Ray reflectivity

Ray-reflectivity method part 1: Theory for the P- S, case

P.F. Daley

ABSTRACT

Replacing the reflection and transmission coefficients at a solid-solid interface by thin
layered transition zone analogues is considered. These thin layered zones are often
associated with hydrocarbon deposits in sedimentary strata. This is done within the
context of zero order asymptotic ray theory (ART) using the stationary phase method,
which essentialy produces the same results. The frequency dependent reflectivities and
transmittivities that replace the reflection and transmission coefficients are derived using
propagator matrix methods, the basis for the classica reflectivity method and
incorporated into the zero order ART solution for a plane layered structure composed of
thick layers interspersed with thin layered transition zones. ART is used in the thick
layers to introduce geometrical spreading.

INTRODUCTION

In an earlier series of papers the hybrid ray-reflectivity method was presented for SH
wave propagation in a halfspace composed of thick layers separated by thin layered or
transition zones. (Daley and Hron, 1992, 1990 and 1982). A schematic of this for the P-
Sy case is shown in Figure 1. The motivation for this manner of presentation was to
communicate the theory without the added complexity introduced by considering the P-
Sy case for a similar problem type. A relatively inaccessible booklet in Russian by
Ratnikova (1976) deals with this problem but has several theoretical problems combined
with an inordinate number of typographic errors. There are a significant number of
references regarding the reflectivity method in Aki and Richards (1980) and
Brekhovskikh (1980) apart from the tutorial on the subject by Muller (1986) and the
comprehensive list of references contained there. Two of the more notable of these are
Fertig and Muller (1978) and Fuchs and Muller (1971).

Combining asymptotic ray theory (ART) and aspects of the reflectivity method results
in a hybrid method. This allows for the seismic modelling of many situations that are
commonly found in hydrocarbon exploration situations. These include two layers whose
thickness is large when compared to predominant wavelength, related to the predominant
frequency of thee seismic wavelet, separated by one or more layers that can be classified
as thin relative to the predominant wavelength. Layers on the order of half a wavelength
or less will act as a loose definition of those layers classified as “thin”. This hybrid
method uses standard ART when dealing with ray propagation in the thick layers and the
thin layered or transition zones separating two thick layers will be assumed to be a
pseudo-boundary at which reflection and transmission coefficient analogues are
introduced. These analogues termed reflectivities and transmittivities are obtained using
propagator matrix theory and are developed in alater section. The early work in this area
was by Thomson (1950), Haskell (1953), Ewing et a. (1957) and Dunkin (1965) and
especially the text by Kennett (1983).
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The use of the stationary phase method rather than zero order asymptotic ray theory in
the solution method is done to retain a consistent notation and methodology with that
used in an earlier series of papers on the reflectivity method (Muller, 1986). The notation
used in the theoretical development presented here for reflectivity theory related topics
are similar to those used in paper by Fuchs (1968) (marginally inaccessible as it is in
German) and Fuchs (1970) A similar manner of notation is employed for the reflectivity
and transmittivity portion of the theory.

STATIONARY PHASE APPROXIMATION FOR REFLECTED AND
TRANSMITTED WAVESIN A PLANE LAYERED MEDIUM

The coupled compressional — shear, P-S,, wave propagation in an isotropic

inhomogeneous half plane consisting of n—1 thick layers separated by thin layered or
transition zones overlying a half space will be considered. The two halfspaces are
denoted as 0 and n and the vertical z axis is chosen to be positive downwards with z=0
corresponding to the top of the thin layered zone. The intervening thin layers between the
upper and lower half spaces are sequentially designated 1 to n-1 (Figure 2).

A point source is assumed located at z=-H and only waves polarized in the plane of
incidence (P and S, waves) will be considered. In cylindrical coordinates (—eo < z< oo,

0<r<e, 0<0<2r) the radid, r, and horizontal, z, components of the displacement
vector, u,, and w,, in each layer or half space, can be expressed in terms of the two

potentials, ¢, and y/, as

U, =0 Wy 90 Ve Vi (m_01...n). (1)
or 0z 0z or r

Since the media are homogeneous, there are no lateral inhomogeneities and hence no
6 dependence. The potentials in equation (1) must satisfy the conditions

L9, 9%,
Vg —a? afi —0, vy, Yo g az —0, (m=01...n) (2

where ¢, and f, are the compressiona (P) and shear (S,) wave velocities,

respectively, in the m" layer. After removing the time dependence of equations (2) by
applying a Fourier time transform the following result

(1)2 0)2
Vit 0 =0, Vzl//m—%+ﬁl//m=0, (m=01...,n). 3)

If the point source at z=—H is assumed to be a source of P waves only, the following
time transformed quantities must be satisfied
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2 o
Vi g =F () 0 5 (24 ). @

The superscript on ¢ denotes the incident wave front and F (@) is the Fourier time
transform of the source wavelet f (t).

