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Ray-reflectivity method part 1: Theory for the VP - S case 

P.F. Daley 

ABSTRACT 
Replacing the reflection and transmission coefficients at a solid-solid interface by thin 

layered transition zone analogues is considered. These thin layered zones are often 
associated with hydrocarbon deposits in sedimentary strata. This is done within the 
context of zero order asymptotic ray theory (ART) using the stationary phase method, 
which essentially produces the same results. The frequency dependent reflectivities and 
transmittivities that replace the reflection and transmission coefficients are derived using 
propagator matrix methods, the basis for the classical reflectivity method and 
incorporated into the zero order ART solution for a plane layered structure composed of 
thick layers interspersed with thin layered transition zones. ART is used in the thick 
layers to introduce geometrical spreading.  

INTRODUCTION 
In an earlier series of papers the hybrid ray-reflectivity method was presented for SH 

wave propagation in a halfspace composed of thick layers separated by thin layered or 
transition zones. (Daley and Hron, 1992, 1990 and 1982). A schematic of this for the P-
SV case is shown in Figure 1. The motivation for this manner of presentation was to 
communicate the theory without the added complexity introduced by considering the P-
SV case for a similar problem type. A relatively inaccessible booklet in Russian by 
Ratnikova (1976) deals with this problem but has several theoretical problems combined 
with an inordinate number of typographic errors. There are a significant number of 
references regarding the reflectivity method in Aki and Richards (1980) and 
Brekhovskikh (1980) apart from the tutorial on the subject by Muller (1986) and the 
comprehensive list of references contained there. Two of the more notable of these are 
Fertig and Muller (1978) and Fuchs and Muller (1971).  

Combining asymptotic ray theory (ART) and aspects of the reflectivity method results 
in a hybrid method. This allows for the seismic modelling of many situations that are 
commonly found in hydrocarbon exploration situations. These include two layers whose 
thickness is large when compared to predominant wavelength, related to the predominant 
frequency of thee seismic wavelet, separated by one or more layers that can be classified 
as thin relative to the predominant wavelength. Layers on the order of half a wavelength 
or less will act as a loose definition of those layers classified as “thin”. This hybrid 
method uses standard ART when dealing with ray propagation in the thick layers and the 
thin layered or transition zones separating two thick layers will be assumed to be a 
pseudo-boundary at which reflection and transmission coefficient analogues are 
introduced. These analogues termed reflectivities and transmittivities are obtained using 
propagator matrix theory and are developed in a later section. The early work in this area 
was by Thomson (1950), Haskell (1953), Ewing et al. (1957) and Dunkin (1965) and 
especially the text by Kennett (1983). 
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The use of the stationary phase method rather than zero order asymptotic ray theory in 
the solution method is done to retain a consistent notation and methodology with that 
used in an earlier series of papers on the reflectivity method (Muller, 1986). The notation 
used in the theoretical development presented here for reflectivity theory related topics 
are similar to those used in paper by Fuchs (1968) (marginally inaccessible as it is in 
German) and Fuchs (1970) A similar manner of notation is employed for the reflectivity 
and transmittivity portion of the theory. 

STATIONARY PHASE APPROXIMATION FOR REFLECTED AND 
TRANSMITTED WAVES IN A PLANE LAYERED MEDIUM 

The coupled compressional – shear, VP S− , wave propagation in an isotropic 
inhomogeneous half plane consisting of 1n −  thick layers separated by thin layered or 
transition zones overlying a half space will be considered. The two halfspaces are 
denoted as 0 and n and the vertical z axis is chosen to be positive downwards with 0z =  
corresponding to the top of the thin layered zone. The intervening thin layers between the 
upper and lower half spaces are sequentially designated 1 to n-1 (Figure 2). 

A point source is assumed located at z H= −  and only waves polarized in the plane of 
incidence (P and VS  waves) will be considered. In cylindrical coordinates ( z−∞ < < ∞ , 
0 r≤ < ∞ , 0 2θ π≤ < ) the radial, r, and horizontal, z, components of the displacement 
vector, mu  and mw , in each layer or half space, can be expressed in terms of the two 
potentials, mφ  and mψ , as 

 ( ), , 0,1, ,m m m m m
m mu w m n

r z z r r
φ ψ φ ψ ψ∂ ∂ ∂ ∂= − = + + =
∂ ∂ ∂ ∂

… . (1) 

Since the media are homogeneous, there are no lateral inhomogeneities and hence no 
θ  dependence. The potentials in equation (1) must satisfy the conditions 

 ( )
2 2

2 2 2 2
2 2 20, 0, 0,1, ,m m m

m m m m m n
t r t
φ ψ φφ α ψ β− −∂ ∂∇ − = ∇ − − = =

∂ ∂
…  (2) 

where mα  and mβ  are the compressional (P) and shear ( )VS  wave velocities, 

respectively, in the thm  layer. After removing the time dependence of equations (2) by 
applying a Fourier time transform the following result 

 ( )
2 2

2 2
2 2 20, 0, 0,1, ,m

m m m m
m m

m n
r

ψω ωφ φ ψ ψ
α β

∇ + = ∇ − + = = … . (3) 

If the point source at z H= −  is assumed to be a source of P waves only, the following 
time transformed quantities must be satisfied 
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 ( ) ( ) ( )
2

2 0 0
0 02

0 2
r

F z H
r

δωφ φ ω δ
α π

∇ + = + . (4) 

The superscript on φ  denotes the incident wave front and ( )F ω  is the Fourier time 

transform of the source wavelet ( )f t . 

