

Note that the equations in Table 2 have been ranked based on the complexity of what 
we need to know in order to compute the constants, where for the first two equations 
(Wiggins and Shuey) we only need to know the angle of incidence, for the next two 
equations (B-A-R and S-G-F) we need to know angle and the saturated VP/VS ratio, and 
for the generalized f-m-r equation discussed in this section, we need to know angle and 
the saturated and dry VP/VS ratios.  Thus, although the advantage of equation (22) is that 
we can extract the fluid component directly, the disadvantage of this equation is that we 
now need to estimate both 2

dryγ  and 2
satγ in the weighting coefficients.  To determine 2

dryγ , 
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more research needs to be done on rocks that don’t fit the standard Biot-Gassmann 
model, such as shales and fractured carbonates. 

Table 2.  The parameters needed to estimate the various terms in the 3-term linearized AVO 
expressions considered in this paper. 

 

 
Appendix C explains the mathematics involved in actually extracting the three 
parameters from a seismic gather using the least-squares approach.  Let us now look at 
model and real data examples of the implementation of equation (22). 

MODEL EXAMPLE 
 A model was next created consisting of two sands, both of which had the same 

physical parameters except for fluid content.    The top sand was modeled as water-wet, 
with Kfl = 1.0, and the second sand was modeled as a gas sand with Kfl = 0.1.  For each 
sand Kdry = 3 MPa and μ = 3 MPa, which meant that Kdry/μ = 1.0 in both sands. The 
mineral bulk modulus, Km, of each sand was set to a value of 40 MPa, the generally 
accepted value for sandstone.  In the wet sand, the density was set to 2.0 g/cc and in the 
second sand to 1.8 g/cc.   Using equations (11) through (16), the velocities of the two 
sands could then be computed.  The overlying wet sand velocities were VP = 2259 m/s 
and VS = 1225 m/s.  The underlying gas sand velocities were VP = 1977 m/s and VS = 
1291 m/s.  As expected by Biot-Gassmann theory, the P-wave velocity drops and the S-
wave velocity increases across the boundary.  Utilizing equations (2) and (22) we can 
now compute the AVO curves at the elastic boundary interface for the Bortfeld-Aki-
Richards and f-m-r approaches, respectively.  These curves are shown in Figure 5. 
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FIG. 5: The fit between curves derived from equations (2) and (21), where we modeled a wet 
sand over a gas sand for which Kfluid drops from 1.0 to 0.1 and (K/μ)dry = 1 in both sands. 

Notice that although the two curves are not exact, they are very close.  Thus, we can 
feel confident that if whether we extract the terms using the f-m-r method of one of the 
standard Aki-Richards reformulations, the reconstructed amplitudes will match our 
seismic observations. 

In computing the curves in Figure 5 there is one very important point that should be 
made (and can serve at a large source of error if not observed).   The term 2

satγ  that 
appears in both equations (2) and (22) must be computed differently for each equation.  
That is, in equation (2) 2

satγ can be computed using its normal definition of (VP/VS)2
sat, 

where VP and VS are the average values of the velocities across the boundaries.  However, 
in equation (22) the terms 2

satγ and 2
dryγ must be re-parameterized using the coefficients f, 

Kdry and μ, which are the averaged fluid term, dry rock bulk modulu and shear modulus 
across the boundary.  Utilizing equation (16) through (19), the new expressions are 
written 

 3
42 +=

μ
γ dry

dry

K

, (24) 
and 
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 3
42 ++=

μμ
γ dry

sat

Kf
. (25) 

Since Kdry and μ don’t change between layers, we can re-write equation (25) as 

 
22
drysat

f γ
μ

γ +=
, (26) 

which is identical to a formulation we derived earlier after equation (19).  To show how 
crucial this step is, if we use the velocity averages we get a value of 2

satγ =2.835 for 
example shown in Figure (5), but if we use elastic parameter averages, we get a value of 

2
satγ =2.873. 

REAL DATA EXAMPLE 
Let us finish by looking at an actual example of the f-m-r approach encompassed in 

equation (21) using a shallow gas sand example from Alberta.   Figure 6 is a display of a 
seismic stack which exhibits a “bright-spot” anomaly and structural high at 630 ms in the 
centre of the line.  A successful gas well was drilled at CDP 330 on the line, and the sonic 
log from this gas well has been splice into the section.  Notice the low velocity associated 
with the gas sand. 