The solution of (4) is given (Sommerfeld, 1949 and Aki and Richards, 1980) as

F(o) exlg(—inoR) =-iF (a))TJo(kr)exp(—i770|z+ H|) kdk

0 0

% (r,2,0)=

()

where
R:[r2+(z+ H )2}1/2,

w — circular frequency ,

J, (kr)—Bessel function of order p,

(k.- pusc
gm: 12 '
, B,>C

—i (k> -k )
The quantity c is the horizontal velocity or equivalently, the inverse of the horizontal
component of the slowness vector. Thesignsof 77, and & for . and ., greater than c

is chosen such that any exponential terms involving them vanish asz — too, satisfying
physical radiation conditions.

Thetotal compressional potential in the upper (0) half space has the form

=00 +g;  forz<0 (6)

where

6; (1, 2.0) =—F () [ Rup (@,K) 3, (k) exp i, (2- H)] k:k 2<0 (7)

is the reflected potential and F?PP (w,k) is the frequency dependent reflection coefficient

or reflectivity at the quasi-interface. The tilde above the reflection coefficient and those
which will follow in this report are to indicate that these are potential reflection and
transmission coefficients as opposed to particle displacement coefficients. For the

CREWES Research Report — Volume 18 (2006) 3



Daley

definition of the displacement in terms of potentials used here the difference is just the
ratio of reflected/transmitted to incident velocities. Other characterizations of particle
displacements in terms of potentials generally take on more complex forms.

The reflected shear potential resulting from a compressional source at z=—-H can
analogously be written as

V5 (1,2.0) =F (@) [ R (06) 3, () exp[ (52 mH) |5

0

,2<0 (8)

where again R. (@,k) isthe reflection coefficient.

Extending the method used above, it is possible to write expressions for the
transmitted compressional and shear potentialsin the lower (n) half space.

0, (1,2.0) =—iF () [T (01K) 3, (k) exp[-i (v, (2-2,) +voH)[XX 252, (9)
v (1,2,0) = F (@) [Toa (@,K) 3, () e[ -1 (&, (2= 2,3+ 7H) k;"‘ 257 ,(10)

The expressions Ty, (@,k) and T.s(@,k) are the quasi-transmission coefficients due

to a plane P wave incident on the 0" interface. These coefficients, together with
R (@,k) and Reg (@, k) will be derived in alater section.

There are a number of difficulties associated with the numerical evauation of the
integrals involved in the equations for the reflected and transmitted potentials. As an

example, for the reflected PP potential, ¢, , in equation (7), poles are encountered in the
complex reflection coefficient R, (w,k) for the wave numbers in the range
k>w/o, = k,, - These poles correspond to waves guided within the thin layered zone and
propagating with a horizontal phase velocityc< ¢, . They correspond to Stonely waves

guided at a first-order discontinuity between two elastic media. Their amplitudes decay
with distance from the thin layered zone.

This difficulty may be overcome, assuming that the distance H from the source to the
top of the thin layered zone is large when compared to the wavelength associated with the
predominant frequency of the source wavelet. Fork >k, , v, in equation (7) will become
negative and purely imaginary so that the exponential term (in part) is real and negative.
Thus the integrand can be kept arbitrarily small fork>k, , if H (@ large — high

frequency limit) is chosen sufficiently large. As a consequence, the contributions to the
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integral may be neglected for wave numbersk >k, and the upper limit of integration
replaced by k, = o/ o, . With this assumption in place, equation (7) becomes®

Kag
. : ~ : k dk
¢ (1.2.0)==iF (@) | Ry (@,k) I, (kr)exp[ir, (z—H)] . <0. (11)
0 0
The singularity at k =k, may be avoided through the change of variable
k=k, siny (12)

which isthe relation between the wave number k and the angle of P wave incidence at the
top of the thin layered zone. With this substitution, equation becomes