The solution of (4) is given (Sommerfeld, 1949 and Aki and Richards, 1980) as 

 ( ) ( ) ( ) ( ) ( ) ( )00
0 0 0

00

exp
, , exp

F i R k dkr z iF J kr i z H
R

ω η
φ ω ω η

η

∞−
= = − − +∫  (5) 

where  

( )
1/ 222R r z H⎡ ⎤= + +⎣ ⎦ , 

circular frequencyω − , 

( ) Bessel function of orderpJ kr p− ,

 
( )

( )

1/ 22 2 1/ 22 2
2 2

1/ 22 2

,

,

m

m

m
mm

m

k k c
c

i k k c

α

α

ω ω α
αη

α

⎡ ⎛ ⎞
⎢ − = − ≤⎜ ⎟
⎢− ⎝ ⎠
⎢
− − >⎢⎣

, 

 
( )

( )

1/ 22 2

1/ 22 2

,

,

m

m

m

m

m

k k c

i k k c

β

β

β
ξ

β

⎡ − ≤⎢= ⎢− − >⎢⎣

. 

The quantity c is the horizontal velocity or equivalently, the inverse of the horizontal 
component of the slowness vector. The signs of mη  and mξ  for mα  and mβ  greater than c 
is chosen such that any exponential terms involving them vanish as z → ±∞ , satisfying 
physical radiation conditions. 

The total compressional potential in the upper (0) half space has the form 

 0
0 0 0 for 0zφ φ φ += + <  (6) 

where 

 ( ) ( ) ( ) ( ) ( )0 0 0
00

, , , exp , 0PP
k dkr z iF R k J kr i z H zφ ω ω ω η
η

∞
+ = − − <⎡ ⎤⎣ ⎦∫ �  (7) 

is the reflected potential and ( ),PPR kω�  is the frequency dependent reflection coefficient 
or reflectivity at the quasi-interface. The tilde above the reflection coefficient and those 
which will follow in this report are to indicate that these are potential reflection and 
transmission coefficients as opposed to particle displacement coefficients. For the 
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definition of the displacement in terms of potentials used here the difference is just the 
ratio of reflected/transmitted to incident velocities. Other characterizations of particle 
displacements in terms of potentials generally take on more complex forms. 

The reflected shear potential resulting from a compressional source at z H= −  can 
analogously be written as 

 ( ) ( ) ( ) ( ) ( )0 1 0 0
00

, , , exp , 0PS
k dkr z F R k J kr i z H zψ ω ω ω ξ η
η

∞
+ = − <⎡ ⎤⎣ ⎦∫ �  (8) 

where again ( ),PSR kω�  is the reflection coefficient. 

Extending the method used above, it is possible to write expressions for the 
transmitted compressional and shear potentials in the lower (n) half space. 

 ( ) ( ) ( ) ( ) ( )( )[ ]0 1 0 1
00

, , , exp ,n PP n n n

k dk
r z iF T k J kr i z z H z zφ ω ω ω ν ν

ν

∞
−

− −= − − − + >∫  (9) 

( ) ( ) ( ) ( ) ( )( )1 1 0 1
00

, , , exp ,n PS n n n
k dkr z F T k J kr i z z H z zψ ω ω ω ξ η
η

∞
−

− −⎡ ⎤= − − + >⎣ ⎦∫ (10) 

The expressions ( ),PPT kω�  and ( ),PST kω�  are the quasi-transmission coefficients due 

to a plane P wave incident on the 0th  interface. These coefficients, together with 
( ),PPR kω�  and ( ),PSR kω�  will be derived in a later section. 

There are a number of difficulties associated with the numerical evaluation of the 
integrals involved in the equations for the reflected and transmitted potentials. As an 
example, for the reflected PP potential, 0φ + , in equation (7), poles are encountered in the 
complex reflection coefficient ( ),PPR kω�  for the wave numbers in the range 

00k kαω α> = . These poles correspond to waves guided within the thin layered zone and 
propagating with a horizontal phase velocity 0c α< . They correspond to Stonely waves 
guided at a first-order discontinuity between two elastic media. Their amplitudes decay 
with distance from the thin layered zone. 

