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ABSTRACT 
A 3D modelling technique, called Rayleigh-Sommerfeld modelling, is described as an 

alternative to Kirchhoff modelling.  Rayleigh-Sommerfeld modelling, when applied using 
a forward Born approximation, is shown to be the familiar phase-shift migration running 
in reverse.  Compared to the Kirchhoff method, Rayleigh-Sommerfeld is much faster, 
especially on large datasets, but produces a similar response.  Rayleigh-Sommerfeld is 
used to create an exhaustive 3D synthetic dataset which will be used for 3D migration 
testing.  Such an exhaustive dataset, defined as having no spatial aliasing in either source 
or receiver gathers, can be extremely large and the efficiency of Rayleigh-Sommerfeld 
modelling is required to create one.  The model created is the response of three horizontal 
reflectors embedded in a v(z) medium.  Consisting of 1681 source gathers, each having 
1681 receivers, it is shown to be very high frequency and to contain both specular 
reflections and diffractions.  Example 3D shot record migrations demonstrate the fidelity 
of the model and the high resolution of prestack migration. 

INTRODUCTION 
Seismic modelling plays a major role in seismic exploration and, very frequently, 

finite-difference algorithms are the tool of choice.  This is because the finite-difference 
method can produce a very realistic response and the underlying earth model can be as 
highly variable as the real world.  However, the method has significant problems, 
foremost among these being the high computational cost and the presence of significant 
grid dispersion.  These two drawbacks usually compound one another in that the way to 
reduce grid dispersion is either to reduce the time-step, or to increase the order of the 
spatial differences, or both; these strategies all increase computational cost.  
Consequently, 3D finite difference modelling is often so severely limited by the required 
computational burden that the resulting temporal frequency bandwidth is restricted to 
much less than comparable real datasets.  This is especially true if an entire seismic 
survey, consisting possibly of hundreds or thousands of source records, is to be 
simulated.  A common fallback position is to use a raytracing code but then one is 
generally required to accept a model without diffractions, that is with only specular 
reflections.  This can be an unacceptable limitation as often the modelled data is intended 
to be migrated. Indeed, the primary purpose of creating the data may be to test an 
imaging algorithm.  Kirchhoff modelling is often seen as the extension of raytrace 
modelling to include diffractions; however, this comes at a much higher cost as each 
reflecting surface must be integrated across for each source-receiver pair. 

Here we report on the creation of an exhaustive 3D synthetic seismic dataset by a 
technique which we will call Rayleigh-Sommerfeld modelling.  By “exhaustive” we 
mean a dataset sampled sufficiently in both source and receiver positions that neither 
common source gathers nor common receiver gathers have any significant spatial 
aliasing.  This is important because our primary purpose is to study the 3D acquisition 
footprint and we postulate that much of that footprint arises from spatially aliased data.  
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Our paper begins with a detailed discussion of the concept of the exhaustive dataset, with 
special attention to the relationship between maximum frequency, velocity, and the 
spatial sample sizes needed to avoid aliasing.  Subsequently we develop Rayleigh-
Sommerfeld modelling and show that it is simply phase-shift migration in reverse.  We 
discuss the links between Rayleigh-Sommerfeld modelling, Kirchhoff modelling, and the 
Born approximation.  Finally, we conclude with examples of our modelled seismic data 
and discuss the computational cost compared to other methods.  We show that this 
method is an effective 3D modelling technique capable of producing very high frequency 
responses but with no multiples, surface waves, interface waves or similar phenomena.  

THE EXHAUSTIVE DATASET 
Temporal aliasing is nearly nonexistent in seismic data recording and processing 

because the data are usually passed through an analog (i.e. non-digital) low-pass filter 
that rejects frequencies above the Nyquist frequency, ( ) 12Nf tΔ −

= , defined by the 
chosen temporal sample interval, .tΔ   Usually such an antialias filter will actually begin 
rejection at 60%-80% of Nf  in order to reach maximum rejection for all frequencies 
greater than Nf .  However, spatial sampling, defined by the locations of sources and 
receivers, is inherently discrete and it is not generally possible to record and process a 
continuous signal in space prior to sampling.  For this reason, most seismic datasets 
suffer from a considerable degree of spatial aliasing.  In the best situations, usually only 
slow moving coherent noises show significant aliasing but, all too often, signal is also 
aliased. 

