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ABSTRACT 
Numerical simulations of seismic-induced electromagnetic waves in a semi-infinite, 

saturated porous soil were carried out using COMSOL Multiphysics software. The 
governing equations used are Maxwell's equations and wave (Navier) equations for the 
elastic displacements in the solid and fluid phases, and linear constitutive equations. The 
coupling between seismic and electromagnetic waves defines the seismoelectric effect. 
The simulations were performed in frequency domain over the range of 0-64 Hz. Fast 
Fourier transform with a frequency range of 1-32 Hz gave us the time-dependent soil 
responses. The spectra of energy absorption in the solid and liquid phases produce two 
identical peaks at 25 and 48 Hz. We attribute these peaks to a resonance effect with a 
slight dissipation from viscous drag force. The electric field produced was dominated by 
conduction and we did not observe any large-scale dipole formations. The induced 
magnetic field on the surface is around 1-10 nT from an excitation surface force peaking 
at 10 MN.  

INTRODUCTION 
Seismoelectric effect is a conversion of seismic waves into electric field in a porous 

medium. In 1993, A large scale field experiment was conducted by Thompson and Gist, 
who were successful in detecting seismic-to-electromagnetic energy conversion at a 
depth of 300 m in Texas Gulf Coast (Thompson, 1993). They showed clearly that seismic 
waves can induce electromagnetic disturbances in saturated sediment in the earth. They 
produced experimental field data and suggest the feasibility of using electrokinetic 
coupling for measurements of aquifers, including detection of pollutant migration. The 
mechanism of the electrokinetic conversion was proposed by Pride (1994). He derived 
the macroscopic governing equations for the coupled electromagnetic and acoustics of 
the porous media. The equations have the form of Maxwell’s equations coupled to Biot’s 
equations. 

Butler and Russel (1996) performed a field experiment at a site near Vancouver and 
showed a clear seismic electrical response due to a single sledgehammer blow. Their 
model shows the rapid decay of the converted electroseismic signal with distance. 
Garambois and Dietrich (2001, 2002) conducted field experiments and recorded the 
presence of electrical signal and performed numerical simulation based on the 
microscopic governing equations by Pride. They showed that electromagnetic waves 
induced by the seismic waves were affected by porosity, permeability, fluid salinity, and 
fluid viscosity. In a laboratory experiment, Block and Harris (2005) studied the 
conductivity dependence of seismoelectric waves in fluid-saturated sediments. In their 
experiment and simulation, they detected electric field generated at the fluid-sediment 
interface by incident seismic waves. Chen and Mu (2005) also performed experimental 
studies of seismoelectric effects in fluid-saturated porous media and found that the 
conversion was sensitive to the oil-saltwater interface. 
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In this paper, we present numerical results from a full three-dimensional numerical 
model based on Pride's formulation. The 3D nature of the model is essential for obtaining 
magnetic field. We simplified the Pride model from nine equations to three equations and 
perform the simulation in frequency domain. The three coupled equations were for three 
vector fields: the solid phase displacement, relative displacement of solid-fluid phase and 
electric field. We used the fast Fourier transform to transform frequency-domain data into 
time-domain.  

GOVERNING EQUATION 
We follow the derivation of the seismoelectric model by Pride (1994) to model the 
propagation of coupled electric and mechanical disturbance in a semi-infinite 
homogenous porous medium.  There are nine coupled different equations describes the 
interaction between acoustic and electromagnetic waves.  
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where  ω is the angular frequency, H is the magnetic field,  B is magnetic flux density, E 
is the electric field, D is the electric displacement field, J is the current density, ε0 is the 
dielectric permittivity of free air, φ is porosity, α∝ is tortuosity, κs is the dielectric 
constant of the solid, κf is the dielectric constant of the liquid, μ0 is the magnetic 
permeability, L is the coupling coefficient, KG, C, M, and Gfr are elastic constants of the 
porous media, ρf is fluid density, ρs is solid density, ρB is bulk density, k is the transport 
coefficient, η is viscosity, us is solid displacement, p is fluid pressure, τB is the bulk stress 
tensor and, w is the relative solid-liquid displacement. 
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These equations describe three three-dimensional vector fields: the solid-phase 
displacement, the relative displacement between the solid and the liquid phases, and the 
electric field generated. Auxiliary vector fields include magnetic and electric 
polarizations can be derived from the fundamental three vector fields. In addition, fluid 
pressure can be obtained from the divergences of the solid-phase and the solid-liquid 
displacement fields. 