/2
& (r,z,0)=—k, F (o) J. Rpp(a),k)Jo((k%sin;/)r) X
0 : (13)
exp| ik, cosy(z—H)]sinydy, z<0
If the argument kr (rk, siny) is assumed large, the Bessel function J,(kr) can be

approximated by its asymptotic formula for large argument (high frequency limit) given
by

3, (kr) :ﬁ{exp[i (ke - z/4) ]+ exp[ =i (kr = 7/4) ]} . (14)

Asaresult, equation (13) may be written as

¢a<r,z,w):—iF<w>( a2 ]

2rr

{Ij} R.. (@,K) exp[—ik% (cosy(H —2z)+rsin ;/)]Jsin;/d;ur (15)

ﬂjj Rep (@,K) exp[—ik% (cosy(H —2z)-rsin 7)]\/%‘17}

One of the most common techniques used in the evaluation of integrals of the type in
equation (15) is by using the method of stationary phase. To use this method to obtain an
approximation to the integrals in (15), it will be assumed that the reflection coefficient

Reoro (@,K) varies slowly in amplitude but more importantly, in phase. Neglecting the

! At this point it would be convenient to transform from an integral in J, (k) to onein H(() ) (k) . However

to maintain a consistent notation with the early papers related to the reflectivity method, the J, («) will be
retained.
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phase of IQPOPO (w,k) in the stationary phase approximation has the effect of neglecting

other possible arrivals associated with points of critical refraction (head waves), which
may lie within the modified limits of integration.

Points of stationary phase occur at those locations on the rea axis where the
exponential terms

L(¥).=—(H-z)cosyxrsiny ,z<0 (16)

vary most slowly, i.e., where the first derivative with respect to y isequal to zero

L'(7), =(H-2z)sinyzrcosy=0 ,z<0. (17)

It can be readily seen that the first integral in equation (15) has a stationary point at
Y= tan‘l[r/ (H- z)] and that the second integral does not have a stationary point within

the limits of integration; assumingH > z. Therefore, the contribution of the second
integral, for largek, r , may be neglected.

The general formula for the approximation of integrals using the stationary phase
method is

1/2
Yolf ; i0 O+i£ n(L"(7o
lim, J’ P(y)ém(y)dyz(ﬁj e/L(7) 4sg(|.(7))+o(%)_ (18)
0

e L (¥
In the case being considered being considered here,
L(r)=L(7)
P(7)= R (1)\SNY, L=k, =00, (19)

L"(y)=L_(7)=(H +|Z)cosy+rsiny>0
The final form of the stationary phase approximation to equation (15) is given by

¢;(r,z,w)z%ﬁpopo(azn)é%”ﬂ 2<0 (20)

~—

Witthz[(H +|z|)2+r2T/2.

It is possible, based on the derivation presented above, to evaluate the remaining
integral expressions for the potentials of the reflected S, wave and the transmitted P and

S, wavesin an analogous manner, the results of which are as follows
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F (o) - (KH kg
(r,z,m)=——= ,7,)exp| —i | —=— -+ 21
W, ( ) R, Reoso (@.75) pl: (COS}/O cos¢, (21)
where
sing, =23% . peing defined by
aO
H tany,+|Ztan{, =r , with
__H
cosy, cos¢,
§ F ()= [ k,H Kk, (2-2.,)
rz,w)=——="Top, (@7 )eXp| —1| —+— 2>z, (22
¢n( 0)) R PP(a) 70) p{ (COSQ/O cosy, z., (22
where
siny, = %37, ¥, being determined from
aO

H tany, +|z—z,|tany, =r , and

R - H +|z—zn_1|.
cosy, COsy,

- . k H k;,(z-z_
v, (r.zo)= Féw)TPn&(w,yo)exp{—i(cg‘sz + ﬂnc(;sgzn—)ll ,Z>2Z ., (23)

with
sing, =m , ¥, obtained from

aO
Htany, +|z—z,[tan{, =T , and

R =N +|Z_Z“‘1|
* cosy, cosl,

The vertical and horizontal components of displacement, wi, (r,z,®) and ug, (r,z o)
of the reflected and transmitted waves can be calculated using the definitions of the
potentials in equation (1) in equations (20)-(23). Thus, in the upper half space the
reflected particle displacements may be written as
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Upopo = —iK, SINY, &7 (24)
Wooeo =K, COSY, &5 (25)
Uposo = —1K, €OS{, 1, (26)
Wooso = K5, COSCo 45 (27)

and in the lower half space the transmitted particle displacements have the form

Upopn =ik, SINY, &, (28)
Waop, = —ik, COS7, ¢, (29)
Upogy =1Ks SINC, W/ (30)
Wooe, = —iK, SNC, W, . (31)

