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ABSTRACT 

In this paper, we will review the basic principles of AVO and introduce some 
amplitude preserving algorithms. Seismic data processing sequences for AVO analysis 
and some algorithms for AVO inversion will be discussed. Topics related to AVO, such 
as rock physics, AVO modeling, AVO interpretation, and AVO pitfalls are beyond the 
scope of this report.  

INTRODUCTION 
The AVO (amplitude variation with offset) technique assesses variations in seismic 

reflection amplitude with changes in distance between shot points and receivers. AVO 
analysis allows geophysicists to better assess reservoir rock properties, including porosity, 
density, lithology and fluid content. 

Around 1900, Knott and Zoeppritz developed the theoretical work necessary for AVO 
theory (Knott, 1899; Zoeppritz, 1919), given the P-wave and S-wave velocities along 
with the densities of the two bounding media. They developed equations for plane-wave 
reflection amplitudes as a function of incident angle. Bortfeld (1961) simplified 
Zoeppritz’s equation, making it easier to understand how reflection amplitudes depend on 
incident angle and physical parameters. Koefoed (1955) described the relationship of 
AVO to change in Poisson’s ratio across a boundary. Koefoed’s results were based on the 
exact Zoeppritz equation. The conclusions drawn by Koefoed are the basis of today’s 
AVO interpretation. 

Rosa (1976) and Shuey (1985) did breakthrough work related to predicting lithology 
from AVO, inspired by Koefoed’s article. Ostrander (1982) illustrated the interpretation 
benefits of AVO with field data, accelerating the second era of amplitude interpretation. 
Allen and Peddy (1993) collected seismic data, well information, and interpretation from 
the Gulf Coast of Texas and published a practical look at AVO that documented not only 
successes but also the interpretational pitfalls learned from dry holes. 

Today, AVO analysis is widely used in hydrocarbon detection, lithology identification, 
and fluid parameter analysis, due to the fact that seismic amplitudes at layer boundaries 
are affected by the variations of the physical properties just above and below the 
boundaries. In recent years, a growing number of theories and techniques in seismic data 
acquisition, processing, and seismic data interpretation have been developed, updated, 
and employed. AVO analysis in theory and practice is becoming increasingly attractive. 

PRINCIPLES OF AVO 
When seismic waves travel into the earth and encounter layer boundaries with velocity 

and density contrasts, the energy of the incident wave is partitioned at each boundary. 
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Specifically, part of the incident energy associated with a compressional source is mode-
converted to a shear wave; then both the compressional and shear wave energy are partly 
reflected from and partly transmitted through each of these layer boundaries. 

The fraction of the incident energy that is reflected depends upon the angle of 
incidence. Analysis of reflection amplitudes as a function of incidence angle can 
sometimes be used to detect lateral changes in elastic properties of reservoir rocks, such 
as the change in Poisson’s ratio. This may then suggest a change in the ratio of P wave 
velocity to S wave velocity, which in turn may imply a change in fluid saturation within 
the reservoir rocks. 

Starting with the equations of motion and Hooke’s law, one can derive and solve the 
wave equations for plane elastic waves in isotropic media. Then, using the equations of 
continuity for the vertical and tangential components of stress and strain at a layer 
boundary, plane wave solutions and Snell’s law that relates propagation angles to wave 
velocities, one obtains the equation for computing the amplitudes of the reflected and 
transmitted P- and S- wave. Figure 1 illustrates the wave propagation of incidence of 
compressible wave at solid-solid interface. 

 

FIG. 1. Waves generated at an interface by an incident P-wave. 

Approximations of the Zoeppritz Equations 

The Bortfeld Approximation 

The Zoeppritz equations allow us to derive the exact plane wave amplitudes of a 
reflected P wave as a function of angle, but do not give us an intuitive understanding of 
how these amplitudes relate to the various physical parameters. Over the years, a number 
of approximations to the Zoeppritz equations have been made. The first was by Bortfeld 
in 1961. His approximation to the Zoeppritz equation for PP reflection amplitude is given 
by 
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An important aspect of Bortfeld’s equations is that they provide the interpreter with an 
insight into the amplitude variation with offset as a function of rock properties. The first 
term in Bortfeld’s PP equation is fluid-fluid reflection coefficient. The second term has 
been called the rigidity term because of its dependence on the S-wave velocity, and thus 
on the shear rigidity modulus. However, equation (1) does not explicitly indicate angle- 
or offset- dependence of reflection amplitudes; therefore, its practical implementation for 
AVO analysis has not been considered. 

