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The relationship between dry rock bulk modulus and porosity – 
An empirical study  

Brian H. Russell1 and Tad Smith2 

ABSTRACT 
There are various approaches to computing dry rock bulk modulus as a function of 

porosity and, from this, inferring velocity and density changes due to reservoir fluid 
change as a function of porosity.  One such approach is the pore space stiffness method.  
A second approach is the critical porosity model (Mavko and Mukerji, 1995). Using the 
clean sandstones at different pressures from a dataset collected by Han (1986), and Han 
et al. (1986), we will evaluate the accuracy of each method. Based on the observations as 
a function of reservoir pressure, we will also predict an empirical relationship between 
pore space stiffness and pressure.  

INTRODUCTION 
Fluid replacement modeling is a procedure whereby the in-situ properties of a 

reservoir are replaced with alternate values from which seismic parameters such as P-
wave velocity, S-wave velocity and density can be computed.   The basic equations for P 
and S-wave velocity in the saturated, porous reservoir can be written as 
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where the subscript sat indicates the fluid-saturated case, VP is the P-wave velocity, VS is 
the S-wave velocity, ρ is the density, μ is the shear modulus, and K is the bulk modulus, 
or the inverse of compressibility.  We will assume that the values given in equations (1) 
and (2) are the observed in-situ values. Our goal is to then compute new values 
representing alternate reservoir conditions.   
 

In equations (1) and (2), the saturated density can either be measured in-situ or 
computed from the equation 
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, (3) 
where the subscripts m, w, g and o indicate matrix, water, gas and oil, S is the fraction of 
saturation of each fluid component and φ is porosity.  (Note that even if we measure the 
in-situ density values, equation (3) will be used in the fluid replacement modeling case).   
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Once we have the measured or computed saturated density value, the value of the 

shear modulus in equations (1) and (2) can be computed from the S-wave velocity using 
equation (2) to give: 
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The value of the saturated bulk modulus can then be found from equation (1), giving: 
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Now we proceed to perform fluid replacement modeling.  The generally accepted 
method of doing this is with the Biot-Gassmann equations (Biot, 1941), (Gassmann, 
1951), (Mavko et al., 1988). These equations assume that the shear modulus is 
independent of fluid content (but not porosity, which will be discussed later), or 

 
drysat μμ =

 
where μdry is the shear modulus of the dry rock, which is the rock for which the pore 
fluids have been fully evacuated.  For the bulk modulus, the Biot-Gassmann equations 
can be written: 
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where Kdry is the dry rock bulk modulus, Km is the mineral bulk modulus and Kfl is the 
fluid bulk modulus, normally computed by the Reuss average given by 
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(Note that this is for uniform distribution of the fluids.  For patchy saturation, we use the 
linear Voigt average). 
 

There are many alternate forms of the Biot-Gassmann equations besides equation (7), 
but we have found this form to be the easiest to work with when performing fluid 
replacement modeling.  If we assume that we know the saturated, mineral and fluid bulk 
modulii, as well as the porosity, then the only unknown in equation (7) is the dry rock 
bulk modulus.  This can then be computed by re-arranging equation (7) to give 
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Once we have computed Kdry, we can change the fluid value by using new saturations 
in equation (8) and then re-compute Ksat and thus ρsat and VP_sat. For the case of a fluid 
change only, the shear modulus and dry rock bulk modulus will not change.  However, if 
we want to change the porosity in equation (7), both the dry rock and shear modulii will 
change. To change these parameters, there is no clear consensus as to which method to 
use.  The first author of this report (BR) has always used a method based on pore 
stiffness, but this was simply because this was what was suggested by another author 
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when he first implemented fluid replacement modeling. Mavko and Mukerji (1995) 
suggest that a better approach is the critical porosity method, and figures in their paper 
would appear to support this assertion.   

The objective of this study is therefore to use the dataset obtained by Han (Han et al., 
1986) to determine which of these two methods gives a better fit. First, we will review 
the theory behind the pore stiffness and critical porosity methods.  

PORE STIFFNESS AND CRITICAL POROSITY 
To model dry rock bulk modulus at different porosities, one approach is to use pore 

space stiffness, which is the inverse of the dry rock space compressibility at a constant 
pore pressure. It can be shown using the Betti-Rayleigh reciprocity theorem (Mavko and 
Mukerji, 1995) that the pore space stiffness, Kφ, is related to the dry rock bulk modulus, 
the mineral bulk modulus and porosity by the relationship 
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Note that equation (10) can be re-arranged to give the following relationship 
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where mK
K

k φ=
.   