The expressions obtained above discussion are very similar in form to those obtained
using asymptotic ray theory for two half spaces in welded contact. The factor 1/R

characterizes the geometrical spreading of the wave front and the exponential term
defines the phase shift of the wave. The reflection and transmission coefficients,
however, of a plane wave impinging on a first order interface are not frequency
dependent while those in formulae (20)-(23) are dependent on frequency.

As the phase of the reflection and transmission coefficients was not taken into account
in the stationary phase approximations, the integrals (20)-(23) are inexact everywhere the
arguments of the coefficients vary rapidly with angle. The dsationary phase
approximation can then be assumed to be valid for values of an angle, ¥, where the

following conditions hold

d(argR
w <<r$ (32)
dy dy
and
d(argT
M << ri' (33)
dy dy

The inclusion of the phase of the reflection and transmission coefficients in the
exponent used to calculate the points of stationary phase would be much more accurate.
However, this further refinement would require the numerical calculation of the second
derivative of the reflection and transmission coefficients which presents a computational
problem whose solution, in computer time, approaches that of direct numerical
differentiation.
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As a fina topic in this section the relationship between potential and particle
displacement reflection and transmission coefficients will briefly be considered. Consider
the PS displacement vector which may be written as

uPoSO = (UPOS) ’WPOSU ) (34)

so that the argument of this complex vector has the form

‘uposo‘ =4y Urs, 'ULOSJ = kﬁol/jg (35)

where the superscript "*" indicates complex conjugate. The far field approximation to
the incident P wave has the form

Uo = (U, W) = =ik, (sinyo ¢; ,C0SY, ¢o+) (36)

that has the argument

|Uo|=f\/Uo'UZ = k%%r- (37)

At any point on the interface at z=H =0 the ratio of the reflected PS wave to the
incident is just the particle displacement reflectivity, R.qs, (@ k) yielding

Rposo(w’k) :%ﬁposo(w'k)- (38)

Thus for the definition of the displacement in term of the potentials used here the
particle displacement reflectivities and transmittivities are those derived using potentials
scaled by a factor of the ratio of the velocity associated with the reflected or transmitted
wave type to the incident wave type.

ANALOGUES OF REFLECTION AND TRANSMISSION COEFFICIENTS

A thin layered or transition zone composed of n—1 homogeneous isotropic layers will
be assumed to lie between two homogeneous isotropic halfspaces which will be

designated as O(upper) and n(lower). The vertica axis will be chosen positive

downwards with z=0 coinciding with the top of the thin layered zone with this interface
denoted as 0. The interfaces at layer boundaries between the two half spaces are
numbered sequentially from 1 to n—1 with the interface n defining the interface with the
bottommost thin layer and the underlying halfspace (Figure 3).

The n+1 thin layers and half spaces will be characterized by their P and S,
velocities, ¢, and S, as well as their densities, p,, (0<m<n). The n-1 thin layers
have thicknesses of d.,; z, and z, , are the depths of the lower and upper interfaces of
the m™ layer. This has
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d,=2,-2,,>0 (1<m<n-1) (39)

The compressional and shear wave velocities, ¢, and £, may be expressed in terms of
Lame's coefficients, A, and g, and the densities, p,, in the standard manner

o = Pt 2l (40)
P

pi=tn (41)
Pnm

With the particle displacement vector in the m" layer defined as u,, = (u,,, W)

09, JVy,
=_fm__—7m 42
to oX 0z (42)
w, =%, W (43)
0z  oXx

Utilizing these potentials, the equations of motion in each layer can be decomposed into
the two following wave equations

2
v L0 g

n "7 o (P wave propagation) (44)
1 97 .
Vi, - Y2 al?m =0 (S, wave propagation) (45)