This difficulty may be overcome, assuming that the distance H from the source to the 
top of the thin layered zone is large when compared to the wavelength associated with the 
predominant frequency of the source wavelet. For

0
k kα> , 0ν  in equation (7) will become 

negative and purely imaginary so that the exponential term (in part) is real and negative. 
Thus the integrand can be kept arbitrarily small for

0
k kα> , if H (ω  large – high 

frequency limit) is chosen sufficiently large. As a consequence, the contributions to the 
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integral may be neglected for wave numbers
0

k kα>  and the upper limit of integration 
replaced by 

0 0kα ω α= . With this assumption in place, equation (7) becomes1 

 ( ) ( ) ( ) ( ) ( )
0

0 0 0
00

, , , exp , 0PP

k
k dkr z iF R k J kr i z H z

α

φ ω ω ω η
η

+ = − − <⎡ ⎤⎣ ⎦∫ � . (11) 

The singularity at 
0

k kα=  may be avoided through the change of variable  

 
0
sink kα γ=  (12) 

which is the relation between the wave number k and the angle of P wave incidence at the 
top of the thin layered zone. With this substitution, equation becomes 

 
( ) ( ) ( ) ( )( )

( )

0 0

0

2

0 0
0

, , , sin

exp cos sin , 0

PPr z k F R k J k r

ik z H d z

π

α α

α

φ ω ω ω γ

γ γ γ

+ = − ×

⎡ ⎤− <⎣ ⎦

∫ � . (13) 

If the argument ( )0
sinkr rkα γ  is assumed large, the Bessel function ( )0J kr  can be 

approximated by its asymptotic formula for large argument (high frequency limit) given 
by 

 ( ) ( ) ( ){ }0
1 exp 4 exp 4

2
J kr i kr i kr

kr
π π

π
= − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (14) 

As a result, equation (13) may be written as 

 

( ) ( )

( ) ( )( )

( ) ( )( )

0

0

0

1/ 2

0

2

2

0

0

, ,
2

, exp cos sin sin

, exp cos sin sin

PP

PP

k
r z iF

r

R k ik H z r d

R k ik H z r d

α

π

α

π

α

φ ω ω
π

ω γ γ γ γ

ω γ γ γ γ

+ ⎛ ⎞
= − ×⎜ ⎟

⎝ ⎠
⎧⎪ ⎡ ⎤− − + +⎨ ⎣ ⎦⎪⎩

⎫⎪⎡ ⎤− − − ⎬⎣ ⎦ ⎪⎭

∫

∫

�

�

 (15) 

One of the most common techniques used in the evaluation of integrals of the type in 
equation (15) is by using the method of stationary phase. To use this method to obtain an 
approximation to the integrals in (15), it will be assumed that the reflection coefficient 

( )0 0 ,P PR kω�  varies slowly in amplitude but more importantly, in phase. Neglecting the 

                                                 
1 At this point it would be convenient to transform from an integral in ( )0J κ  to one in ( ) ( )0

2
H κ . However 

to maintain a consistent notation with the early papers related to the reflectivity method, the ( )0J κ  will be 
retained. 
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phase of ( )0 0 ,P PR kω�  in the stationary phase approximation has the effect of neglecting 
other possible arrivals associated with points of critical refraction (head waves), which 
may lie within the modified limits of integration. 

Points of stationary phase occur at those locations on the real axis where the 
exponential terms 

 ( ) ( )cos sin , 0L H z r zγ γ γ= − − <∓ ∓  (16) 

vary most slowly, i.e., where the first derivative with respect to γ  is equal to zero 

 ( ) ( )sin cos 0 , 0L H z r zγ γ γ′ = − = <∓ ∓ . (17) 

It can be readily seen that the first integral in equation (15) has a stationary point at 
( )1tan r H zγ −= −⎡ ⎤⎣ ⎦  and that the second integral does not have a stationary point within 

the limits of integration; assuming H z> . Therefore, the contribution of the second 
integral, for large

0
k rα , may be neglected. 

The general formula for the approximation of integrals using the stationary phase 
method is  

 ( ) ( )

( )
( ) ( )( )0

0 0

0

1/ 2
sgn

4

0

1lim
ii L Li LP e d e O

L

γ ε πγ γγ

γ ε

πγ γ
γ

+
′′+

→∞
−

⎛ ⎞ ⎛ ⎞≈ +⎜ ⎟ ⎜ ⎟⎜ ⎟′′ ⎝ ⎠⎝ ⎠
∫

AA
A AA

. (18) 

In the case being considered being considered here,  

 
( ) ( )
( ) ( )
( ) ( ) ( )

00 0 0sin ,

cos sin 0
P P

L L

P R k

L L H z r
α

γ γ

γ γ γ ω α

γ γ γ γ

−

−

=

= = =

′′ = = + + >

� A  (19) 

The final form of the stationary phase approximation to equation (15) is given by 

 ( ) ( ) ( ) 10
0 0 0 0

1

, , , , 0P P
ik RF

r z R e z
R

αω
φ ω ω γ+ ≈ <�  (20) 

with ( )
1 22 2

1R H z r⎡ ⎤= + +
⎣ ⎦

. 