The Aki, Richards and Frasier Approximation 

The Bortfeld approximation was further refined by Richards and Frasier (1976) and by 
Aki and Richards (1980). The Aki, Richards and Frasier approximation is appealing 
because it is written as three terms, the first involving P-wave velocity, the second 
involving density, and the third involving S-wave velocity. Their formula can be written: 
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In practice, one does not observe the separate effects of P wave reflectivity αα /Δ , S 
wave reflectivity ββ /Δ   and fractional change in density ρρ /Δ  on the reflection 
amplitude ( )θR . Instead, one observes changes in reflection amplitude as a function of 
angle of incidence. Equation (2) can be rearranged in successive ranges of angle of 
incidence as 
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Equation (3) contains three terms. It was rearranged by Shuey (1985) in terms of 
Poisson’s ratio rather than S wave velocity to give his well known approximation, and 
was also rearranged by Wiggins (1987) at Mobil, and published by Gelfand and Larner 
(1986) as an approximation based on S and P wave reflectivity. 
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Setting the S wave to P wave velocity ratio, 5.0/ =αβ , then ignoring the third term in 
equation (3), 
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equation (4) becomes 

 θθ 2sin)2()( spp RRRR −+= . (7) 

From the equation above we can get 

 2/)( GRR ps −= , (8) 

where G=Rp-2Rs. 

This is the AVO attribute equation for estimating the shear wave reflectivity. Given 
the AVO intercept pR   and AVO gradient G attributes, simply take half of the difference 
between the two attributes to derive the shear wave reflectivity sR as described by 
equation (8). 

Shuey’s Approximation 

Shuey(1985) published a closed form approximation of the Zoeppritz equations which 
involved ρα ,  andσ  (Poisson’s ratio) 
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With various assumptions, we can simplify the equation (9) as 
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 θθ 2sin)( GRR p += . (10) 

This equation is linear if we plot R as a function of θ2sin . We will then perform a 
linear regression analysis on the seismic amplitudes to estimate intercept pR , and gradient 
G. Before performing the linear regression, we must transform our data from constant 
offset form to constant angle form. 

The Smith and Gidlow Approximation 

Smith and Gidlow(1987) gave another approximation based on the Aki and Richards 
equation. They first rearranged equation (3) to get 
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And then they simplified equation (11) by removing the dependence on density by using 
Gardner’s relationship 

 4/1αρ a= . (12) 

 This can be differentiated to give 
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Substituting equation (13) into equation (11) gives 
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Using this equation we can estimate αα /Δ  and ββ /Δ  by using generalized linear 
inversion (GLI). The GLI solution in matrix form is given by 
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The two parameters αα /Δ  and ββ /Δ , estimated by using the least squares solution 
given by equation (15), represent fractional changes in P and S wave velocity. As such, 
they are related to P and S wave reflectivity, pp II /Δ  and ss II /Δ , respectively. 
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Smith and Gidlow (1987) also derived two other types of weighted stacks, the 
“Pseudo- Poisson’s ratio reflectivity and the “fluid factor”. 

Goodway et al.(1998) gave another way to estimate the P wave and S wave fluctuation 
based on transforming the Aki-Richards equation to the new variables  pp II /Δ  and 

ss II /Δ  
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Goodway et al. (1998) implemented a specific form of equation (16) to derive the 
AVO attributes pp II /Δ  and ss II /Δ . For a specific value of 2/ =βα  and small angles 
of incidence for which θθ sintan ≈ , the third term in equation (16) vanishes and equation 
(16) takes the form 

 sp RRR )sin2()tan1()( 22 θθθ −+= . (17) 

Following the estimation of the P wave and S wave fluctuation by using the 
generalized linear inversion (GLI) given by equation (15), the P wave and S wave 
impedance can be computed by integration. 