Defining the double Fourier transform and its inverse as

f(kzw)= T T f (x,2t) exp[ —i (@t +kx) ] dxdt (46)

f(x,z,t):ﬁﬁ f (k,z,) exp[ i (@t +kx) | dkdw (47)

the t and x dependence is removed from equations (44) and (45) so that the transformed
solutionsinthe m" (0<m<n) layer or half space may be written as
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O = AneXD| i1, (2, — Z,4) |+ Bexp —i11, (2, — Z,4) | = 00 + & (48)

T =Coexp[i&, (2, = 2,4) |+ Dpexp[ =&, (2, = 2oa) |=¥Wm+¥s  (49)

2 1/2
(”—z—sz @ >k
am am
Mo = , 2 (50)
—i[w—z—kzj 2 <k
am am
2 1/2
(%—kZJ ﬂﬂzk
=1 e (51)
—i(%—kz} 2k

The choice of signs for w/e,, and w/f,, less than k was such that the physica
condition is that the potentials vanish as z— 2. The potentials ¢, and ;. refer to the
upward propagating waves while ¢, and w, represent downward propagating waves.
The quantities A,, B,,, C, and D,, are complex valued functions of @and k, and are

also dependent on the layer’s parameters «,,, B, p., ad d . These coefficients may be

computed from the boundary conditions of continuity of shear and normal stress and the
vertical and horizontal components of particle displacement.

Following the standard propagator matrix method described in Aki and Richards
(1980) or Brekhovskikh (1980) and the numerous references contained in that work, two
vectors can be defined, a potential vector

T

®(2)=[ 4, (2). ¥ (2), 6:(2), ¥ (2)] (52)

and a stress-strain vector

$.(2)=[0,(2). W, (2).5,,(2). 5, (2)] (53)
forz ,<z<z,.

Here 6, (z) and G,, (z) are the transformed components of normal and shear

stress, obtained by applying the transform defined in equation (46), which will be used in

determining the boundary conditions. At every point in the m™" layer the two vectors
defined above arerelated as
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S (2)=To 8 (2) (54)
or solving for ¢ (z)
n(2) =Ty S (2)- (55)
Thematrix T, anditsinverse T,! have the following definition
ik —ié&, ik -,
. ik E ik
T - i, | i, | (56)

:umg m _Zlum kgm :umg m Zzum kgm
_zzum knm _ﬂmg m 2lum knm _lumf m

—i Zlum kfmﬂm Ilumg mgm _gmnm - ké:m
T ﬂri |,um€ I —i zﬂmkgmn m _knm én m

= _ _ (57)
2u. & me@ | =120 KE il S i, KE,
[ ,Umf mnm —i 2:um kfmnm kﬂm fmnm
where ¢, isgiven by
a)2
0, =2k*— F (58)

The vectors @, (z,) and @, (z,,) a the lower and upper boundaries of the m™ layer
arerelated as

(I)m(zm) = Em(bm(zm—l) ) (59)
The diagonal matrix E  hastheform

gm0 0 0
0 €™ 0 0
E = _ 60
' 0 0 e™ 0 (%0)
0 0 0 gl
The boundary conditions for the continuity of displacement and stress at the n
interfaces implies continuity of the vectors S, at these interfaces such that
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$i(2)=Spa(z,)  (M=01..n-1). (61)

It shall be assumed that the only energy incident on the thin layered zoneisdueto a P
wave incident in the upper half space (¢; #0) . Consequently,

¢ =y, =0 (62)
and
w; =0. (63)

The treatments of the three other possible type of incidence at the quasi-interface
closely resemble that of P wave incidence from the upper half space and will not be
considered here.

If the amplitude of the incident P wave front is set equal to unity, the amplitudes of
the reflected P and S, waves in the upper half space at z=0 are, from equations (48)
and (49)

Ay = Rogeo (K, @) (64)
Co = Rooso (K, @) (65)
and the corresponding transmitted P and S, wavesin the lower halfspaceat z=z, are
B, =Troen (K, @) (66)
D, =Tooe (K, @). (67)

The coefficients R..p, and R.,q, are the reflectivities of the thin layer zone due to an

incident Pwave in the upper half space while T, and T,,s, are the corresponding

transmittivities due the same incident wave type. These reflectivities and transmittivities
are analogous to reflection and transmission coefficients at a sharp boundary where the
elastic parameters change discontinuoudly. It is to be remembered that the assumption in
all of thisisthat the individual layers within these zones are small when compared to the
predominant wavelength associated with the source pulse. A less rigid assumption is that
the total thickness of the thin layered zone should be less than, or of the order of, the
predominant wavelength.

