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Plane-wave reflection coefficients for anisotropic media: 
Practical implementation 

Charles P. Ursenbach and Arnim B. Haase  

ABSTRACT 
A step-by-step procedure is described for calculating reflection coefficients between 

media of monoclinic or higher symmetry, which possess a mirror plane parallel to the 
horizontal reflecting plane between the two media. This is based on a theoretical 
description available in the literature, and attempts to make these valuable results 
available to a wider audience.   

In general outline, one begins with an incident ray in the upper medium, specified by a 
polar and azimuthal angle. One form of the Christoffel equations can be used to obtain 
the slowness vector of the incident wave. Next, using another form of the Christoffel 
equations, and the constancy of the horizontal slowness components, one obtains a 
unique vertical slowness for each reflected and transmitted wave, six in all.  Using the 
Christoffel equations once more, but in their original form, one can then obtain the 
polarization vectors of each reflected and transmitted wave.  One then has sufficient 
information to construct impedance matrices, and these may be combined with matrix 
algebra to obtain two new matrices, one with all of the reflection coefficients and one 
with all of the transmission coefficients.  

A key aspect of programming a non-trivial code such as this is testing.  This paper 
includes benchmark numbers which can be used to begin rigorous testing of an 
implementation of the above theory. 

INTRODUCTION 
Schoenberg and Protázio (1992) have presented a method for computing reflection and 

transmission coefficients between two anisotropic media. The only restriction is that each 
medium must possess a mirror plane parallel to the interface. This excludes triclinic 
media, but allows monoclinic and all higher symmetries.   

For a derivation of the theory we refer the reader to the paper of Schoenberg and 
Protázio (1992). This report is concerned with presenting a straightforward, step-by-step 
description of how the theory can be implemented in a computational setting, and then 
presenting a few benchmark tests that are useful in testing the resulting program. 

THEORY 
To begin with we review the notation of the Christoffel matrix and equations. The 

theoretical development then begins by obtaining the slowness vector of an incident wave 
of specified type and angle. Next we will obtain slowness and polarization vectors of the 
reflected and transmitted waves, each in their own medium. Following this we construct 
two 3 × 3 “impedance” matrices for each medium. Finally we will combine all four 
matrices to yield reflection and transmission coefficients at the interface for a given ray 
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parameter or angle of incidence, analogous to the Zoeppritz coefficients for isotropic 
media. 

Christoffel matrix and Christoffel equations 
Various conventions have ascribed different meanings to the term ‘Christoffel matrix’.  

We will denote its generic component as 

 ik ijkl j l
jl

c s sΓ =∑ , (1) 

where cijkl is a component of the fourth-order elastic tensor for a single homogeneous 
medium, and si is a component of the slowness vector of a plane wave within that 
medium. As needed we will append the superscripts U and L to refer to the upper and 
lower media, respectively (e.g. U

ijklc , L
is , etc.). 

It is common to take advantage of the symmetries of an elastic tensor and to 
notationally compress the 3 × 3 × 3 × 3 tensor into a 6 × 6 matrix, with elements cij. In 
this case the elements of the monoclinic Christoffel matrix are written as [compare with 
the expression following equation 27 of Schoenberg and Protázio, (1992)] 

 ( )
( ) ( )
( ) ( )

2 2 2
11 11 1 66 2 55 3 16 1 2

2 2 2
22 66 1 22 2 44 3 26 1 2

2 2 2
33 55 1 44 2 33 3 45 1 2

2 2 2
12 21 16 1 26 2 45 3 12 66 1 2

13 31 13 55 1 3 36 45 2 3

23 32 36 45 1 3 23 44 2

2

2

2

c s c s c s c s s

c s c s c s c s s

c s c s c s c s s

c s c s c s c c s s

c c s s c c s s

c c s s c c s s

Γ = + + +

Γ = + + +

Γ = + + +

Γ = Γ = + + + +

Γ = Γ = + + +

Γ = Γ = + + + 3

. (2)  