In addition, Goodway et al. (1998) estimated two additional AVO attributes in terms 
of Lame’s constant scaled by density- λρ and μρ  
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Comparison of the Approximations of Zoeppritz’s Equation 

There are numerous expressions for the linear approximation of Zoeppritz’s equation, 
each with different emphasis. While Bortfeld (1961) emphasized the fluid and rigidity 
terms which provided insight when interpreting fluid-substitution problems, Aki and 
Richard’s equation emphasized the contribution of variations in the P- and S- wave 
velocities and density. Shuey, after learning about the contributions of Koefoed and the 
amplitude dependence on Poisson’s ratio, decided to cast Aki and Richards’s equation in 
terms of Poisson’s ratio. One of the Shuey’s main contributions is that he identified how 
various rock properties can be associated with near, mid, and far angle ranges. On the 
right side of Shuey’s equation, the first term is the normal-incident reflectivity and this is 
constant across all incident angles. The second term does not start to contribute 
significantly until incident angles of 15 degree or greater are reached. The third term, 
Shuey argued, is insignificant and can be ignored if the incident-angle range is less than 
30 degrees. 
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Both the first and second term in Shuey’s equation contain the normal-incident 
reflection coefficient. Verm and Hilterman (1995) rearranged Shuey’s equation to 
emphasize the rock property dependence on incident angle: 
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With this new arrangement (equation (19)), the near angle response is basically 
influenced by changes in acoustic impedance; the mid angle response is influenced by 
variations in Poisson’s ratio, and the far angle, by variation in P-wave velocity. 

AVO Classification 

Rutherford and Williams’s classification of the reflection coefficient curves has 
become the industry standard and it is associated respectively with 1970s classification of 
bright spot, phase reversal, and dim out. The classification was developed for reflections 
from hydrocarbon saturated formations. According to Rutherford and Williams’s 
classification, the slope of the reflection coefficient curve is negative for all classes. The 
reflection amplitude decreases with the angle of incidence. However, the absolute 
amplitude can increase with angle of incidence as depicted for Class 2 and 3 AVO gas 
saturated anomalies. Castagna et al. (1998) found that certain Class 3 gas saturated 
anomalies can have slowly decreasing amplitudes with offset. These were named Class 4 
AVO anomalies. However, the main diagnostic feature for the Class 4 anomalies is still 
the large amplitude associated with the hydrocarbons. 

 

 

 

 

 

 

 

 

 

FIG. 2. Classification of AVO Responses Class 1, Class 2, Class 3, and Class 4.  (Rutherford and 
Williams, 1989). 

0
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Class 1 (Dim out) anomalies have the following properties: 

• Amplitude decreases with increasing angle, and may reverse phase on the far angle 
stack 

• Amplitude on the full stack is smaller for the hydrocarbon zone than for an 
equivalent wet saturated zone. 

• Wavelet character is peak-trough on near angle stack 

• Wavelet character may or may not be peak-trough on the far angle stack. 

Class 2 (Phase reversal) anomalies have the following properties: 

• There is little indication of the gas sand on the near angle stack. 

• The gas sand event increases amplitude with increasing angle. This attribute is 
more pronounced than anticipated because of the amplitude decrease of the shale-
upon-shale reflections. 

• The gas sand event may or may not be evident on the full stack, depending on the 
far angle amplitude contribution to the stack. 

• Wavelet character on the stack may or may not be trough-peak for a hydrocarbon 
charged thin bed. 

• Wavelet character is trough-peak on the far angle stack. 

• Inferences about lithology are contained in the amplitude variation with incident 
angle. 

• AVO alone, unless carefully calibrated, cannot unambiguously distinguish a clean 
wet sand from a gas sand, because both have similar (increasing ) behavior with 
offset. 

Class 3 (Bright spot) anomalies have the following properties: 

• Hydrocarbon zones are bright on the stack section and on all angle limited stacks. 