Modern seismic datasets are commonly 5D volumes, requiring two spatial dimensions 
to specify receiver locations, two more for source locations, and the fifth dimension is, of 
course, time (apologies to Einstein!).  The assessment of spatial aliasing requires the 
specification of a spatial ensemble, with its consequent spatial sampling, and many such 
ensembles can be found in the 5D volume.  The most obvious ensembles, or gathers, are 
common source (i.e. all traces recorded with a single source), common receiver (all traces 
recorded at a fixed receiver from any source), common offset (all traces with a fixed 
source-receiver offset, either vector or scalar), and common midpoint (all traces having 
the same source-receiver midpoint).  Many more ensembles can be defined and all 
typically have characteristic spatial sample sizes.  A particular seismic event may be 
spatially aliased in one ensemble but not in another.  Here we shall primarily be 
concerned with the common source and common receiver gathers, for which the spatial 
sample intervals are the receiver spacing and the source spacing respectively.  The 
common source gather is the only ensemble that represents a single physical wavefield 
and is the ensemble of actual recording.  Common receiver gathers are typically formed 
during data processing for reasons relating to the compositing of multiple source gathers 
into the final seismic image. 

Definition:  An exhaustive seismic dataset is one which shows no significant spatial 
aliasing in either common source or common receiver gathers. 

Of course, an exhaustive dataset may be aliased in other gathers but we will not pursue 
this point.  That an exhaustive dataset is even possible, given the impossibility of 
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continuous spatial recording, is the consequence of the temporally bandlimited nature of 
the data and the physical phenomenon of evanescence.  Many seismic datasets are 
temporally bandlimited because they were recorded with a bandlimited source such as 
vibroseis.  However, even if dynamite was used, which can generate very high 
frequencies, temporal band limiting still occurs because of the antialias filters used in 
temporal sampling and described above.  The vibroseis bandlimit imposed by the highest 
frequency is a limitation upon the signal band while the antialiasing bandlimit is a 
limitation upon both signal and background noise.  Put another way, prudent acquisition 
parameter selection usually has the temporal Nyquist at least twice as large as the highest 
sweep frequency, even though any frequencies higher than the swept band will contain 
minimal signal.  It is the highest signal frequency that is of concern here, not the Nyquist 
frequency, and we denote that highest signal frequency maxf . 

Surface seismic acquisition will be assumed here to occur on the plane z=0.  Such 
recorded data can be directly analyzed for its temporal frequency spectrum and the 
spectra of the two horizontal wavenumbers.  Denoting these as , ,  and x yf k k  
respectively, the vertical wavenumber, zk , can be calculated from the scalar wave 
dispersion relation 

 
2

2 2
2z x y

fk k k
v

= − −  (1) 

where v is the wavespeed. The surface recording can then be downward continued by 
application in the ( ), ,x yf k k  domain of the multiplication operator 
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where zΔ  denotes the size of the downward step.  The dual nature of the extrapolation 
operator in equation (2) is a mathematical statement of the phenomenon of evanescent 
waves.  Essentially, propagating waves are restricted to the cone described by 

2
2 2

2 x y
f k k
v

≥ +  while the exterior of this cone refers to Fourier components that are 

exponentially damped in the z direction.  Thus, it follows that, for temporally bandlimited 

data, all wavenumbers such that 
2

2 2
2x y

fk k
v

+ >  will be exponentially damped and of no 

consequence in subsurface imaging.  Thus, if the spatial sample rates are such that 
( ) 1 1

max2 x f vΔ − −>  and ( ) 1 1
max2 y f vΔ − −> , then there will be no significant spatial 

aliasing.  Taking x yΔ Δ= , a square sampling lattice requires 
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max2
vx
f

Δ ≤  (3) 

in order that spatial aliasing be negligible. 

The analysis in the previous paragraph needs further consideration for a real setting 
with variable velocity and surface waves.  Generally the near-surface layer has a much 
lower seismic wavespeed than any deeper layer.  Indeed, very slow P-wave speeds, often 
of the order of 1000 m/s or less, are commonly found and S-wave speeds are even slower.  
Given a typical maxf  of 100Hz, then 1000 m/s demands a spatial sample interval of 5 m, 
which is clearly very demanding.  Since our concern here is numerical modelling, and our 
technique does not automatically generate such slow waves, it will prove sufficient to use 
a subsurface velocity to determine the spatial sample interval.  In real data acquisition, it 
is often the case that surface waves and other coherent noises are aliased while deeper 
reflection events (signal) are not. 