In the orthotropic case, these equations simplify to 

 ( )
( )
( )

2 2 2
11 11 1 66 2 55 3

2 2 2
22 66 1 22 2 44 3

2 2 2
33 55 1 44 2 33 3

12 21 12 66 1 2

13 31 13 55 1 3

23 32 23 44 2 3

c s c s c s

c s c s c s

c s c s c s
c c s s

c c s s

c c s s

Γ = + +

Γ = + +

Γ = + +
Γ = Γ = +

Γ = Γ = +

Γ = Γ = +

, (3) 

but note that if the axes of the orthotropic medium are rotated azimuthally about the 
vertical coordinate axis, then the resulting Christoffel matrix will have the monoclinic 
form, as in equation 2. [Elastic constants for a medium which has been rotated relative to 
the crystallographic coordinate system can be obtained using the Bond transformation 
(Winterstein, 1990)].  Other Christoffel matrices of interest are for the HTI case, 
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( )

( )
( )
( )

2 2 2
11 11 1 66 2 3

2 2 2
22 66 1 33 2 44 3

2 2 2
33 66 1 44 2 33 3

12 21 13 66 1 2

13 31 13 66 1 3

23 32 33 44 2 3

c s c s s

c s c s c s

c s c s c s
c c s s

c c s s

c c s s

Γ = + +

Γ = + +

Γ = + +
Γ = Γ = +

Γ = Γ = +

Γ = Γ = −

, (4) 

the VTI case, 

 

( )
( )
( )
( )

2 2 2
11 11 1 66 2 44 3

2 2 2
22 66 1 11 2 44 3

2 2 2
33 44 1 2 33 3

12 21 11 66 1 2

13 31 13 44 1 3

23 32 13 44 2 3

c s c s c s

c s c s c s

c s s c s

c c s s

c c s s

c c s s

Γ = + +

Γ = + +

Γ = + +

Γ = Γ = −

Γ = Γ = +

Γ = Γ = +

, (5) 

and the isotropic case, 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2 2 2 2 2
11 11 1 44 2 3 1 2 3

2 2 2 2 2 2
22 44 1 11 2 44 3 2 1 3

2 2 2 2 2 2
33 44 1 2 11 3 3 1 2

12 21 12 44 1 2 1 2

13 31 12 44 1 3 1 3

23 32 12 44 2 3 2 3

2

2

2

c s c s s s s s

c s c s c s s s s

c s s c s s s s

c c s s s s

c c s s s s

c c s s s s

λ μ μ

λ μ μ

λ μ μ

λ μ
λ μ
λ μ

Γ = + + = + + +

Γ = + + = + + +

Γ = + + = + + +

Γ = Γ = + = +

Γ = Γ = + = +

Γ = Γ = + = +

. (6) 

The Christoffel equations arise naturally from assuming a plane-wave solution to the 
anisotropic wave equation. They can be expressed in terms of the Christoffel matrix as 
[compare with equation 27 of Schoenberg and Protázio, (1992)] 

 ( ) 0I uρΓ − = , (7) 

where ρ  is the density of the medium, and u  is the polarization vector of the wave.  

Slowness vector of the incident wave 
We assume that an incident wave is specified. This requires specification of the wave 

as compressional, shear vertical, or shear horizontal. (Although the meaning of these 
terms becomes blurred for anisotropic media, we will assume that the anisotropy is 
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sufficiently weak that the terms are still useful.) It also requires knowledge of its polar 
angle (θ ) relative to the interface normal, and its azimuthal angle (φ ) relative to some 
specified x-axis. The x- and y-axes are usually defined to lie along the symmetry axes of 
at least one of the two media.  

Assuming the incident wave originates in the upper medium, we begin by writing the 
Christoffel equations for the upper medium. However in this instance we multiply them 
by 2 /V ρ , so they are of the form 

 ( )2 0U V I uΛ − = , (8) 

where  

 
2 2 2

11 11 1 66 2 55 3 16 1 22
                             etc.