• The hydrocarbon reflection amplitude, with respect to the background reflection 
amplitude, is constant or increases slightly with incident angle range. Even though 
the amplitude of the hydrocarbon event can decrease with angle, as suggested for 
the Class 4 AVO anomalies, the surrounding shale-upon-shale reflections normally 
decrease in amplitude with angle at a faster rate. 

• Wavelet character is trough-peak on all angle stacks. This assumes that the 
dominant phase of the seismic wavelet is zero and the reservoir is below tuning 
thickness. 
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• Hydrocarbon prediction is possible from the stack section. 

SEISMIC DATA PROCESSING FOR AVO/AVA ANALYSIS 

AVO processing and analysis is intended to provide additional rock properties and 
reservoir properties from seismic data beyond structural imaging. AVO analysis mainly 
relies on fitting gradients to amplitude observations over a range of offsets. In order that 
the resulting gradient fits be considered reliable, all steps in the data processing sequence 
must accurately preserve the natural amplitude variations related to lithology and fluid 
content. Velocities must be accurate and scaling must maintain relative amplitudes. 
Interference due to noise and multiples or side effects related to their attenuation must be 
carefully monitored. The amplitude bias introduced by various algorithms should be 
taken into account. 

Yilmaz (2001) addressed the detailed processing sequence in his book. There are three 
important aspects of a processing sequence tailored for AVO analysis. 

• The relative amplitudes of the seismic data must be preserved throughout the 
analysis in order to recognize amplitude variation with offset. 

• The processing sequence must retain the broadest possible signal band in the data 
with a flat spectrum within the passband. 

• Prestack amplitude inversion to derive the AVO attributes must be applied to 
common reflection point (CRP) gathers. 

Noise Attenuation 

During the AVO processing there are various types of noise that distort the true 
amplitudes of the seismic data. These noises have to be removed by different noise 
suppression processes. Dey-Sarkar and Svatek (1993) defined three basic types of noise 
that distort the amplitudes in the prestack domain. Type I noise is associated with source 
generated noise, multiples, surface consistent effects. Fourier transform techniques and 
surface-consistent computation can be used to remove these effects. Type II noise is 
generally associated with instrumentation or cultural noise during data acquisition. Type 
III noises are entirely due to wave propagation effects in a visco-elastic medium. 

The approach proposed by Dey-Sarkar and Svatek (1993) is to calibrate the 
amplitudes using some statistical algorithms. After removing Type I and Type II noises 
from the prestack data, there are mainly two components of the amplitude left. The first 
component is associated with the amplitude variation due to Type III noise. The second 
component is associated with the reflection coefficient variation with offset. Dey-Sarkar 
and Svatek (1993) estimate the first component (Type III noise) from a window of events 
above the target event. The RMS amplitudes are computed for each offset and an 
exponential decay function is fitted through the data points. The coefficient of this decay 
function is the amplitude correction factor for the event. The coefficient is spatially 
averaged to obtain a smoothly varying function. The advantages of this technique are, (1) 
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the robustness, (2) no subsurface parameters are assumed, and (3) no distortion is 
produced in the data because of the slowly varying function. 

Xu and Bancroft (1997) applied this method to the multi-component data acquired from 
Blackfoot, Alberta (see Figure 3). 

 

 

 

 

 

 

FIG. 3. (a) The gather before amplitude calibration. (b) The gather after amplitude calibration. (c) 
The synthetic gather. ( Xu and Bancroft, 1997). 

True Amplitude Radon Transform 

When the data are severely contaminated by multiples, the Radon transform is a 
popular tool for regularization and preprocessing of seismic data prior to migration, AVO 
analysis and stratigraphic interpretation. 

 

 

 

 

 

 

 

 

 

 

FIG. 4.  Results of the improved semblance-weighted Radon method: (a) The model; (b) The 
Radon panel; (c) The reconstructed gather; and (d) The residual gather. (Cao, Bancroft, 2004). 
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We often use the Radon transform to suppress ground roll, coherent noise, and 
multiples. Suppression of coherent noise greatly facilitates prestack migration velocity 
analysis. However, for AVO analysis, it is most important to make sure that any removal 
of noise does not degrade the signal component of the reflections. 