It is possible, based on the derivation presented above, to evaluate the remaining 
integral expressions for the potentials of the reflected VS  wave and the transmitted P and 

VS  waves in an analogous manner, the results of which are as follows 



Ray reflectivity 

 CREWES Research Report — Volume 18 (2006) 7 

 ( ) ( ) ( ) 0 0
0 0 0 0

2 0 0

, , , exp
cos cosP S

k H k zF
r z R i

R
α βω

ψ ω ω γ
γ ζ

+
⎡ ⎤⎛ ⎞

≈ − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
�  (21) 

where 

 

0 0
0 0

0

0 0

2
0 0

sinsin , being defined by

tan tan , with

.
cos cos

H z r

zHR

β γζ γ
α

γ ζ

γ ζ

=

+ =

= +

 

 ( ) ( ) ( ) ( )
0 1

0 1
3 0

, , , exp ,
cos cos

n n
n PnPn n

n

k H k z zF
r z T i z z

R
α αω

φ ω ω γ
γ γ

−−
−

⎡ ⎤−⎛ ⎞
≈ − + >⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

�  (22) 

where 

 

0
0

0

0 1

1
3

0

sinsin , being determined from

tan tan , and

.
cos cos

n
n

n n

n

n

H z z r

z zHR

α γγ γ
α

γ γ

γ γ

−

−

=

+ − =

−
= +

 

 ( ) ( ) ( ) ( )
0 1

0 1
4 0

, , , exp ,
cos cos

n n
n PnSn n

n

k H k z zF
r z T i z z

R
α βω

ψ ω ω γ
γ ζ

−−
−

⎡ ⎤−⎛ ⎞−
≈ − + >⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

�  (23) 

with 

 

0
0

0

0 1

1
4

0

sinsin , obtained from

tan tan , and

.
cos cos

n
n

n n

n

n

H z z r

z zHR

β γζ γ
α

γ ζ

γ ζ

−

−

=

+ − =

−
= +

 

The vertical and horizontal components of displacement, ( ), ,m
qww r z ω  and ( ), ,m

qwu r z ω  
of the reflected and transmitted waves can be calculated using the definitions of the 
potentials in equation (1) in equations (20)-(23). Thus, in the upper half space the 
reflected particle displacements may be written as 
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0

0
0 0 0 0sinP Pu ikα γ φ += −  (24) 

 
0

0
0 0 0 0cosP Pw ikα γ φ +=  (25) 

 
0

0
0 0 0 0cosP Su ikβ ζ ψ += −  (26) 

 
0

0
0 0 0 0cosP Sw ikβ ζ ψ += −  (27) 

and in the lower half space the transmitted particle displacements have the form 

 0 sin
n

n
P Pn n nu ikα γ φ −= −  (28) 

 0 cos
n

n
P Pn n nw ikα γ φ −= −  (29) 

 0 sin
n

n
P Sn n nu ikβ ζ ψ −=  (30) 

 0 sin .
n

n
P Sn n nw ikβ ζ ψ −= −  (31) 

The expressions obtained above discussion are very similar in form to those obtained 
using asymptotic ray theory for two half spaces in welded contact. The factor 1 iR  
characterizes the geometrical spreading of the wave front and the exponential term 
defines the phase shift of the wave. The reflection and transmission coefficients, 
however, of a plane wave impinging on a first order interface are not frequency 
dependent while those in formulae (20)-(23) are dependent on frequency. 

As the phase of the reflection and transmission coefficients was not taken into account 
in the stationary phase approximations, the integrals (20)-(23) are inexact everywhere the 
arguments of the coefficients vary rapidly with angle. The stationary phase 
approximation can then be assumed to be valid for values of an angle, γ , where the 
following conditions hold 

 ( )arg qwd R dLr
d dγ γ

<<
�

 (32) 

and 

 
( )arg qwd T dLr

d dγ γ
<<

�
. (33) 

The inclusion of the phase of the reflection and transmission coefficients in the 
exponent used to calculate the points of stationary phase would be much more accurate. 
However, this further refinement would require the numerical calculation of the second 
derivative of the reflection and transmission coefficients which presents a computational 
problem whose solution, in computer time, approaches that of direct numerical 
differentiation. 
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As a final topic in this section the relationship between potential and particle 
displacement reflection and transmission coefficients will briefly be considered. Consider 
the PS displacement vector which may be written as 

 ( )0 0 0 0 0 0
,P S P S P Su w=u  (34) 

so that the argument of this complex vector has the form 

 
0 0 0 0 0 0 0 0

*
P S P S P S kβ ψ += ⋅ =u u u  (35) 

where the superscript "*"  indicates complex conjugate. The far field approximation to 
the incident P wave has the form 

 ( ) ( )
00 0 0 0 0 0 0, sin ,cosu w ikα γ φ γ φ+ += ≈ −u  (36) 

that has the argument 

 
00 0 0 0

* kα φ += ⋅ =u u u . (37) 

At any point on the interface at 0z H= =  the ratio of the reflected PS wave to the 
incident is just the particle displacement reflectivity, ( )0 0 ,P SR kω  yielding 

 ( ) ( )0
0 0 0 0

0

, ,P S P SR k R kβω ω
α

= � . (38) 

Thus for the definition of the displacement in term of the potentials used here the 
particle displacement reflectivities and transmittivities are those derived using potentials 
scaled by a factor of the ratio of the velocity associated with the reflected or transmitted 
wave type to the incident wave type. 