Using these coefficients the potential vectors @,(0) and @, (z,) at the upper and
lower edges of the transition zone may be written as
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D,(0)= I:FN\)POPO’ ﬁposo’ 1, O:IT (68)

cI)n (Zn) = I:O' O’-l:POPn ! -I:POS”I ]T ) (69)

It will next be shown that these two vectors may be related by elementary matrix
operations.

From equation (16) the potential vector ®,(0) at the upper boundary of the transition
zone isrelated to the stress-strain vector S;(0) by
$(0) =T, @, (0) (70)
As S,(0) iscontinuous acrosstheinterfaceat z=0, S (0)=§,(0), so that
S(0)=T,®,(0) (71)
Inlayer 1, S isrelated to @, yielding
D, (O) = Tlil S (0) = -|-171 To@, (O) (72)

with the superscript "—1" indicating the inverse. Taking @, to the lower boundary of the
first layer has

®,(z)=E,®,(0)=E, T, T,®@,(0). (73)
From thisthe stress-strain vector at z=z is
S(2)=[TET" |To®.(0). (74)
The quantity

G,=T,ET* (75)

is propagator matrix of the first layer (Aki and Richards, 1980) so that (75) may be
written as

81(21)=G1T0CI)0(0) (76)

Extending this technique, the stress-strain vector S(z) at the lower edge of the m™"
layer isrelated to the potential @, (0) through the relation

Sm(zm):[Gme—le—Z'”GSGZGl]TOq)O(O) (1SI Sn_l) (77)

where the propagator matrix in some arbitrary j™ layer is defined as
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G, :TiEJTJ'_l (78)
The elements of the 4x4 propagator matrix G, are explicitly given as:
On = O =—¥nCOSP, + (7, +1)cosQ,
O = G =—¥nCOSR, + (7, +1)cosQ,
g2 =g¥=i [((ym +1)sink, )/, +7.15 sian]
On = 92 =i[ (cosQ, —cosR, ) /( pnce) ]
gy =(sinP,/r, +1, sian)/(pmca))
g,il:g;‘fz—i[ymramsinPm+(ym+1)sian/rﬂmJ (79)
O = O = (7n+1)coSR, -7, c05Q,
o7 =-|(r,, SnR,~snQ, /1, }/(p.co) |
m = O =10nC0%, (¥ +1)(cOSP, —cosQ,)

97 = pmca)[((ym +1)2/ram)sin P+ ;/fnrﬂm sian}

Gi' ==puC0| 721, SR+ (7 +2)° 1y, JsinQ, |

c= % - % (80)
P, =kr, d, (81)
Q, =k, d, (82)
—24?
In = C'zgm ==2fp° (83)
2 1/2
G e
=1 (84)
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L;_; - J c2 ﬁm
ry, = (85)

—i [1—;—9 c<pf,

Thus at the interface defined by the lower boundary of the thin layered zone and the
upper boundary of the lower half space the following holds

Sn (Zn—l) = Sn—l(zn—l) = Gn—lGn—Z ) "GzelTo q)o (0) (86)

By transforming to the potential vector @, (z,_,) the following desired vector-matrix
relationship with @, (0) is obtained

ch(Zn—l)z M CDO(O) (87)
with

M = Tn_lGn—lGn—Z'“GZGlTO. (88)
The elements of the 4x4 matrix M may be computed through a sequence of matrix

multiplications. Substituting the expressions for ®,(0) and ®,(z,,) from equations

(68) and (69) into (87) results in the following relationship between Rogpy, Rooss» Tropn

and T, i obtained which allows for these quantities to be computed as

0 |?Popo
B O =M RPOSO
~POPn 1
POSh 0 (89)

Writing the 4x4 matrix in terms of the 2x2 sub-matrices M ; as

M :|:Mll M12:|
IV|21 M22 (90)

resultsin the following two equations for the unknown reflectivities and transmittivities

H= Mﬂ[%"opo}+Ml{l}
0 Reoso 0 (91)

and
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J . 1
|:-I:P0Pn:| -M Z{Fjpopo}_i_ M 22{ }
Toos Reoso 0 . (92
The above two equations yield
= 1
|
Reoso 0 (93)
and
J 1
[_Izpopn} = (_M aM Ill M, +M 22) {0}
POSH , (94)