Nurrul (1999) addressed how to remove the multiples and preserve the true amplitude 
at the same time. A weighting approach was applied to the least squares Radon 
transforms to preserve the amplitude. 

Cao and Bancroft (2004) worked on the parabolic semblance-weighted Radon 
transform with a Gauss-Seidel iterative method in the time domain. This approach can 
enhance energy clusters along those trajectories which fit seismic events well in the 
seismic dataset and weaken energy along those trajectories which badly fit seismic events. 
Applied in the Gauss-Seidel sense, the semblance-weighted Radon approach produces 
moderately high resolution results and the amplitude was well preserved (see Figure 4). 

True Amplitude DMO 

A true amplitude DMO approach for improving AVO analysis was demonstrated by 
Ramos (1999). True-amplitude DMO can reduce the amplitude mix caused by the 
smearing and the mis-positioning of reflection points. The main advantage of true 
amplitude DMO compared to more traditional methods lies in its ability to perform a 
better compensation of geometrical spreading losses with offset. He showed that the 
application of true amplitude DMO on a real dataset with a real AVO anomaly resulted in 
better estimation of more reliable amplitude, AVO gradient, better delineation and 
enhancement of AVO anomalies (Figure 5). 

For F-K DMO case, we can notice that there is a considerably smaller scatter of the 
amplitudes around the background trend. This smaller scatter leads to a poor gradient 

estimation, especially for the long offsets and steeply dipping events. The crossplots for 
the true amplitude DMO case shows a significantly larger scatter and a better separation 

of the anomalous values in the first and third quadrants, due to more accurate geometrical 
spreading compensation for amplitudes at far offsets (Ramos et al., 1999). 

 

 

 

 

 

 

FIG. 5. Cross plot gradient versus intercept for the seismic data processed with f-k DMO (left) and 
true-amplitude DMO (right).  (Ramos, 1999).  
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True Amplitude Migration 

During the initial era of AVO analysis, one performed the analysis mainly on 
common-midpoint (CMP) gathers of the unmigrated data. But for steeply dipping 
reflectors and more complicated structure, the result of the AVO analysis often lacks 
accuracy due to the effects of CMP smearing. It is worth analyzing AVO in common-
reflection-point (CRP) gathers after prestack migration. 

Generally speaking, Kirchhoff migration can produce both reflection coefficients and 
reflection angles at image locations, making it ideal for AVO analysis in areas of 
moderate structural complexity. A lot of published examples have shown accurate 
amplitudes after Kirchhoff migration. Factors affecting AVO analysis of Prestack 
migration gather were addressed by Zhang (2002). Sparsity of azimuth sampling, 
incorrect choice of migration weights and anti-aliasing filters can affect the AVO 
signatures. 

Tydel (1999) investigated the effect of the various true amplitude Kirchhoff migration 
methods on AVO/AVA response. In his study, simple CMP AVO processing, true 
amplitude PreSDM and the true amplitude MZO (Migration to Zero Offset) algorithm 
was applied to an ensemble of individual common offset sections. 

His main conclusion is that both true amplitude PreSDM and MZO are very well 
suited for AVO/AVA analysis. The true amplitude PreSDM amplitude did not suffer 
more from inaccuracies in the migration velocity than MZO amplitude. The angle 
transform was more sensitive to migration velocity than reflection coefficients. PreSDM 
has better noise reduction. Due to having no amplitude preserving antialiasing filter, 
MZO will be more severely affected than PreSDM when applied to field data with 
insufficient trace spacing. 

Yilmaz (2001) pointed out that the phase shift method should be used for AVO 
analysis, because differencing approximations to differential operators are used in finite 
difference migrations. The usual implementation of Kirchhoff migration does not include 
all the terms of the integral solution to the scalar wave equation. As such, the missing 
terms can influence the amplitude and phase accuracy of the resulting migrated data.  