These nine governing equations are Fourier-transformed to produce frequency-
dependent equations. They can be reduced into three coupled equations below: 
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where  ω = 2πf is angular frequency (f is frequency), D is electric field, εo is permittivity 
of free air, φ is porosity, α∝ is tortuosity, κs is the dielectric constant of the solid, κf is the 
dielectric constant of the liquid, μ0 is the magnetic permeability, L is the coupling 
coefficient, KG, C, M, and Gfr are elastic constants of the porous media, ρf is fluid density, 
ρs is solid density, ρB is bulk density, k is the transport coefficient, η is viscosity, us is the 
solid displacement and, w is the relative solid-liquid displacement. These three equations 
were implemented in the COMSOL Multiphysics v3.2 to simulate our model. The 
numerical solutions are obtained for us, w, and E, from which we can get other physical 
quantities, such as pressure and magnetic field.  

SIMULATION RESULTS 
In our model, a cube of size 200 m x 200 m x 200 m (Figure 1) represents the semi-

infinite homogeneous, porous soil, and the governing equations are expressed in the 
Cartesian coordinate system. The values for the solid-phase parameters, including 
viscosity (η), dielectric constant (κs), and the elastic constants correspond to those of 
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common rock inside the Earth, while for the fluid phase we use those of water, as listed 
in Table 1. The elastic waves are launched at the centre of the top surface, having a 
coordinate (x, y, z) = (0,0,0), by a sharp, normalized Gaussian force distribution, with a 
peak of 107 N/m2. The full-width at a half maximum for the distribution is 20 m wide. 
We have verified that the elastic response of the soil remains linear for this force 
distribution chosen to simulate the explosion effect during seismic survey. The boundary 
conditions for the top surface (z = 0) are of Neumann type for the solid-liquid relative 
displacement and the electric field. The boundary conditions for the bottom (z = 200) and 
side faces of the cube are of Dirichlet type. We performed several numerical tests to 
ensure that the cube's size is sufficiently large to allow for these Dirichlet conditions.   

 

FIG. 1. The cube geometry used for the simulation. The top and bottom surfaces are at z = 0 and 
z = 200, respectively. 

The force distribution is assumed to be of impulse type applied only at t = 0. Its 
Fourier transform is uniform for all frequencies. When running the simulations at 
different frequencies, an identical force distribution is therefore used on the top surface. 
This assumption makes the comparison of the frequency-domain results as a function of 
frequency relatively straightforward.  

Table 1. Parameters of The Semi-Infinite Porous Medium.  

Coupling Coefficient (L) 1×10-9 

Permittivity of Water (ε) 7.08×10-10 F/m 

Porosity (φ) 0.20 

Tortuosity (α∞) 3 
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Dielectric Constant of Fluid (κf) 2.2×109  

Dielectric Constant of Solid (κs) 36×109  

Magnetic Permeability (μ0) 12.5×10-7 H/m 

Conductivity (σ) 9.3×10-4 S/m 

Density of Fluid (ρf) 1.0×103 kg/m3 

Density of Solid (ρs) 2.7×103 kg/m3 

Constant of Permeability (k) 1.0×10-12 cm2 (1 darcy) 

Viscosity (η) 1.0×10-3 Pa.s (kg/m.s) 

Elastic Constant of Porous Media (Gfr) 7.0×109 Pa 

Frame Bulk Modulus (κfr) 5.0×109 N/m2 

Poisson’s Ratio (υ) 0.25 

Force at The Surface (Fz) 1.0×107 N/m 

 



Budiman et al. 