Equation (11) tells us that the dry rock over matrix bulk modulus ratio is an inverse 
function of porosity and the pore space stiffness over matrix bulk modulus ratio k.  Note 
first that this equation confirms our observations that we expect this ratio to go to one at 
zero porosity. Also, it is clear that either as k gets smaller or f gets larger, this ratio gets 
smaller. This is confirmed in Figure 1, which shows a family of dry rock over matrix bulk 
modulus ratio curves for varying values of k. The basic idea behind the pore stiffness 
method is that, for a given pressure, Kφ should stay constant over a range of porosities, 
allowing us to re-compute Kdry at a different porosity, φnew, using the a re-arrangement of 
equation (10) given by: 
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By estimating Kφ  from the in-situ case, we can therefore compute a new value of Kdry at a 
new porosity. 
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FIG. 1. A family of dry rock over matrix bulk modulus ratio curves for varying values of k. 

 
An alternate approach to changing Kdry as a function of porosity is the critical porosity 

method (Nur, 1992, Mavko and Mukerji, 1995). To understand this approach, let us first 
consider the upper (Voigt) and lower (Reuss) bounds. As also discussed by Mavko and 
Mukerji (1995), these two bounds are given by: 
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Note that the normalized Voigt bound is therefore given as: 
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As shown by Nur (1992), high pressure sandstone and glass bead data often show 

fairly linear trends that can be shown to follow the equation: 
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where φc is equal to critical porosity, which is the porosity that separates load-bearing 
sediments below φc from suspensions above φc. Note that this is a scaled version of 
equation (15). 
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Figure 2 shows a comparison of the Voigt and Reuss bounds and the critical porosity 
and constant pore stiffness approaches. Note that the value labeled φmax is the point at 
which the constant pore stiffness curve crosses the Voigt bound.  Values above this point 
would be unrealistic.  In fact, the constant pore stiffness curve is really valid only up to 
porosities much less than this value. 

 

 

 
FIG. 2. A comparison of the Reuss and Voigt bounds and the critical porosity and constant Kφ 
curves. 

EMPIRICAL STUDY USING HAN’S DATASET 
In the previous section, we discussed two valid approaches to modeling Kdry as a 

function of porosity: the pore stiffness method and the critical porosity method.  In this 
section we will evaluate how well they fit a dataset that was measured by De-hua Han for 
his Ph.D. thesis at Stanford University (Han, 1986).  This dataset consisted of 70 separate 
sandstone samples of varying porosity and clay content (from clean to 51% clay).  For 
each sample, measurements of P-wave velocity, S-wave velocity and density were done 
for both the wet and dry cases.  In addition, the velocities were measured at pressures of 
5, 10, 20, 30, 40 and 50 Mpa, respectively.  This dataset was used initially by Han to 
predict the effects of porosity and clay content on the acoustic properties of sandstones 
(Han et al., 1986).  Mavko and Mukerji (1995) use only the ten clean sandstones from 
Han’s dataset in their examples.  They use all the sandstones at 40 Mpa, which illustrate a 
reasonable visual fit to a critical porosity trend, and a single sandstone at pressures from 5 
to 40 Mpa, which illustrate the fact that Kdry/Km is pressure dependent.  These two sets of 
points are shown in Figures 3(a) and (b), without any trends superimposed. 

   
In this study, we will perform an analytic study to determine which model gives the 

best fit to these points: critical porosity or constant pore space stiffness. 
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(a)      (b)    
FIG. 3. The clean sandstones from Han’s dataset plotted on the Kdry/Km versus porosity 
template, where (a) shows all ten sandstones at a pressure of 40 Mpa, and (b) shows a single 
sandstone at pressures of 5, 10, 20, 30 and 40 Mpa. 

 
First, let us consider the points in Figure 3(a), which represent ten clean sandstones at 

a pressure of 40 MPa. To fit the constant pore stiffness and critical porosity models to 
these points, note that both equations (11) and (16) can be fit by the simple linear 
function given as 
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where, for the critical porosity model, φ
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 and  where , or, in summation form, is given as 
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For the pore space stiffness method the best fit value was Kφ/Km = 0.162, and for the 
critical porosity method the best fit was φc = 0.343 (or 34.3%). If we apply these best fit 
values to the points to get the approximate solution ŷ , we can then find the root-mean-
square error (RMSE) from 
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For the two fits, we found that the RMSE for the pore space stiffness method was 
0.039, and for the critical porosity method was 0.058.  Thus, the critical porosity method 
is a better fit to these points.   The fits are shown in Figures 4(a) and (b). 