Defining the inverse of the sub-matrix M, in terms of its determinant and transposed
cofactor, indicated by the """ circumflex, resultsin

-1 M 11

Mll BTYIVEEY
det(M,,) (95)

The transposed cofactor is defined in terms of individua components of the matrix
M, isof theform

M _ { m,, _mlz}
11—
—m,, m, (96)
with the determinant given in standard form as
12
det ( M 11) = m|12 =mym,, —m,m,, (97)
In what follows the notation abbreviation
ij
mi, = m,m;, —m,m, (98)

will be used for the sub-determinant of order 2 ( second order minors). With this notation
the reflection coefficients (reflectivities) may be written as

r'112
23
12

IQPOPO T

rdlZ (99)
IiPoso = _rd_g

n112 (100)

and the related transmission coefficients (transmittivities) as
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POPN nElRPOPo +m, Rposo RELL (101)

-rPOSw = m41ﬁPOPO +m, IiPoso My (102)

In asimilar manner to the procedure used above it is possible to compute the reflectivities
and transmittivities for the three other possible cases of incidence at a thin layered
boundary. Without any derivation they may be written as

For S, incidence from the upper (O") layer:

Rsoso = :f%
(103)
2
Rsopo = nnﬂéz
(104)
Tsopn = M SR + Mg, S, + My, (105)
Toom = MuSK +Mp§S +my, (106)
For P incidence from the lower (n") layer:
23
RPnPn = %
2 (107)
Ronen = _ﬁ
n 2
m (108)
anPO = I’rklIiPnPn + M, RPnSn + M, (109)
-|:P081 = m41|-:\>PnPn Ty, F~\>PnSn My (110)
For S, incidence from the lower (n") layer:
L
R, =M (112)
7o
5 ms
Rypy, = ——> (112)
Tom
T, Po = wklliﬁpn + rrEzﬁs& +m, (113)
fsnpo 41R9131 + My, Rsnpn + My, (]_14)
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As mentioned several times in the text of this report, the tildes above the reflectivities
and transmittivities indicate that these coefficients are potential coefficients and not
particle displacement coefficients. If v, is the velocity associated with the incident wave

front type and vi,; isthe velocity of the reflected or transmitted wave front type, then the

particle displacement reflectivities and transmittivities may be written in terms of their
potential counterparts (for the potential definitions of particle displacement used here) as

V, ~
RI RIT = \F;_/T R| RIT (115)

Two simple examples of equation (115) are

Roopo = % |iPOPO = |iPOPO (116)
%
and
Ry =20 Ry = R, (116)
S B, S S

Other examples, where the velocity ratio is not unity, are the displacement reflectivities

and transmittivities, Ry, and T, , which are given in terms of their corresponding

potential counterparts as

a ~
Rsopo = — Rsoro (117)
5
and
TPnSO = &fpnso
n (118)

In a similar manner all of the 16 possible displacement reflectivities and transmittivities
may be ex pressed in terms of the derived quantities, the displacement potential
reflectivities and transmittivities.

CONCLUSIONS

Utilizing what have been presumed to be some of the best qualities of both asymptotic
ray theory and the reflectivity method, a hybrid method has been developed. It is
employed to consider the seismic response from a plane layered isotropic structure
composed of thick layers, where asymptotic ray methods are used, separated by thin
layered zones, where the validity of asymptotic ray theory is questionable and reflectivity
(matrix) methods are used. The fact that the computation time is increased as the
computation of synthetic sections must be done in the frequency domain is somewhat
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compensated for when models with large number of layers are considered as the number
of raysthat are required to be used can be significantly reduced.

This method incorporates the flexibility of asymptotic ray theory, including the ability
to identify individual thick layered arrivals, with accuracy comparable to the reflectivity
method without the need for numerical integration. As the reflectivity method produces
the total wave field response arrival identification is difficult without resorting to
producing travel time tables usually by a two point ray tracing algorithm which is a
significant part of the cost of using the ray reflectivity method.

To adequately indicate the potential of this method separate reports are being prepared
for presenting numerical results.
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Figure 1. Geometry of problem with the reflected and transmitted particle displacements shown
due to the incidence of a P wave from the upper halfspace on the thin layered zone.
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Figure 2. Notation used for the computation of the reflectivitities and transmittivities at a thin
layered zone as a result of P wave incidence from the upper (0) halfspace.
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