6 CREWES Research Report — Volume 18 (2006)  

 

FIG. 2. 3D plot of the z-component of the solid displacement vector, uz. Positive displacement 
indicates a downward displacement (i.e., toward the positive z direction). 

Figure 2 shows the z-component of the solid displacement vector, uz, which has a 
circular symmetry at a frequency of 12 Hz. The maximum uz on the top surface is 0.6 mm 
located at the surface's centre. The plot shows a circular symmetric behavior, which is 
expected, and the displacement magnitude decays to very close to zero at the side 
surfaces and the bottom surface of the cube. The z-component of the displacement at zero 
frequency should decay like 1/z for the vertical direction when the force has a Dirac-δ 
spatial distribution [Landau, 1995]. The simulation results for uz at different frequencies 
show a generally slower decay than the 1/z decay behavior, as shown in Figure 3(a). The 
difference is mainly caused by the force distribution used in our simulation, which is 
much broader than the Dirac-δ. We have verified in the simulation that for a very sharp 
force distribution, the decay approaches a 1/z behavior. 

The x-, y-, and z-components of the solid displacement vector are complex-valued, 
indicating the influence of viscous effects in the fluid phase. Figure 3(b) shows the 
imaginary component of the z-component for selected frequencies. The magnitude of the 
imaginary component is almost eight orders of magnitude smaller than the real 
component shown in Figure 3(a). We observe a drastic change of behavior in uz around f 
= 24 Hz. Both the real and imaginary magnitudes jump gradually increase between 16 
and 24 Hz. Above 24 Hz, the z-component has a negative value, indicating that the  
elastic displacement of the soil  is directed toward the surface. Although this result may 
seem unphysical since the surface excitation is a compressive force, there is a perfectly 
valid explanation for it. 
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FIG. 3. Solid phase displacement in Z direction in (a) imaginary value and (b) real value for 
frequency 1-32 Hz.  

The frequency-domain elastic response of the material is essentially a time-average with 
a sinusoidal weighting function as given by the Fourier transform: 

 
us (r,ω ) = us (r,t

−∞

+∞

∫ ) exp[iωt] dt = us (r,t)
−∞

+∞

∫ cosωt  dt + i us (r, t)
−∞

+∞
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where 1i = − . When the angular frequency ω is either too low or too high, the average 
will be small since the integral of the product of the periodic oscillation of either sine or 
cosine function and a relatively constant us(r, t) will yield a value close to zero. When 
us(r, t) has a peak, it is possible for us(r, ω) to have either a negative or positive peak if 
the oscillation period matches with the time of occurrence of the peak in us(r, t) for a 
particular position r. 

a) 

b) 
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FIG. 4. (a) Real and (b) imaginary components of work done by the force distribution that acts as 
the external source of seismic and electromagnetic excitations in the simulations.  

Figure 4(a) shows the energy WE injected into the soil as a function of frequency. WE 
is the work done to the porous soil by the surface force distribution at a given frequency. 
This quantity is obtained by summing over the area of the top surface the product of the 
force distribution and the solid deformation at z = 0: 

 
WE (ω ) = A0 F(xi , yi ,0)uz

xi ,yi( )
∑ (xi , yi ,0)

, (13) 

where A0 = 13.2 m2 is the unit area averaged over surface mesh areas. Below 24 Hz, the 
work done stays relatively constant at about 1.3 MJ⋅s, but starting from 24 until 55 Hz, 
the work done changes rapidly. In this frequency range, we observe a positive peak at 24 

a) 

b) 
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Hz and a negative peak at 25 Hz. Above 55 Hz, the energy injection decreases with 
increased frequency. The sudden change of the behavior of the work done at 24-28 Hz we 
believe is related to a resonance effect. This is confirmed by the presence of a negative 
peak at 25 Hz imaginary component of the work done shown in Figure 4(b). The 
imaginary component is due to the imaginary component of uz.  