  

 

(a)      (b)    
FIG. 4. The best fits for the (a) constant pore space stiffness method, where Kφ /Km = 0.162, and 
the RMS error is 0.039, and the (b) critical porosity method, where φc = 0.343 (or 34.3%), and the 
RMS error is 0.058. 

 
If we next turn our attention to Figure 3(b), the single sandstone at different pressures, 

we find that we can fit different pore space stiffness and critical porosity models to the 
points. Since constant pore space stiffness and critical porosity values hold only for 
constant pressures, we would expect a family of curves, as shown in Figures 5(a) and (b).  
As expected the constant Kφ decreases for decreasing pressure, as does φc. 
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(a)      (b)    
FIG. 5. Curves of decreasing pressure for (a) the pore space stiffness method and (b) the critical 
porosity method. As expected, both Kφ and φc decrease with decreasing pressure.  

 
However, what we need to do is next is to look at all the values of pressure for each of 

the clean sandstones and derive a best fit for each set of points. 

A PRESSURE VERSUS Kφ  RELATIONSHIP 
We next performed a least squares fit to the full set of ten clean sandstones at each 

pressure: 5, 10, 20, 30, 40 and 50 Mpa.  This is shown in Figures 6(a) and (b) for the 
lowest (5 MPa) and highest (50 Mpa) pressures. 

 

   

(a)      (b)    
FIG. 6. The best fit curves for pressures of 50 MPa (top curve in blue) and 50 MPa (bottom curve 
in red) for (a) the pore space stiffness method and, (b) the critical porosity method. 

The best fit values and RMS errors for each of the six pressure relationships is shown 
in Table 1. As can be seen in the table, the error is smaller for the pore space stiffness 
method in each case, and the values of pore space stiffness and critical porosity increase 
with increasing pressure, as we expect. 
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Table 1. The best fit values and RMS errors as a function of pressure for the critical porosity and 
pore space stiffness methods 

 
P(MPa) φc RMSE Kφ /Km RMSE 

5 0.289 0.126 0.104 0.094 

10 0.311 0.107 0.129 0.076 

20 0.329 0.079 0.147 0.055 

30 0.338 0.069 0.156 0.044 

40 0.343 0.058 0.162 0.039 
50 0.348 0.053 0.166 0.038 

. 

Obviously, we can produce a fit to either the critical porosity or pore space stiffness 
values.  But, since the pore space fitness curves produce a better least-squares fit to the 
data, we will focus on deriving a relationship between those values and pressure. Figure 
7(a) shows the fit of Kφ/Km versus pressure on a linear scale and Figure 7(b) shows the fit 
of Kφ/Km versus pressure on a semi-logarithmic scale, where the natural logarithm of 
pressure has been plotted on the horizontal axis. Note that the logarithmic fit is close to 
linear, and a best-fit linear fit has been applied. The coefficients for this fit are 
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(a)      (b)    
FIG. 7. The constant Kφ /Km fits as a function of pressure plotted on (a) a linear-linear scale and 
(b) a linear-logarithmic scale.  Note the good linear fit in (b). 

Note that since equation (21) involves a logarithm, we can use calculus to differentiate 
this equation and get: 

 P
K
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dK m027.0=φ

. (22) 
Replacing the derivative with the difference operator and re-arranging, we then find: 
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Equation (23) is a very useful result, since it allows us derive constant Kφ curves at 
different pressures than the in-situ pressure, and hence predict a depth variable Kdry 
versus porosity relationship. 

FLUID REPLACEMENT MODELING 
Now let us apply the fluid and porosity methods of substitution that we have discussed 

in the last two sections to a typical sand, for a range of porosities and fluids. For fluid 
substitution, we will use Biot-Gassmann, as described in the Introduction. For the 
porosity change, we will use the constant pore space stiffness method. The one item we 
have not addressed is the way in which shear modulus is changes as a function of 
porosity. As shown empirically by Murphy et al. (1993), the modulus ratio Kdry/μ is 
remarkably constant for clean sandstones over a range of porosities.  The authors found a 
value of 0.9 for this ratio. Assuming that this ratio is constant, regardless of its value, 
once we have computed the in-situ and new values of Kdry, we can compute a new value 
for the shear modulus by the equation: 

 situindry

newdry
situinnew K
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_μμ
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Fluid replacement modeling for a wide range of porosities (0 to 50%) and fluids 
(100% wet to 100% gas) is shown in Figure 8 for a variety of combinations of 
parameters, including Poisson’s ratio versus P-wave velocity, VP/VS ratio versus P-wave 
velocity, VP/VS ratio versus P-impedance, and VP versus VS. 
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(a)      (b)    