AVO Processing Sequence 

The success of the AVO technique relies not only on the algorithm but also the 
processing sequence. However, amplitude preservation throughout the processing 
sequence can be difficult to achieve. When seismic anomalies are extremely large, AVO 
effects stand out, and sometimes the bias introduced by processing algorithms may not be 
sensed at all. Small amplitude anomalies, often associated with the presence of liquid 
hydrocarbons, normally show small expression, which can be completely lost or 
destroyed by unsatisfactory data preconditioning. Allen and Peddy (1993) showed an 
example where two of three processors failed to identify a subtle AVO anomaly at a gas 
discovery. 

The goal of true amplitude processing is to obtain reliable data for AVO analysis. The 
biggest issue in AVO processing combines algorithms and processing parameters in a 
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balanced way, creating the minimal amount of amplitude bias. Ramos (2001) pointed out 
that the success of AVO technique relies considerably upon the processing sequence 
employed, especially in the presence of strong multiples and reverberations. His study 
also demonstrated that AVO should be used with caution as an exploration tool, but it can 
be used more safely in areas where the calibration processing is possible.  

AVO INVERSION 
Smith and Gidlow (1987) developed the ground-breaking methodology, now 

commonly used for transforming NMO corrected gathers into estimates of rock 
properties, by the use of weighted stacking. The method calculates AVO fluctuation by 
least squares fitting a curve that approximates the Zoeppritz equation to a crossplot of 
reflection amplitudes as a function of reflection angle for a given CMP. Inversion is 
performed using either a 2-term or 3-term approximation to the Zoeppritz equation. The 
most commonly used approximations are those derived by Shuey (1985) for 2-term 
inversion, and Aki and Richards (1980) for 3-term inversions. 

A 2-term inversion effectively gives us just two AVO attributes, either AVO Intercept 
and AVO Gradient or Normal Incidence Reflectivity and Poisson Reflectivity. While the 
2-term inversion is growing in popularity through the acceptance of AVO crossplots as 
an interpretation tool, it is often overlooked that the Shuey approximation is invalid 
beyond about 30 degrees angle of incidence. A full 3-term inversion will solve for P-
wave reflectivity, S-wave reflectivity and density reflectivity and will generally honour 
the Zoeppritz response accurately to about 50 degrees angle of incidence, which is 
common in today's long-offset acquisition geometries. These attributes may then be 
combined or inverted (through a process of Elastic Inversion) to calculate more indicative 
hydrocarbon indicators such as Fluid Factor, Poisson Reflectivity or the Lamé parameters 
of Lambda-Rho (λρ) and Mu-Rho (μρ) corresponding to the product of density and the 
elastic  properties of incompressibility and rigidity respectively. 

Three terms inversion of P-P data 

The idea of three terms least-squares inversion of P-P data is usually credited to Smith 
and Gidlow (1987) who showed that the Aki and Richards approximation for ppR   can be 
inverted by least squares to estimate the fluctuation αα /Δ , ββ /Δ  and ρρ /Δ ,. In their 
method, P-P reflection data are assumed to provide estimates of ppR  over a range of 
source-receiver offsets. Thus, for each incident angleθ , an equation can be written like 

 
β
β

ρ
ρ

α
α Δ+Δ+Δ= cbaRpp , (20) 

 

where 2/)tan1()cos2/(1 22 θθ +==a , ]sin)/2[(5.0 222 θαβ−=b , 
)sin/4( 222 θαβ−=c , 2/)( 21 ααα += , 2/)( 21 βββ += , 2/)( 21 ρρρ += ,  
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12 ααα −=Δ , 12 βββ −=Δ , 12 ρρρ −=Δ , 2/)( ti θθθ += , and 
]sin)/arcsin[( 12 it θααθ = . 