An exhaustive dataset must have spatial sample intervals that conform to inequality 
(3) in all four of its spatial dimensions.  Assume that a model is to be constructed where 
the source and receiver lattices are identical and consist of a square grid with spacing xΔ  
and having area 2L , where L  is the size of the square, or aperture.  Then the exhaustive 
survey will require ( )2/L xΔ  receivers and the same number of sources.  Thus the 
number of seismic traces in such a model is  

 
4

tr
Ln
xΔ

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
 (4) 

or, adopting the equality in relation (3) gives 

 
4

max2
tr

f Ln
v

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
. (5) 

The fourth power here means that the number of traces required for an exhaustive dataset can 
rapidly become too large to contemplate.  Table 1 shows the number of traces required for an 
exhaustive dataset (in millions) as a function of a variety of apertures and sample sizes.  

Table 1.  The number of traces required for an exhaustive survey of size 2L  having square 
spatial sample size of xΔ .  Trace numbers are given in millions. 
 

↓ →x LΔ  2000 1000 500 250 125 
40 6.25 0.39 0.024 0.0015 10-4 

20 100 6.25 0.39 0.024 0.0015 
10 1600 100 6.25 0.39 0.024 
5 2560 1600 100 6.25 0.39 

2.5 409600 2560 1600 100 6.25 
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In a real setting, an exhaustive dataset of any significant aperture is nearly always 
impossible.  This is because seismic velocities are generally very slow for shallow layers 
and equation (5) has velocity in the denominator.  If waves in the slowest shallowest 
layers are to be sampled without aliasing, then as shown in Figure 1, the number of traces 
required, for even a modest survey, is in the billions.  Since usually the slowest waves are 
some form of coherent “noise”, a real dataset usually has aliased noise even if the 
reflection signal from target zones is not aliased.  This same limitation applies to 
synthetic datasets produced with finite-differencing or similar techniques since these 
methods generally generate all possible waves.  In the modelling technique to be 
described here, only primary reflections from designated reflectors are generated and so 
an exhaustive dataset is much more possible. 

 

FIG. 1.  The logarithm of the number of traces required to form an exhaustive 3D dataset is 
shown versus velocity.  Assumed here are a maximum frequency of 100 Hz and an aperture of 1 
km. 

RAYLEIGH-SOMMERFELD MODELLING 

For the purpose of testing migration algorithms, a modelling method should be 
capable of a very high-frequency response and must produce diffractions.  It is not 
essential that the method generate multiples or that it correctly model the variation of 
reflection strength with incidence angle.  Furthermore, to generate an exhaustive dataset, 
a numerically efficient method is required.  These considerations argue directly against 
finite-difference modelling since a high-frequency finite-difference result takes a great 
computational effort.  Furthermore, the completeness of the finite-difference wavefield is 
not required.  Conventional asymptotic ray theory, while computationally very efficient, 
was also judged not acceptable because of the difficulty in producing diffraction effects.  
This led to a consideration of Kirchhoff modelling (e.g. Schearer, 1999) because it is able 
to naturally generate both diffractions and specular reflections as emergent properties (i.e. 
stationary phase contributions).  However, as will be seen shortly, Kirchhoff modelling is 
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computationally ( )2O N , where x yN n n=  is the number of grid points on the reflector 
(or on the surface), and this leads to enormous compute times for even small models.  
Finally, we converged on Rayleigh-Sommerfeld diffraction theory for which our primary 
reference is Ersoy (2007, chapter 4).  Again, as will be seen, this diffraction theory is 
very nearly as accurate as that of Kirchhoff and is ( )logO N N .  While it is expected that 
the average geophysicist may be unfamiliar with the phrase “Rayleigh-Sommerfeld 
diffraction theory” it turns out that the technique is just the familiar phase-shift migration 
run backwards.  The following presentations of Kirchhoff diffraction theory and 
Rayleigh-Sommerfeld diffraction are both taken from Ersoy (2007).  The derivations are 
not given here and the reader is referred to that text for details. 

 

FIG. 2.  The geometry relevant to the derivation of the Kirchhoff diffraction formula for the classic 
case of an opaque screen with a hole. 