U U U U Ua n a n a n a n nΛ = + + +
. (9)  

and where /ij ija c ρ=  and i in Vs= . Thus ( )cos sin ,sin sin ,cosn φ θ φ θ θ=  is a unit 
vector parallel to the wavefront normal, and is known for the incident wave, as are the 
{aij}.   

Nontrivial solutions to equation 8 exist only under the condition 

 2 0U V IΛ − = , (10) 

which is a cubic equation in 2V  (also called bicubic in V). The three solutions of equation 
10 are eigenvalues of equation 8, and provide us with velocities of P-waves and two 
different S-waves moving through the upper medium in the direction n . Following 
Schoenberg and Protázio we will denote these velocities VP, VS and VT. Physically, these 
should always be positive, real numbers (so that the eigenvalues, 2V , should also be 
positive and real). The three corresponding slowness vectors then are 

 
1 2 3, ,P
P P P

n n ns
V V V
⎧ ⎫

= ⎨ ⎬
⎩ ⎭ , (11)  

 
1 2 3, ,S
S S S

n n ns
V V V
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

, (12)  

 
1 2 3, ,T
T T T

n n ns
V V V
⎧ ⎫

= ⎨ ⎬
⎩ ⎭ . (13)  

For seismic applications we will assume the incident wave to be compressional, and will 
thus assume that the incident wave slowness vector is given by equation 11. 
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Slowness vectors of reflected and transmitted waves 
We will require the slowness vectors for all reflected and transmitted waves. The 

horizontal components are already known, as they will be identical to those of the 
incident wave.  Thus if the incident wave is a P-wave, for instance, then the horizontal 
components will always be given by n1/VP and n2/VP. To obtain the vertical slowness for 
reflected and transmitted waves (which is n3/VP for the incident wave) we will use two 
Christoffel equations of the form of equation 7, one for the upper medium and one for the 
lower medium. These will only possess solutions again when their determinants are equal 
to zero, i.e. 

 U 0U IρΓ − = , (14) 

 0L L IρΓ − = . (15) 

The only unknown quantity in each of these equations is now s3, and each equation forms 
a bicubic equation in s3. (This is because of the requirement of a mirror plane of 
symmetry in each medium. Otherwise they would generally form sextic equations.) 

Equation 14 yields three solutions for 
2
3s . If a given reflected or transmitted wave is 

homogeneous (pre-critical), then its corresponding 
2
3s  value will be positive, and 3s  

may be positive or negative. The negative square roots of these values give the vertical 
slownesses for the P, S and T reflected waves. (As a check, the vertical slowness of the 
reflected P-wave should equal –n3/VP, by symmetry.)  Similarly equation 15 yields three 

other solutions for 
2
3s , and the positive square roots of these give the vertical slownesses 

for the P, S and T transmitted waves. This employs the convention that downgoing is 
positive and upgoing is negative. 

Having belaboured this point, we now emphasize that the expressions of Schoenberg 
and Protázio (1992) account for the signs, so one may always apply the positive value of 

3s . 

These vertical slownesses, combined with the horizontal slownesses already known, 
thus yield the six slowness vectors of the reflected and transmitted waves, for the given 
incident P-wave. 

Polarization vectors of reflected and transmitted waves 

We can now revisit equation 7 and solve it for u . We will do this six times, once for 
each different value of s3. For the three reflected waves we will use 

 ( )U 0U I uρΓ − = , (16) 

and for the three transmitted waves we will use 
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 ( ) 0L L I uρΓ − = . (17) 

Because these are homogeneous systems of equations, we can only solve in terms of a 
parameter. For instance, we can use two of the three equations to obtain expressions of 
the form 

 
1 3

2 3.
u au
u bu

=
=  (18) 

The third equation will add no further information, and one generally assumes 
normalization at this point,  