We note the explicit dependence on the incidence angle θ. Then, considering all 
available offsets, a matrix equation can be constructed 
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The left side of this equation is a column vector representing the amplitudes of a 
particular P-P reflection as a function of offset. The n×3matrix on the right contains the 
coefficients a, b, c computed at the appropriate incidence angle for each offset. This 
matrix is approximately known if a background velocity model is available to raytrace in 
order to obtain the incidence angles. Finally, the column vector on the right contains the 
unknown fluctuation to be estimated. If there are more than three offsets, there are more 
equations than unknowns and least-squares inversion is appropriate. Writing this equation 
symbolically as R=CF, its least-square inverse is F=AR, where ( ) TT CCCA 1−= . Smith 
and Gidlow were able to calculate the entries in the matrix A analytically and showed 
that the algorithm F=AR is just a weighted stack. That is, F can be estimated, in principle, 
by an equation of the form 

 )()(
,

kpp
offsetk

k RaF θθα ∑= . (22) 

With similar equations, having different weighting functions, for ρβα FFF ,, . In this 
equation, the sum is over all available offsets and the weights, )( ka θ , are known functions 
of the background velocity and the incidence angle for the kth offset. Usually, it is 
expected that the overall density effect on ppR  is small and this implies that inversion for 

ρβα FFF ,, will be problematic with noisy data. 

Smith and Gidlow (1987) suggested using Gardner’s relation that 25.0αρ k≈  (k is a 
constant whose numerical value depends upon the system of units employed) to convert 
the density dependence into an additional P-wave velocity term. An alternative approach 
is the approach of Fatti et al. (1994) who reformulated the equations to invert for 
fluctuation associated with P-wave and S-wave impedances: 

 
ρβρβ
ραρα

/)(
/)(

Δ=
Δ=

J

I

F
F

. (23) 

This avoids the use of Gardner’s rule but there is still an independent ρF term that 
must be neglected. Fortunately, the coefficient of this term is generally small. 
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Other Petrophysical Discrimination 

A number of derived attributes may be used to highlight changes in lithology and pore 
fluid content. Smith and Gidlow (1987) discussed two possibilities, the pseudo- Poisson’s 
ratio reflectivity and the fluid factor reflectivity. These attributes can be directly 
calculated from estimates of αα /Δ  , ββ /Δ , or II /Δ and JJ /Δ . The pseudo- Poisson’s 
ratio reflectivity or fractional Vp/Vs ratio is given by 

 
J
J

I
I

JI
JI

q
q Δ−Δ=Δ−Δ=Δ=Δ≡Δ

β
β

α
α

βα
βα

/
)/(

/
)/( . (24) 

Equation (24) allows the calculation of normalized changes in Vp/Vs ratios, which can 
be directly correlated to lithological and/or pore fluid content changes. 

The fluid factor reflectivity is highly dependent upon local geology and measures 
deviations from the ‘mudrock line’ of Castagna et al. (1985). The fluid factor is generally 
considered accurate for water saturated clastic sedimentary rocks, but deviates   
significantly for gas-saturated clastics, carbonates and igneous rocks. The ‘mudrock line’ 
is an empirical relation between α and β thought to typify shales. It is given by Castagna 
et al. (1985) as 

 ββα 16.11360 +=+≈ ba . (25) 

For a given locality, a and b should be derived from well-constrained, dipole sonic log 
information. The derivation of the ‘fluid factor reflectivity’ from equation (25) is 
straightforward, if we let g equal the deviation from the mudrock line 

 βα bag −−= . (26) 

Note the parameter g will be zero for exact adherence to the ‘mudrock line’ of 
equation (26). Now, the finite difference of equation (26), 

 βα Δ−Δ=Δ bg . (27) 

And define the fluid factor fΔ , 
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Therefore any deviations from the fluid factor indicate a deviation from the ‘mudrock 
line’ (equation 27). The potentially awkward step of calculating estimates of ρρ /Δ in 
equation 28 above generally limits the use of the fluid factor reflectivity when inverting 
for compressional and shear impedance. 