It is well known that neither the structural high nor the “bright-spot” shown on the 
section in Figure 6 is unambiguous when it comes to predicting gas sands.  In fact, 
similar anomalies encountered on lines close the one shown here have false “bright-
spots” caused by hard carbonate streaks and coals which lead to the drilling of 
unsuccessful wells.  However, the use of the AVO method will help us to more 
accurately predict the presence of gas (although the AVO method is not totally 
unambiguous, and is insensitive to the actual hydrocarbon percentage in the reservoir).   

 

FIG.  6.  The stack of line from Alberta showing a shallow “bright-spot” anomaly at 630 ms which 
is due to a gas sand. 
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Figure 7 shows some of the gathers from the line shown in Figure 6.  Note that the gas 
sand zone has a pronounced AVO increase with offset, usually indicative of a Class 3 
anomaly (in which the anomalous sand is of lower acoustic impedance than the 
surrounding sediments). 

 

FIG. 7.  The input gathers used to extract f-m-r parameters. 

There are many approaches to interpreting the AVO anomaly shown on the gathers of 
Figure 7, such as intercept/gradient analysis, P and S-impedance inversion, and so on.  
All will do a reasonable job of delineating the gas sand.  However, let us now apply the f-
m-r analysis to this line. 

In our analysis, we used a time-varying 2
satγ that was derived from the measured sonic 

log values and the S-wave values derived from this log using the mudrock equation VP 
=1.16VS +1360 m/s, and a constant 2

dryγ value of 2.333. Figure 8 shows the extracted Δf/f 
section, where red indicates a negative change and blue a positive change.  On the Δf/f 
section, notice the decrease in the fluid term as the gas sand is encountered and the 
increase as the underlying shale is encountered.  Both of these observations make 
physical sense, since the gas sand should show a drop in its fluid effect as it is 
encountered on the section.  Also, note how well the gas sand is delineated, giving a clear 
indication of both its lateral and vertical extent. 
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FIG.  8.  The Δf/f  fluid modulus extraction for the data shown in Figures 6 and 7.   

Next, Figure 9 shows the extractedΔμ/μ rigidity section, where red again indicates a 
negative change and blue a positive change.   

 

FIG.  9.  The Δμ/μ rigidity modulus extraction for the data shown in Figures 6 and 7.   

On the section shown in Figure 9, notice the increase in the rigidity as the gas sand is 
encountered and the decrease as the underlying shale is encountered.  Again, both of 
these observations make physical sense, since the rigidity term should be an indicator of 
the sandstone matrix, which is greater than the rigidity of the surrounding shales. 

Thus, both the fluid and rigidity terms have proven to be excellent indicators of the 
makeup of the reservoir which has been delineated by this line.  On the other hand, the 
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Δρ/ρ section which was extracted on this line was felt to be not very meaningful, because 
of the very short offsets, which limited the angular aperture to less than 30 degrees.  On 
datasets in which we have an angular aperture out to 45 degrees or more, it is felt that the 
density section would be more reliable. 

CONCLUSIONS 
In this study, we combined the technique of amplitude variations with offset (AVO) 

analysis with the theory of poroelasticity to derive a linearized AVO approximation that 
provides the basis for the estimation of fluid, rigidity and density parameters from the 
weighted stacking of pre-stack seismic amplitudes.  We showed that, by using the 
poroelasticity formulation discussed by Russell et al. (2003) and developed initially by 
Biot (1941) and Gassmann (1951), the proposed method is a generalization of the two 
AVO approximations introduced by Gray et al. (1999). 

To fill in the background for our new method, we first presented an extensive review 
of linearized AVO theory, discussing the various re-parameterizations of the Bortfeld-
Aki-Richards equation.  We then discussed poroelasticity theory and followed this with 
the derivation of the fluid-mu-rho (f-m-r) formulation.  The key parameter that was 
introduced into the AVO weighting coefficients was 2

dryγ , the square of the dry rock VP to 
VS ratio.  It was shown that the λ−μ−ρ formulation proposed by Gray et al. (1999) 
corresponded to 2

dryγ = 4/3, and the Κ−μ−ρ formulation proposed by Gray et al. (1999) 
corresponded to 2

dryγ = 2.0.  However, a more realistic value for sandstone reservoirs is 
given by 2

dryγ = 2.0. 