 2 2 2
1 2 31 ,u u u= + +  (19) 

so that 

 2 2
3 1u a b= − −  (20) 

and u1 and u2 can then be obtained from equation 18.  This occurs without complication 
for homogeneous waves, for which all components of u  are real. For an inhomogeneous 
wave though at least one component of u  is imaginary.  Conventionally when 
normalizing complex eigenvectors one employs the relation 

 
2 2 2

1 2 31 .u u u= + +  (21) 

In this case, however, this is wrong, and one should use equation 19 instead, even for 
complex eigenvectors, in order for the expressions of Schoenberg and Protázio (1992) to 
work correctly. 

Results so far: Slowness and polarization vectors for each medium 
Collecting results obtained thus far, we have slowness and polarization vectors for 

reflected waves in the upper medium, and for transmitted waves in the lower medium. 
Let us explicitly give the notation, as it will help keep things straight in the next section: 

Upper medium: 

 { } { }1 2 ,3 ,1 ,2 ,3, , , , ,r rr r r r
P P P PP Ps s s s u u u u= =  (21)  

 { } { }1 2 ,3 ,1 ,2 ,3, , , , ,r rr r r r
S S S SS Ss s s s u u u u= =  (22)  

 { } { }1 2 ,3 ,1 ,2 ,3, , , , ,r rr r r r
T T T TT Ts s s s u u u u= =  (23)  
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Lower medium: 

 { } { }1 2 ,3 ,1 ,2 ,3, , , , ,t tt t t t
P P P PP Ps s s s u u u u= =  (24)  

 { } { }1 2 ,3 ,1 ,2 ,3, , , , ,t tt t t t
S S S SS Ss s s s u u u u= =  (25)  

 { } { }1 2 ,3 ,1 ,2 ,3, , , , ,t tt t t t
T T T TT Ts s s s u u u u= =  (26)  

The upper subscripts refer to reflected (r) or transmitted (t), and the lower subscripts refer 
to the wave type (P, S, or T ) and to the Cartesian direction (1, 2, or 3). 

Impedance matrices 
Schoenberg and Protázio (1992) then give the reflection and transmission coefficients 

in terms of 3-by-3 X and Y matrices.  Using the notation of equations 21-26, we obtain 
[compare with equation 31 of Schoenberg and Protázio, (1992)] 

 

,1 ,1 ,1

,2 ,2 ,2

13 ,1 36 ,2 1 13 ,1 36 ,2 1 13 ,1 36 ,2 1

23 ,2 36 ,1 2 23 ,2 36 ,1 2 23 ,2 36 ,1 2

33 ,3 ,3 33 ,3 ,3 33 ,3

( ) ( ) ( )

( ) ( ) ( )

r r r
P S T

r r r
P S TU

r r r r r r
P P S S T T

r r r r r r
P P S S T T

r r r
P P S S T

u u u

u u u

c u c u s c u c u s c u c u s

c u c u s c u c u s c u c u s

c u s c u s c u

=

− + − + − +

− + − + − +

− − −

X

,3Ts

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

  (27) 
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55 1 45 2 ,3 55 1 45 2 ,3 55 1 45 2 ,3

55 ,1 45 ,2 ,3 55 ,1 45 ,2 ,3 55 ,1 45 ,2 ,3

45 1 44 2 ,3 45 1 44 2 ,3

45 ,1 44 ,2 ,3

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) (

r r r
P S T

r r r r r r r r r
P P P S S S T T T

r r
P S

U r r r
P P P

c s c s u c s c s u c s c s u

c u c u s c u c u s c u c u s

c s c s u c s c s u

c u c u s

− + − + − +

− + − + − +

− + − +

= − + −Y
45 1 44 2 ,3

45 ,1 44 ,2 ,3 45 ,1 44 ,2 ,3

,3 ,3 ,3

( )

) ( )

r
T

r r r r r r
S S S T T T

r r r
P S T

c s c s u

c u c u s c u c u s

u u u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎢ ⎥
⎢ ⎥+ − +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

  (28) 

For the lower layer one obtains LX  and LY  from expressions identical to equations 27 
and 28, but with the superscript r replaced by t.   