ANALOGUES OF REFLECTION AND TRANSMISSION COEFFICIENTS 

A thin layered or transition zone composed of 1n −  homogeneous isotropic layers will 
be assumed to lie between two homogeneous isotropic halfspaces which will be 
designated as ( )0 upper  and ( )n lower . The vertical axis will be chosen positive 
downwards with 0z =  coinciding with the top of the thin layered zone with this interface 
denoted as 0. The interfaces at layer boundaries between the two half spaces are 
numbered sequentially from 1 to 1n −  with the interface n  defining the interface with the 
bottommost thin layer and the underlying halfspace (Figure 3). 

The 1n +  thin layers and half spaces will be characterized by their P  and VS  
velocities, mα  and mβ  as well as their densities, ( )0m m nρ ≤ ≤ . The 1n −  thin layers 
have thicknesses of md ; mz  and 1mz −  are the depths of the lower and upper interfaces of 
the thm  layer. This has 
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 ( )1 0 1 1m m md z z m n−= − > ≤ ≤ −  (39) 

The compressional and shear wave velocities, mα  and mβ , may be expressed in terms of 
Lame’s coefficients, mλ  and mμ , and the densities, mρ  in the standard manner 

 2 2m m
m

m

λ μα
ρ
+=  (40) 

 2 m
m

m

μβ
ρ

=  (41) 

With the particle displacement vector in the thm  layer defined as ( ),m m mu w=u  

 m m
mu

x z
φ ψ∂ ∂= −
∂ ∂

 (42) 

 m m
mw

z x
φ ψ∂ ∂= +
∂ ∂

 (43) 

 

Utilizing these potentials, the equations of motion in each layer can be decomposed into 
the two following wave equations 

 ( )
2

2
2 2

1 0 wave propagationm
m

m

P
t
φφ

α
∂∇ − =
∂

 (44) 

 ( )
2

2
2 2

1 0 wave propagationm
m V

m

S
t
ψψ

β
∂∇ − =
∂

 (45) 

 

 

Defining the double Fourier transform and its inverse as 

 ( ) ( ) ( ), , , , expf k z f x z t i t kx dx dtω ω
∞ ∞

−∞ −∞

= − +⎡ ⎤⎣ ⎦∫ ∫  (46) 

 ( )
( )

( ) ( )2
1, , , , exp

2
f x z t f k z i t kx dk dω ω ω

π

∞ ∞

−∞ −∞

= − +⎡ ⎤⎣ ⎦∫ ∫  (47) 

the t and x dependence is removed from equations (44) and (45) so that the transformed 
solutions in the thm  ( )0 m n≤ ≤  layer or half space may be written as 
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 ( ) ( )1 1exp expm m m m m m m m m m mA i z z B i z zφ η η φ φ− +
− −= − + − − = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (48) 

 ( ) ( )1 1exp expm m m m m m m m m m mC i z z D i z zψ ξ ξ ψ ψ− +
− −= − + − − = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (49) 

 

1/ 22
2

2

1/ 2
2

2
2

m m
m

m m

k k

i k k

ω ω
α α

η
ω ω
α α

⎧ ⎛ ⎞
− ≥⎪ ⎜ ⎟

⎪ ⎝ ⎠
= ⎨

⎛ ⎞⎪
− − <⎜ ⎟⎪
⎝ ⎠⎩

 (50) 

 

1/ 22
2

2

1/ 2
2

2
2

m m
m

m m

k k

i k k

ω ω
β β

ξ
ω ω
β φ

⎧ ⎛ ⎞
− ≥⎪ ⎜ ⎟

⎪ ⎝ ⎠
= ⎨

⎛ ⎞⎪
− − <⎜ ⎟⎪
⎝ ⎠⎩

 (51) 

The choice of signs for mω α  and mω β  less than k was such that the physical 
condition is that the potentials vanish as z → ±∞ . The potentials mφ −  and mψ −  refer to the 
upward propagating waves while mφ +  and mψ +  represent downward propagating waves. 
The quantities mA , mB , mC  and mD  are complex valued functions of ω and k, and are 
also dependent on the layer’s parameters mα , mβ , mρ  and md . These coefficients may be 
computed from the boundary conditions of continuity of shear and normal stress and the 
vertical and horizontal components of particle displacement. 

Following the standard propagator matrix method described in Aki and Richards 
(1980) or Brekhovskikh (1980) and the numerous references contained in that work, two 
vectors can be defined, a potential vector 

 ( ) ( ) ( ) ( ) ( ), , ,
T

m m m mz z z z zφ ψ φ ψ− − + +⎡ ⎤Φ = ⎣ ⎦  (52) 

and a stress-strain vector 

 ( ) ( ) ( ) ( ) ( ), , ,
T

m m m zz xzm m
S z u z w z z zσ σ⎡ ⎤= ⎣ ⎦  (53) 

for 1m mz z z− ≤ < . 