Figure 2 shows the basic geometry for the derivation of the Kirchhoff diffraction 
formula for the case of scalar waves that impact from the left on a perfectly opaque 
screen with a perfectly transparent hole and then subsequently are observed at a point P, 
which is taken to be on a plane to the right of the screen.  The screen is assumed to be of 
infinite extent and the medium excluding the screen is taken to be homogeneous.  Two 
basic results from mathematical physics, Green’s theorem and the Sommerfeld radiation 
condition, are then invoked.  The former is simply a generalization of the fundamental 
theorem of calculus from 1D to 3D, while the latter describes the physical constraint that 
we may have only outgoing energy at infinity.  Green’s theorem relates the integral of a 
second-order differentiated scalar field over a volume to the integral of the normal 
derivative of that field over the surface bounding the volume.  This is directly analogous 
to the fundamental theorem of calculus in 1D which relates the integral of a function over 
a line segment to the evaluation of the anti-derivative of that function at the end points of 
the line segment.  In Figure 2, the volume of integration is formed by taking a finite, 
circular portion of the right-hand-side of the screen, centered over the hole and a 
corresponding hemisphere to the right and then letting the radius of the circle/hemisphere 



Seismic Modelling in 3D for Migration Testing 

 CREWES Research Report — Volume 19 (2007) 7 

recede to infinity.  We denote the surface of this infinite volume by Σ .  The scalar field 
of concern,ψ , is assumed to satisfy the homogenous media Helmholtz equation for a 
point source placed at the source location.  The result is that the field at the observation 
point, ( )x Pψ =  ( x  is a general position vector while P  is the specific vector pointing to 
the observation point), is given by 

 ( ) 1
4

Gx P G ds
n nΣ

ψ
ψ ψ

π
⎡ ⎤∂ ∂
⎢ ⎥= = −
⎢ ⎥∂ ∂⎣ ⎦

∫  (6) 

where G is the Green’s function for a source placed at the observation point, s Σ∈ , and 
the differentiation is taken in the direction of the outward normal to Σ .  Then the 
Sommerfeld radiation condition may be invoked to show that the contribution to the 
integral in equation (6) from the infinite hemisphere vanishes, leaving only the integral 
over the screen, S, which is 

 ( ) ( )
2

2
2

1 cos
4

ikr

S

ex P ik ds
r n

ψ
ψ θ ψ

π
⎡ ⎤∂
⎢ ⎥= = −
⎢ ⎥∂⎣ ⎦

∫  (7) 

where ( )2 2exp /G ikr r=  has been used and 2 /k f vπ= , with f  being frequency and v  
being wavespeed.  Also in equation (7), only the far-field term has been kept when 
evaluating the normal derivative of G.  The further evaluation of equation (7) requires 
knowledge of the field ψ  and its normal derivative at all points on the right hand side of 
the screen.  Here Kirchhoff made the approximation that the field and normal derivative 
on the opaque portion of the screen are both zero while in the aperture of the hole, 
denoted A, the field and normal derivative are precisely what would be expected from a 
point source if there were no screen at all.  Under this approximation, and again invoking 
a far-field approximation in the normal derivative, the usual Kirchhoff expression is 

 ( )
( )

( ) ( ) ( )
1 2

1 2
1 2

cos cos
4

ik r r

S

ik ex P s ds
r r

ψ θ θ ρ
π

+

⎡ ⎤= = −⎣ ⎦∫  (8) 

where we have defined 

 ( )
1,
0,

s A
s

s A
ρ

⎧ ∈⎪⎪=⎨⎪ ∉⎪⎩
. (9) 

The reason for defining the function ( )sρ  rather than simply restricting the domain of 
integration to the aperture, A, is to facilitate the generalization of equation (8) to the 
reflection seismic case.  To this end, we simply fold Figure 2 at the screen, which 
becomes the reflector, to identify the source plane with the recording plane, and we allow 
( )sρ  to generalize to the reflection coefficient of the “reflector”.  Thus our reflection 

seismic Kirchhoff formula is 
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 ( )
( )

( ) ( ) ( )
1 2

1 2
1 2

, cos cos
4

ik r r

r s S

ik ex x s ds
r r

ψ θ θ ρ
π

+

⎡ ⎤= +⎣ ⎦∫  (10) 

where 1r  is the distance from the source (at sx ) to a point on the reflector, 2r  is the 
distance from the receiver (at rx ) to a point on the reflector, 1θ  is the angle of raypath 
from the source at the reflector, 2θ  is the angle from the reflector to the receiver and is π  
greater than 2θ  in equation (8), and, ( )sρ  is no longer given by equation (9), but is 

instead allowed to take any value in the interval [ ]1,1− .  Before discussing the Rayleigh-
Sommerfeld theory, we mention that the integration in equation (10) must be conducted 
over the entire reflection surface for each source-receiver pair.  Considering the case of a 
fixed source position into an exhaustive set of receivers, we let the number of points in 
the 2D source-receiver plane be N, and assume that the reflector is also gridded with N 
points.  Thus the cost of the integral itself is ( )O N  but it must be computed N times so 

that the cost of a source gather is ( )2O N . 