   

(c)      (d)    
FIG. 8. Fluid replacement modeling for a gas sand with Sw ranging from 100% (wet) to 0% (gas) 
and for porosities ranging from 0% to 50%, where (a) shows Poisson’s ratio versus P-wave 
velocity,  (b) shows VP/VS ratio versus P-wave velocity, (c) shows VP/VS ratio versus P-
impedance, and (d) shows VP versus VS. 

In Figure 8, note that the key observation is that Poisson’s ratio or VP/VS ratio is the 
key indicator of fluid content, whereas P-wave velocity or impedance is the key indicator 
of porosity. It should be pointed out that the pore space stiffness method that was used in 
the plots to compute porosity change should probably not be used over as wide a range as 
shown. But, in this case, note that most of the changes are seen in the low porosity range, 
so pushing the limits of the model is probably not hurting us too much. 

CARBONATE EXAMPLE 
Convential wisdom tells us that the pore space stiffness method works best for 

unconsolidated sandstones. However, Baechle et al. (2006) found that they could use this 
method to differentiate between vuggy porosity and microporosity in a carbonate. The 
authors made 288 ultrasonic measurements from six separate pure carbonate provinces 
and found that sonic velocity was not only dependent on total porosity, but also on pore 
type.  
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Figure 9, which is taken from a paper given by Baechle at “The sound of geology” 
workshop in Bergen, Norway, shows quite clearly that these two trends of points can be 
separated using the pore space stiffness method. The authors of this study used the term α 
for Kφ/Kdry (which we called k), and find than an α value of 0.1 fits the carbonates that 
display microporosity and an α value of 0.2 fits the carbonates that display vuggy 
porosity (the red circles in the figure). The authors conclude that microporosity reduces 
pore stiffness whereas vuggy porosity creates higher pore stiffness at a given porosity.  
Note also that the dashed line on the figure is the critical porosity model, which does not 
clearly separate the two porosity trends.  

 

FIG. 9. The use of the pore space stiffness method to discriminate vuggy porosity from 
microporosity in carbonate ultrasonic measurements. 

EMPIRICAL FITS 
The two methods that we have discussed, constant pore space stiffness and critical 

porosity, assume that our data will fit neatly into one or the other model.  However, as we 
have seen, most data will not fit either model perfectly. For that reason, Smith (2007) 
suggests that empirical fits can be done to either the computed dry rock bulk modulus or 
the computed shear modulus as a function of porosity. This is shown for a set of 
sandstones of various porosities and shale content in Figure 10. Both fits were done with 
the function given by 

 
cbaM ++= φφ 2

, (25) 
where M is the particular modulus. 
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Note that Kdry/μ ratio converges to 1.0 as the shale content goes down, close to the 
value predicted by Murphy et al. (1993). However, for large shale content, the ratio is 
equal to values as high as 1.6, suggesting that our assumption that the ratio is constant is 
not valid in shaly sands. 

 

 

FIG. 10.  Empirical fits to Kdry and μ for a variety of sandstones of differing porosities and shale 
content. The correlation coefficient is given as R2. 

CONCLUSIONS 
In this study, we evaluated two different approaches to the modeling of Kdry versus 

porosity in clean sands: the pore space stiffness method and the critical porosity method.  
Both methods were evaluated using the clean sandstones measured by Han (1986). We 
found that a useful display and analysis tool was the Kdry/Km versus porosity template 
proposed by Mavko and Mukerji (1994). For the range of porosities found in the Han 
sandstones, the pore space stiffness method gave a closer fit than the critical porosity 
method. By performing fits over a range of different pressures, we were then able to 
derive a relationship between pressure and constant pore space stiffness, and hence 
between Kdry and porosity at different pressures or depths.  Work by Baechle et al. (2007) 
as also shown that the pore space stiffness method can be used to differentiate 
microporosity from vugular porosity in carbonates. 

However, data compiled by Smith (2007) shows that this approach may start to break 
down in shaly sands. Also, the method should not be pushed to too high or low porosity 
limits, and probably works best in the range found in the Han samples, between about 8 
and 22%.  
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