Here ( )zzm
zσ  and ( )xzm

zσ  are the transformed components of normal and shear 
stress, obtained by applying the transform defined in equation (46), which will be used in 
determining the boundary conditions. At every point in the thm  layer the two vectors 
defined above are related as 



Daley 

12 CREWES Research Report — Volume 18 (2006)  

 ( ) ( )m m mS z zφ= T  (54) 

or solving for ( )i zφ  

 ( ) ( )1
m m mz S zφ −= T . (55) 

The matrix mT  and its inverse 1
m
−T  have the following definition 

 
2 2

2 2

m m

m m
m

m m m m m m m m

m m m m m m m m

ik i ik i
i ik i ik

k k
k k

ξ ξ
η η

μ μ ξ μ μ ξ
μ η μ μ η μ

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=

−⎢ ⎥
⎢ ⎥− − −⎣ ⎦

T
A A

A A

 (56) 

 

 
2

1
2

2
2

22
2

m m m m m m m m m

m m m m m m m i mm
m

m m m m m m m m mm m m

m m m m m m m m m

i k i k
i i k k
i k i k
i i k k

μ ξ η μ ξ ξ η ξ
μ η μ ξ η η ξ ηβ
μ ξ η μ ξ ξ η ξμ ξ η ω

μ η μ ξ η η ξ η

−

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
− −⎢ ⎥
⎢ ⎥−⎣ ⎦

T

A
A

A
A

 (57) 

where mA  is given by  

 
2

2
22m
m

k ω
β

= −A  (58) 

The vectors ( )m mzΦ  and ( )1m mz −Φ  at the lower and upper boundaries of the thm  layer 
are related as 

 ( ) ( )1m m m m mz z −Φ = ΦE . (59) 

The diagonal matrix mE  has the form 

 

0 0 0
0 0 0
0 0 0
0 0 0

m m

m m

m m

m m

i d

i d

i i d

i d

e
e

e
e

η

ξ

η

ξ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

E  (60) 

The boundary conditions for the continuity of displacement and stress at the n 
interfaces implies continuity of the vectors mS  at these interfaces such that 
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 ( ) ( ) ( )1 0,1, 1m i m mS z S z m n+= = −… . (61) 

It shall be assumed that the only energy incident on the thin layered zone is due to a P  
wave incident in the upper half space ( )0 0φ + ≠ . Consequently, 

 0n nφ ψ− −= =  (62) 

and 

 0 0ψ + = . (63) 

The treatments of the three other possible type of incidence at the quasi-interface 
closely resemble that of P  wave incidence from the upper half space and will not be 
considered here. 

If the amplitude of the incident P  wave front is set equal to unity, the amplitudes of 
the reflected P  and VS  waves in the upper half space at 0z =  are, from equations (48) 
and (49) 

 ( )0 0 0 ,P PA R k ω= �  (64) 

 ( )0 0 0 ,P SC R k ω= �  (65) 

and the corresponding transmitted P  and VS  waves in the lower halfspace at nz z=  are 

 ( )0 ,n P PnB T k ω= �  (66) 

 ( )0 ,n P SnD T k ω= � . (67) 

The coefficients 0 0P PR�  and 0 0P SR�  are the reflectivities of the thin layer zone due to an 
incident P wave in the upper half space while 0P PnT�  and 0P SnT�  are the corresponding 
transmittivities due the same incident wave type. These reflectivities and transmittivities 
are analogous to reflection and transmission coefficients at a sharp boundary where the 
elastic parameters change discontinuously. It is to be remembered that the assumption in 
all of this is that the individual layers within these zones are small when compared to the 
predominant wavelength associated with the source pulse. A less rigid assumption is that 
the total thickness of the thin layered zone should be less than, or of the order of, the 
predominant wavelength. 

Using these coefficients the potential vectors ( )0 0Φ  and ( )n nzΦ  at the upper and 
lower edges of the transition zone may be written as 
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 ( )0 0 0 0 00 , ,1 , 0
T

P P P SR R⎡ ⎤Φ = ⎣ ⎦
� �  (68) 

 ( ) 0 00, 0, ,
T

n n P Pn P Snz T T⎡ ⎤Φ = ⎣ ⎦
� � . (69) 

It will next be shown that these two vectors may be related by elementary matrix 
operations. 

From equation (16) the potential vector ( )0 0Φ  at the upper boundary of the transition 

zone is related to the stress-strain vector ( )0 0S  by  

 ( ) ( )0 0 00 0S = ΦT  (70) 

As ( )0 0S  is continuous across the interface at 0z = , ( ) ( )1 00 0S S= , so that  

 ( ) ( )1 0 00 0S = ΦT  (71) 

In layer 1, 1S  is related to 1Φ  yielding 

 ( ) ( ) ( )1 1
1 1 1 1 0 00 0 0S− −Φ = = ΦT T T  (72) 

with the superscript " 1"−  indicating the inverse. Taking 1Φ  to the lower boundary of the 
first layer has 

 ( ) ( ) ( )1
1 1 1 1 1 1 0 00 0z −Φ = Φ = ΦE E T T . (73) 

From this the stress-strain vector at 1z z=  is 

 ( ) ( )1
1 1 1 1 1 0 0 0S z −⎡ ⎤= Φ⎣ ⎦T E T T . (74) 

The quantity  

 1
1 1 1 1

−=G T E T  (75) 

is propagator matrix of the first layer (Aki and Richards, 1980) so that (75) may be 
written as 