Reflection and transmission coefficients 
The X and Y matrices encode all necessary information about each layer. They are 

combined to yield reflection and transmission coefficients in the following manner 
[compare with equation 10 of Schoenberg and Protázio, (1992)]: 

 ( ) ( )1 1
,U L U L− −

= +D X X Y Y  (29) 

 ( ) ( )1 1 1,U L U L− − −⎡ ⎤= −⎢ ⎥⎣ ⎦
R X X Y Y D  (30) 

 
12 ,−=T D  (31) 

where matrices R and T are interpreted as containing reflection and transmission 
coefficients as follows [compare with equation 10 of Schoenberg and Protázio, (1992), 
which is transposed relative to these expressions]: 
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,

PP SP TP

PS SS TS

PT ST TT

R R R
R R R
R R R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R
 (32) 

 
.

PP SP TP

PS SS TS

PT ST TT

T T T
T T T
T T T

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T
 (33) 

IMPLEMENTATION AND TESTING 
The above method has been implemented in MATLAB and is included in the software 

distribution to sponsors for the 2007 software release. There is no extant set of 
benchmarks for testing orthorhombic plane-wave reflection coefficient programs, but the 
code has been tested as described next. 

 Comparison has been made with values extracted from Figure 4 of Ruger (1997) 
which claims to contain exact results for plane waves in an isotropic medium reflecting 
off of an interface with an HTI medium.  The extracted values (which we could only 
estimate with two-digit accuracy) are shown in the third column of Table 1.  Results from 
our code are given in the fourth column. Our results appear to agree with Figure 4 of 
Ruger (1997).  Comparison can only be made with the results for azimuthal angles of 30° 
and 60° and non-zero offset, because the method above is numerically unstable for θ = 0° 

and for φ = 0° and 90°.  It is possible in this case that the 3-by-3 matrix formulation 
reduces to 2-by-2 matrix expressions. (See for instance pages 133-136 of Schoenberg and 
Protázio.) In these cases, values of  φ close to 0° and 90° and of  θ close to 0° have been 
employed and again appear to agree with Ruger’s results.  

Table 1.  Values of RPP(θ) as given by Ruger (1997) compared with results obtained in this study. 

θ φ 
Fig. 4 of Ruger (1997) 

Present study 

0° - 0.066 0.06635615 (θ, φ) =(1°, 60°) 

0.06637131 (1°, 30°) 

0.06636817 (0.8°, 30°) 

40° 0° 0.096 0.09589535 (40°, <0.000001°) 

40° 30° 0.087 0.08708026 
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40° 60° 0.072 0.07165368 

40° 90° 0.065 0.06511655 (40°,90.1°) 

 

Some aspects of this program’s capabilities that are not tested by the results of Table 1 
include 

• full orthorhombic symmetry 

• an anisotropic overburden 

• non-alignment of upper and lower medium symmetry axes  

• behavior beyond the critical angle 

Further testing of this program might be accomplished using results from Rüger and 
Tsvankin (1997) and from Vavryčuk and Pšenčik (1998). 

CONCLUSIONS 

The original work of Schoenberg and Protázio (1992) provides a derivation of 
expressions useful for calculating reflection and transmission coefficients between two 
media of monoclinic or higher symmetry, as long as both media contain mirror planes of 
symmetry parallel to the interface.  However, it may not be obvious, particularly to the 
uninitiated, how such expressions are to be implemented in a computer program.  This 
report repackages the results of Schoenberg and Protázio (1992) in a way that is designed 
to make their work more accessible for a computer programmer.  A set of benchmark 
results have also been provided which may be useful in testing programs based on this 
method. 
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