 

 
 

 

Figure 5. (a) Real and (b) imaginary components of the elastic energy of the solid phase. The 
real component is the energy absorbed in the solid phase, while the imaginary component is the 
energy transferred from the liquid phase due to viscosity.  

a) 

b) 
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Figure 5(a) is the spectrum of elastic energy stored in the solid phase and confirms the 
resonance indicated by the work done plot in Fig. 4(a). Figure 5(a) describes the energy 
absorbed by the solid phase as a function of frequency. The elastic energy density (per 
unit volume) is calculated using 

 2 2

1 1 2S ik kk
EW u uν
ν ν
⎛ ⎞= +⎜ ⎟+ −⎝ ⎠

, (14) 

where E and ν are Young's modulus and Poisson's ratio, respectively, and uik are the 
strain tensor of the solid phase (i.e., elastic strains from us). The sum of the elastic energy 
density over the entire volume yields the total elastic energy in the solid phase. The 
amount of elastic energy in the solid phase does not exceed the energy injected to the soil, 
except at 25 Hz, where the peak reaches 4×107 J⋅s, higher than the work done peak at 24 
Hz in Fig. 4(a). This does not violate the energy conservation, however, since the total 
elastic energy (summed over the frequency spectrum) in the solid phase is lower than the 
total energy injected by the force distribution. The 25-Hz peak is within the 24-25 Hz 
range in Fig. 4(a) where the value changes rapidly from positive to negative. Figure 5(a) 
shows another smaller, broader absorption peak at 48 Hz, which coincides with the peak 
at the same location in Fig. 4(a). The imaginary component of the elastic energy in the 
solid phase, shown in Fig. 5(b), is negligible compared to the real component. 

The governing equations for the seismic-induced electromagnetic wave propagation 
have only fluid viscosity as the dissipation term. The energy stored in the fluid can be 
estimated by the Biot's model of elastic displacements in a porous medium: 

 21 ,
2FW C Mζ ζ= − +  (15)

 (15) 

where C and M are material constants for the fluid phase, and ( )s fζ φ= ∇ ⋅ −u u   for a 
given porosity φ. The real component of the fluid energy exhibits a positive peak at 25 Hz, 
as shown in Figure 6(a). The location of the positive peak coincides with the peak in the 
elastic energy of the solid phase in Fig. 5(a). In fact, the general shape of the fluid-phase 
energy is almost identical to the solid-phase energy. The magnitude of the fluid-phase 
energy is eight orders of magnitude smaller than that of the solid. This aspect is rather 
puzzling: Why does the fluid absorb much less energy than the solid despite the fact that 
its porosity is 0.2?  One fluidic aspect neglected in the calculation of fluid energy is the 
energy stored as fluid pressure. The Biot formulation, however, neglects the fluid's 
volume change due to elastic displacement, which gives rise to pressure. The fluid-phase 
energy in the Biot model only includes the relative displacement between the solid and 
the fluid phases. The peak in Fig. 6(b) indicates an energy absorption by the fluid phase, 
which is also reflected in the solid phase.  

The coincidence between the fluid and solid energy spectra suggests that both phases 
move in unison; their relative displacement is very small. The amount of energy absorbed 
by the liquid is very small compared to the magnitude of the work done (energy input) to 
the system due to reasons above. However, the resonant frequency (25 Hz) is the same in 
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both liquid and solid phases. The amount of energy dissipated by the liquid, as given by 
the imaginary component of the fluid energy, is negligible as graphed in Figure 6(b). 

 

 

FIG.  6. (a) Real and (b) imaginary components of the energy of the fluid phase.  