 ( ) ( )1 1 1 0 0 0S z = ΦG T  (76) 

Extending this technique, the stress-strain vector ( )i iS z  at the lower edge of the thm  

layer is related to the potential ( )0 0Φ  through the relation 

 ( ) [ ] ( ) ( )1 2 3 2 1 0 0 0 1 1m m m m mS z i n− −= Φ ≤ ≤ −G G G G G G T"  (77) 

where the propagator matrix in some arbitrary thj layer is defined as 
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 1
j j j j

−=G T E T  (78) 

The elements of the 4 4×  propagator matrix iG  are explicitly given as: 

 ( )11 44 cos 1 cosm m m m m mg g P Qγ γ= = − + +  
 ( )11 44 cos 1 cosm m m m m mg g P Qγ γ= = − + +  

 ( )( )12 34 1 sin sin
m mm m m m m mg g i P r r Qα βγ γ⎡ ⎤= = + +⎣ ⎦  

 ( ) ( )13 24 cos cosm m m m mg g i Q P cρ ω= = −⎡ ⎤⎣ ⎦  

 ( ) ( )14 sin sin
m mm m m mg P r r Q cα β ρ ω= +  

 ( )21 43 sin 1 sin
m mm m m m m mg g i r P Q rα βγ γ⎡ ⎤= = − + +⎣ ⎦  (79) 

 ( )22 33 1 cos cosm m m m m mg g P Qγ γ= = + −  

 ( ) ( )23 sin sin
m mm m m mg r P Q r cα β ρ ω⎡ ⎤= − −⎣ ⎦  

 ( ) ( )31 42 1 cos cosm m m m m m mg g i c P Qρ ωγ γ= = + −  

 ( )( )232 21 sin sin
m mm m m m m mg c r P r Qα βρ ω γ γ⎡ ⎤= + +⎣ ⎦  

 ( )( )241 2 sin 1 sin
m mm m m m m mg c r P r Qα βρ ω γ γ⎡ ⎤= − + +⎣ ⎦  

 

 1c
k p
ω= =  (80) 

 
mm mP kr dα=  (81) 

 
mm mQ kr dβ=  (82) 

 
2

2 2
2

2 2m
m m p

c
βγ β−= = −  (83) 

 

1/ 22

2

1/ 22

2

1

1
m

m
m

m
m

c c
r

ci c
α

α
α

α
α

⎧⎛ ⎞
− ≥⎪⎜ ⎟

⎪⎝ ⎠= ⎨
⎛ ⎞⎪

− − <⎜ ⎟⎪
⎝ ⎠⎩

 (84) 
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1/ 22

2

1/ 22

2

1

1
m

m
m

m
m

c c
r

ci c
β

β
β

β
β

⎧⎛ ⎞
− ≥⎪⎜ ⎟

⎪⎝ ⎠= ⎨
⎛ ⎞⎪

− − <⎜ ⎟⎪
⎝ ⎠⎩

 (85) 

Thus at the interface defined by the lower boundary of the thin layered zone and the 
upper boundary of the lower half space the following holds 

 ( ) ( ) ( )1 1 1 1 2 2 1 0 0 0n n n n n nS z S z− − − − −= = ΦG G G G T"  (86) 

By transforming to the potential vector ( )1n nz −Φ  the following desired vector-matrix 

relationship with ( )0 0Φ  is obtained  

 ( ) ( )1 0 0n nz −Φ = ΦM  (87) 

with 

 
1

1 2 2 1 0n n n
−

− −=M T G G G G T" . (88) 

The elements of the 4 4×  matrix M  may be computed through a sequence of matrix 
multiplications. Substituting the expressions for ( )0 0Φ  and ( )1n nz −Φ  from equations 

(68) and (69) into (87) results in the following relationship between 0 0P PR� , 0 0P SR� , 0P PnT�  
and 0P SnT�  is obtained which allows for these quantities to be computed as  

 

0 0

0 0

0

0

0
0

1
0

P P

P S

P Pn

P Sn

R
R

T
T

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M

�
�

�
�

 (89) 

Writing the 4 4×  matrix in terms of the 2 2×  sub-matrices ijM  as 

 

11 12

21 22

⎡ ⎤= ⎢ ⎥
⎣ ⎦

M M
M

M M  (90) 

results in the following two equations for the unknown reflectivities and transmittivities  

 
0 0

11 12
0 0

0 1
0 0

P P

P S

R
R
⎡ ⎤⎡ ⎤ ⎡ ⎤

= +⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

M M
�
�

 (91) 

and 
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0 0 0

21 22
0 0 0

1
0

P Pn P P

P Sn P S

T R
T R
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

M M
� �
� �

. (92) 

The above two equations yield 

 
10 0

11 21
0 0

1
0

P P

P S

R
R

−⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
M M

�
�

 (93) 

and 

 
( )10

21 11 12 22
0

1
0

P Pn

P Sn

T
T

−⎡ ⎤ ⎡ ⎤
= − +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
M M M M

�
�

. (94) 

Defining the inverse of the sub-matrix 11M  in terms of its determinant and transposed 
cofactor, indicated by the "^ "  circumflex, results in  