We then applied our method to both model and real datasets.  In our model study, we 
modelled a wet sand over a gas sand, and showed that we could accurately model the 
AVO effect using both the Bortfeld-Aki-Richards equation and the f-m-r equation.  
Finally, we applied the method to a real data example over a known gas sand. By 
extracting the fluid and rigidity components for this dataset, we were able to delineate the 
extent of the gas sand both spatially and temporally from an analysis of both sections. 

It should be pointed out that a disadvantage of this approach is that we now need to 
estimate both 2

dryγ  and 2
satγ in the weighting coefficients.  To determine 2

dryγ , more 
research need to be done on rocks that don’t fit the standard Biot-Gassmann model, such 
as shales and fractured carbonates. 
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APPENDIX A 

Derivation of Shuey’s Equation 
Shuey (1885) started with the Wiggins et al. (1983) rearrangement of the Aki-Richards 

equation, given by 

 
θθθθ 222 sintansin)( CBARPP ++=

, (A1) 
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then sought to re-parameterize this equation as a function of VP, σ (Poisson’s ratio) and ρ, 
rather than VP, VS, and ρ.  Notice that the terms A and C are independent of VS, so will 
remain unchanged in the re-parameterization.  Thus, we only need to work with the B, or 
gradient, term. 

To transform to the new set of parameters, Shuey used a differential form that relates 
VS to VP and σ, and can be written:  
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First, we recall that, by definition, s is given by: 
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The various equivalent relationships given in equation (A4) will come in handy when 
we compute the differentials in equation (A2). 

Next, we note that if Δσ = 0, we can rewrite equation (A2) as 
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That is, if there is no change in the Poisson’s ratio, there is no change in the VP/VS 

ratio.  However, if there is a change in Poisson’s ratio between layers, as is normal, we 
can write for the second term in equation (A2): 
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Substituting equations (A5) and (A6) into equation (A2) and dividing both sides through 
by VS, we get: 
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where
2
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S
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=γ .   Substituting equation (A7) back into the gradient term B in 

equation (A1), we get 
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To complete the derivation, we still need to re-express the velocity ratio in terms of VP 
and σ.  This is done in the following way, using equation (A4): 
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where .
2

/
 

A
VV

D pPΔ
=   This is the expression for B found in Shuey (1985). 
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APPENDIX B 

Derivation of the f-m-r equation 

We start by re-writing equation (2) with the common denominator ρVP
2: 
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Keep in mind that the VP and VS values are for the saturated rock. Next, for 

convenience we will re-write equation (12), which was given as 
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Applying equation (B3) to equation (B2) gives 
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Equation (B5) can then be substituted into equation (B1) to give 
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which can be re-arranged to give 
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To find the dependence on μ, note that equation (B2) can also be written 
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The chain rule for Δf(VP,μ,ρ) can then be written 
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Applying equation (B9) to equation (B8) gives 
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Re-arranging equation (B10) gives 
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Let us now evaluate the second term in the numerator on the right hand side of 
equation (B7) after substituting equation (B11).  This gives 
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Substituting equation (B12) into equation (B7) we note that several terms cancel, 
giving:  
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Next, we can simplify equation (A13) by dividing through by ρVP
2 to get 
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where we have also re-arranged the terms.  Equation (B14) is close to our final form, but 
we would like to eliminate the ρ 2

PV  term and end up with the terms μμ / and / ΔΔ ff . 

To do this for the first term on the right hand side of equation (B14), note that we can 
write 
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where we have made use of the γ notation introduced earlier.   This implies that 
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For the second term in equation (B14), note that 

 
2

2

2

2

2
1

satsatP

S

P

S

P V
V

V
V

V γρ
ρ

ρ
μ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

, (B17) 

or 
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  Substituting equations (B16) and (B18) into equation (B14) leads to the final 

expression: 
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APPENDIX C 

Three Parameter AVO Parameter Extraction 
It should be pointed out that all the three term AVO expressions that we have written 

in this paper can be expressed by the general equation 
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which can be written in matrix form as 
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or, more succinctly, as 

 R = MP. (C3) 
This can be solved using the least-squares inverse given by: 
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where λ is a pre-whitening term and
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