To understand the resonance effect, we offer an analogy with the classical Lorentz 
dipole model that explains complex-valued dielectric function, i.e., refractive index. This 
model is appropriate for describing optical refraction and absorption in dilute dielectric 
materials, where the absorbing agent is a microscopic electrical dipole. This dipole 
behaves like a mechanical spring; it does not dissipate energy. The two atoms (or 
molecules) that make up the dipole have masses. The energy dissipation is provided by 
energy loss due to collisions and other microscopic effects, which can be represented by a 
mechanical damper. The spring-mass-damper system with a sinusoidal external excitation, 
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when analyzed in frequency domain, produces the complex-valued dielectric function. 
The real part corresponds to the refractive index which has zero value exactly at the 
frequency where the absorption (resonance) peak occurs. The shape of the real 
component has the shape of the derivative of a Lorentzian function with respect to the 
frequency, while the shape of the imaginary component is given by the Lorentzian. The 
shapes of these components resemble those around the 24 Hz peak shown in Figure 4. 

The elastic wave equation coupled with the fluid viscous motion describes coupled 
nearest-neighbor springs–instead of an isolated spring-mass-damper system–in the 
governing equations, as evident in equations (5) and (9), where the force is proportional 
to the gradient of the divergence of the solid-phase displacement vector. Each spring is 
accompanied by a damper representing the viscous fluid. Therefore, the equation of 
motion for the solid-phase displacement can be interpreted as a coupled spring-mass-
damper system. A coupled system of only springs introduces collective vibrational modes 
such as those seen in lattice atomic vibrations. When dampers are added to the coupled 
springs, it is possible that the entire coupled system can be seen as an isolated spring-
mass-damper system, but this depends on the excitation strength (Hollweg, 1997). 
Further analysis is required to interpret our simulation results in terms of the coupled 
spring-mass-damper system. More specifically, we aim to answer why the resonance 
peaks occur at 25 and 48 Hz. Hollweg (1997) states that it is possible for a system of 
coupled oscillators to behave like a single damped oscillator under certain conditions.  

The resonance effect in our simulation is not caused by boundary conditions 
(simulation size) used. We have reduced the force peak magnitude from 107 N/m2 to only 
100 N/m2, a five order of magnitude reduction, and find that the spatial patterns of uz are 
unchanged. We note that uz at the top surface determines the work-done spectrum (Fig. 4) 
since the force distribution is identical for all frequencies. Figure 7 shows the plot of uz at 
24 Hz on the surface for the two force peak values. The surface patterns are identical for 
the two force peaks. We conclude that this resonance effect is inherent in the governing 
equations.  
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FIG.  7. The patterns shown by uz at 24 Hz on the surface (z = 0) are independent of the force 
peak magnitude. The unit of uz is meter. The real components of uz for (a) the 107 and (b) the 100 
N/m2 peaks have the same spatial patterns (although of course their magnitudes are rescaled 
accordingly). The imaginary components of uz for (c) the 107 and (d) the 100 N/m2 peaks have 
also the same spatial patterns. 
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FIG. 8. Snapshots of solid phase displacement in the z-direction. 
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Wez also perform a fast inverse Fourier transform to our frequency results (spanning 
from 1 to 32 Hz) to yield a time-dependent elastic displacement vector. While the 
frequency-domain results are useful for physical interpretations, the time-dependent 
elastic wave propagation results are useful for seismic interpretations. Figure 8 contains 
the results for uz from the fast Fourier transform. The temporal progression starts at the 
top left (Time Slice 1) and ends at the bottom right (Time Slice 8) with a time interval of 
31.25 ms. We use a narrow frequency band due to mainly very large computation time 
required. The elastic wave at the surface oscillates in time as expected and the wave 
decays to zero at the boundaries due to the Dirichlet conditions imposed. 

 

 

FIG. 9. (a) Real and (b) imaginary component of the elastic energy in the solid phase. We plot 
only data near the 25 Hz peak.  

a) 

b) 
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To probe further the resonance effect we propose, we perform simulations with fluid 
phase having a viscosity of 107 Pa⋅s and find the 25 Hz to broaden as displayed in Fig. 
9(a)-(b). The peak remains at 25 Hz and the peak width does not increase significantly 
with the increased viscosity. The peak location in frequency is consistent with the 
absorption peak of the single damped oscillator model described earlier, where the 
resonance peak is not altered by increased viscous dissipation. However, the absence of 
broadening with increased viscosity is not consistent with the single damped oscillator 
model. Further analysis in comparing our results with a model of coupled damped 
oscillators is required. 