 ( )
1 11

11
11

ˆ

det
− = MM

M .  (95) 

The transposed cofactor is defined in terms of individual components of the matrix 
11M  is of the form 

 

22 12
11

21 11

ˆ m m
m m

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

M
 (96) 

with the determinant given in standard form as 

 ( ) 12
11 11 22 12 2112

det m m m m m= = −M  (97) 

In what follows the notation abbreviation 

 
ij

ik j i jkk
m m m m m= −A AA  (98) 

will be used for the sub-determinant of order 2 ( second order minors). With this notation 
the reflection coefficients (reflectivities) may be written as 

 

12

23
0 0 12

12

P P

m
R

m
=�

 (99) 

 

12

13
0 0 12

12

P S

m
R

m
= −�

 (100) 

and the related transmission coefficients (transmittivities) as 
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 0 31 0 0 32 0 0 33P Pn P P P ST m R m R m= + +� � �
 (101) 

 0 41 0 0 42 0 0 43P Sn P P P ST m R m R m= + +� � �
 (102) 

In a similar manner to the procedure used above it is possible to compute the reflectivities 
and transmittivities for the three other possible cases of incidence at a thin layered 
boundary. Without any derivation they may be written as 

For VS  incidence from the upper ( )0th  layer: 

 

12
14

0 0 12
12

S S
mR
m

= −�
 (103) 

 

12
24

0 0 12
12

S P
mR
m

=�
 (104) 

 0 31 0 0 32 0 0 34S PnT m S P m S S m= + +�
 (105) 

 0 41 0 0 42 0 0 44S SnT m S P m S S m= + +�
 (106) 

For P incidence from the lower ( )thn  layer: 

 

23
21
12
12

PnPn
mR
m

=
 (107) 

 

24
21
12
12

PnSn
mR
m

= −
 (108) 

 0 31 32 33PnP PnPn PnSnT m R m R m= + +� � �
 (109) 

 0 41 42 43P Sn PnPn PnSnT m R m R m= + +� � �
 (110) 

For VS  incidence from the lower ( )thn  layer: 

 
14
12
12
12

SnSn
mR
m

=�  (111) 

 
12
13
12
12

SnPn
mR
m

= −�  (112) 

 0 31 32 34SnP SnPn SnSnT m R m R m= + +� � �
 (113) 

 0 41 42 43SnP SnSn SnPnT m R m R m= + +� � �  (114) 
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As mentioned several times in the text of this report, the tildes above the reflectivities 
and transmittivities indicate that these coefficients are potential coefficients and not 
particle displacement coefficients. If Iv  is the velocity associated with the incident wave 
front type and /R Tv  is the velocity of the reflected or transmitted wave front type, then the 
particle displacement reflectivities and transmittivities may be written in terms of their 
potential counterparts (for the potential definitions of particle displacement used here) as 

 /
, / , /

R T
I R T I R T

I

vR R
v

= �  (115) 

Two simple examples of equation (115) are 

 0
0 0 0 0 0 0

0
P P P P P PR R Rα

α
= =� �  (116) 

and 

 n
SnSn SnSn SnSn

n

R R Rβ
β

= =� �  (116) 

 

Other examples, where the velocity ratio is not unity, are the displacement reflectivities 

and transmittivities, 0 0S PR  and 0PnST  , which are given in terms of their corresponding 

potential counterparts as  

 0
0 0 0 0

0
S P S PR Rα

β
= �  (117) 

and 

 
0

0 0PnS PnS
n

T Tβ
α

= �
 (118) 

In a similar manner all of the 16 possible displacement reflectivities and transmittivities 
may be ex pressed in terms of the derived quantities, the displacement potential 
reflectivities and transmittivities.  

CONCLUSIONS 
Utilizing what have been presumed to be some of the best qualities of both asymptotic 

ray theory and the reflectivity method, a hybrid method has been developed. It is 
employed to consider the seismic response from a plane layered isotropic structure 
composed of thick layers, where asymptotic ray methods are used, separated by thin 
layered zones, where the validity of asymptotic ray theory is questionable and reflectivity 
(matrix) methods are used. The fact that the computation time is increased as the 
computation of synthetic sections must be done in the frequency domain is somewhat 
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compensated for when models with large number of layers are considered as the number 
of rays that are required to be used can be significantly reduced. 

This method incorporates the flexibility of asymptotic ray theory, including the ability 
to identify individual thick layered arrivals, with accuracy comparable to the reflectivity 
method without the need for numerical integration. As the reflectivity method produces 
the total wave field response arrival identification is difficult without resorting to 
producing travel time tables usually by a two point ray tracing algorithm which is a 
significant part of the cost of using the ray reflectivity method. 

To adequately indicate the potential of this method separate reports are being prepared 
for presenting numerical results. 
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Figure 1. Geometry of problem with the reflected and transmitted particle displacements shown 
due to the incidence of a P wave from the upper halfspace on the thin layered zone. 
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Figure 2. Notation used for the computation of the reflectivitities and transmittivities at a thin 
layered zone as a result of P wave incidence from the upper (0) halfspace. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