Several authors have alluded to the need for greater physical insight into the 
underlying physical rock properties contained in compressional and shear velocities 
(Wright 1984, Thomsen, 1990, Castagna et al., 1993). From these observations it is 
sensible to conclude the possible utility of extracting rigidity and shear modulus rock 
properties directly from AVO analysis. Stewart (1995) provides a method for directly 
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extracting elastic modulus parameters from the Zoeppritz equation approximations of Aki 
and Richards (1980). Stewart further advised that μλ / may be used to highlight pore-
fluid contrasts rather than changes in lithology. This concept was successfully tested by 
Goodway et al. (1997) to show the potential of improved petrophysical discrimination 
using Lame parameters μλμρλρ /,, . This method is summarized by the following set of 
equations: 
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I 22
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J
JΔ=Δ 2)(
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For completeness, the fractional Poisson ratio and bulk modulus ratios can also be 
defined, 
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Note equations 29, 30, 31, 32 and 33 represent weighted functions of the previously 
derived estimates of II /Δ and JJ /Δ . In practice, the smoothed background model 
provides the weights. 

Joint AVO Inversion of PP and PS Data 

Stewart (1990) derived the extension of the Smith-Gidlow approach that uses both PP 
and PS reflections to constrain the reflectivity αα /Δ , ββ /Δ  and ρρ /Δ . Larsen et al. 
(1998) and Larsen (1999) presented a practical implementation of these ideas as applied 
to the Blackfoot 3C-3D survey. Like Smith and Gidlow (1987), Stewart (1990) developed 
exact analytic forms for the stacking weights of both PP and PS data. The algebraic 
expressions for these weights are too complex to present here. In essence, the fluctuation 
are estimated by equations of the form 

 )()()()(
,,

kps
offsetk

kkpp
offsetk

k RbRa θθθθ
α
α ∑∑ +=Δ . (34) 

Where kθ is the P-wave incidence angle for the kth offset, )( ka θ   are the stacking 
weights for the PP reflection data, and )( kb θ are the weights for the PS reflection data. 
Similar equations, with different weights, will estimate ββ /Δ , ρρ /Δ . The weights for 
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the PP reflection data, )( ka θ , in this expression are generally quite different from the 
analogous weights in the inversion using PP data alone. 

As with the PP case, it is often preferable to bypass the estimation of ρρ /Δ . Larsen 
(1999) shows that either the Smith-Gidlow approach using Gardner’s rule or the Fatti 
approach of estimating impedance is possible. In the latter case, there is again 

ρρ /Δ term that must be neglected. Interestingly, the possibility of a true three-parameter 
inversion for αα /Δ , ββ /Δ , ρρ /Δ , is much more feasible with PP and PS data. 

Margrave and Stewart (2001) used the PP and PS joint inversion and documented its 
performance, in comparison with PP data alone, using the 3C-3D survey at Blackfoot 
field. Like the PP method, the joint method is implemented as a weighted stack but with 
different weights and twice the statistical leverage. The joint method gives markedly 
superior estimates of the P-wave and S-wave impedance fluctuation, but only moderately 
better estimates of the pseudo-Poisson’s ratio. 

Other Non-linear Inversion Methods 

In the previous section the inversion methods discussed are linear inversion methods. 
For linear inversion, it is not a global optimization algorithm. This means that the 
possibility exists for the algorithm to become “trapped” in a local minimum. However, a 
non-linear inversion algorithm can skip the local minimum to find the global minimum. 
The most commonly used non-linear inversion algorithms are the genetic, artificial neural 
network and Monte Carlo algorithms.   

Mogensen (2000) applied artificial neural network solutions to estimate P-wave, S-
wave velocity, and Poisson’s ratio from simulated seismic data. 

Mallick (2001) successfully applied prestack genetic inversion in continuous prestack 
inversion, hybrid inversion, and geo-hazard studies such as pore pressure prediction and 
shallow water flow (SWF) prediction. 

SUMMARY 
Approximately 30 research papers on AVO, which include the principles of AVO, 

seismic data processing and inversion for AVO analysis were reviewed in this study. This 
review is not intended to be exhaustive but should give the reader a good introduction to 
the development of the theories and techniques of AVO processing and inversion. The 
main trend in the AVO development is shifting from more theoretical studies to more 
applications, from P-wave seismic data to multicomponent seismic data. This trend 
results in successful solutions to more and more challenging problems encountered by 
scientists in petroleum exploration. 
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