The plot of Ez(0,0,z), i.e., the z-component of the electric field vector at (x,y) = (0,0) as a 
function of depth z, generated by the relative motion of opposite charged ions at the fluid-
solid interface is displayed in Fig. 10. Boundary conditions are of Dirichlet type at the top 
surface (z = 0) and the bottom surface (z = 200). The magnitude increases rapidly 
between 24 and 32 Hz, corresponding to the increased energy absorption in the solid and 
fluid phases. The oscillation shows that electrical dipoles along the z-direction are 
realized. The real and imaginary components of the electric field are comparable and 
should be detectible in field experiments by installing voltage probes at two different 
depths. Such measurement techniques require boreholes. The low-frequency electric field 
corresponds to a diffusive process of ionic transport and we expect the electric field at 
this frequency band to produce essentially an Ohmic character of electrical conduction. 
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FIG. 10. (a) Real and (b) imaginary components of electric field in z-direction for frequency 1-32 
Hz.  

The electric fields in the x- and y-directions do not produce large-scale electrical 
dipoles. The randomly oriented dipoles at 16 and 24 Hz will make voltage measurements 
difficult to be performed in the field. The random patterns persist in most frequencies we 
tested. The seemingly chaotic patterns we believe are caused by the diffusive nature of 
the electrical conduction at low frequencies, although they are partially caused by the 
mesh geometries. We plan to perform simulations at higher frequencies (up to 1000 Hz) 
to see whether large-scale dipoles can be induced. 

a) 

b) 
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FIG. 11. The electric field produced at (top) 16 Hz and (bottom) 24 Hz. The left panels show the 
x-components, while the right panels show the y-components. 

The magnetic field along the z-direction can generate a Lorentz force for an electrical 
current running along the x- and y-directions. This force will deflect the current direction 
toward the y- and x-directions, respectively. A Hall effect measurement may be able to 
detect this magnetic field generated by the induced electromagnetic field. Figure 12 plots 
the z-component of the magnetic field B on the surface at 16 and 24 Hz. Its magnitude is 
around 1 nT. The strength of stray magnetic field from the Earth can range from 0 to 300 
nT (Hand, 1976). We believe our simulation results have demonstrated a promising 
opportunity to detect the seismoelectric signal using the Hall effect. What is important is 
appropriate frequency isolation from the stray field.  
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FIG. 12. Top panels show magnetic field along the z-direction on the surface (z = 0) at (left) 16 
Hz and (right) 24 Hz. The bottom panels are the magnetic field along the x-direction on the 
surface at (left) 16 Hz and (right) 24 Hz. 

CONCLUSIONS 
We have numerically demonstrated that the frequency response of a homogeneous and 

saturated porous soil possesses a resonance behaviour at two distinct frequencies. A sharp 
peak at around 25 Hz is attributed to the elastic resonance of the soil, while the peak at 
around 48 Hz is broader and the broadening may be caused by viscous drag force from 
the fluid phase. The energy analysis finds that almost the entire work done by the surface 
force excitation from the single-shot explosion is stored as elastic energy in the solid 
phase. The resonance peaks in the fluid and the solid phases coincide, which suggest they 
behave synchronously within the frequency range of 0-64 Hz. This result alone convinces 
us that more significant seismoelectric signal generation can be obtained at higher 
frequencies, where relative motion between the fluid and solid phases becomes more 
pronounced. We suspect the Biot fluid energy expression does not incorporate the 
contribution from fluid pressure. Theoretical investigation into the governing equations 
should give us additional insight into the resonance effect observed in our simulations. 
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magnitude of induced magnetic field is around 1-10 nT, and we believe it should 
detectible using high-precision magnetometers, such those based on Hall effect. 
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