The derivation of the Rayleigh-Sommerfeld diffraction integral follows a similar 
pattern with the major difference being that the Green’s function used is not just that for a 
point source at the observation location, rather, G is taken as the difference between the 
Green’s functions for a source at the observation point and for a mirror image source at 
the corresponding point on the other side of the screen.  The result is that the / nψ∂ ∂  
term in equation (6) is cancelled and, after some calculation, we obtain 

 ( )
2

2

1
4

ikr

S

ex P ds
z r

ψ ψ
π

⎛ ⎞∂ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠∫  (11) 

where the z direction is orthogonal to the screen.  The integration in equation (11) is 
actually a convolution over the screen, a fact which can be appreciated by noting that  

 ( ) ( ) ( )2 2 2

2 s p s p s pr x x y y z z= − + − + −  (12) 

where the observation point coordinates are ( ), ,p p px y z  and the screen coordinates are 

( ), ,s s sx y z .  Then, with ( ), ,s s sx y zψ ψ=  and s sds dx dy= , equation (11) becomes 
recognizable as a convolution of the wavefield on the screen with the function 

 ( ) ( )2 2 2 2

2

, , x yx z

ikr
i k x k yiz k k k

x yS

eW x y z e e dk dk
z r

+− −
⎛ ⎞∂ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠ ∫ . (13) 

That is, the wavefield is convolved with the function W which is the z derivative of the 
Green’s function.  The last form given for W is not at all obvious but is well-known from 
imaging theory and identifies W as the extrapolator for scalar waves.  If the Kirchhoff 
approximation (see discussion preceding equation (8)) is now made for the field on the 
screen, then we can write equation (11) as 
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 ( ) ( ) ( ) ( )( )1 , , , , ,
4 o s s s p s p s p s s sS

x P x y z W x x y y z z s x y dsψ ψ ρ
π

= = − − − =∫ (14) 

where 0ψ  is the field from a point source evaluated on the screen and ( )sρ  is given by 
equation (9).  As was done previously, we generalize to the seismic reflection case by 
simply interpreting ( )sρ  as the reflectivity function on the reflector and identifying the 
source and image planes with each other.  Since equation (14) is a convolution, we can 
express it in the Fourier domain as 

 ( ) ( ) ( )1, , , , ,
4

x yik x ik y
r s x y p s o x y s x yS

x x W k k z z k k z e dk dkψ ψ ρ
π

+= −∫  (15) 

where the “hats” indicate 2D Fourier transforms over x and y.  Now it is apparent that the 
Rayleigh-Sommerfeld diffraction theory is just modelling by running the familiar phase-
shift migration backwards.  Equation (15) states that the field of the source is evaluated at 
the reflector, 0ψ , and then multiplied by the reflectivity function, ρ .  This product is then 

Fourier transformed, multiplied by the phase-shift operator W , and inverse Fourier 
transformed.  Furthermore, since 0ψ  can be computed as the source response 
extrapolated to the reflector, we have the algorithm 

 ( ) 1 1,r s sourcex x W Wψ ρ ψ− −= F F F F  (16) 

where F  is the 2D Fourier transform.  Thus the algorithm is: (1) phase shift the source 
wavefield to the reflector, (2) multiply by the reflectivity function, (3) phase shift the 
result of (2) back to the surface.  This is illustrated in Figure 3 and Figure 4.  In contrast 
to equation (8), which must be evaluated independently at a cost of ( )O N  for each of N 

receivers for a cost of ( )2O N , equation (16) gives a result for all receivers 
simultaneously.  Since this is accomplished entirely with Fourier transforms, the 
computational effort is ( )logO N N . 

There is an alternate formulation for Rayleigh-Sommerfeld modelling, also described 
by Ersoy (2007), called Rayleigh-Sommerfeld II, that is worth mentioning.  To derive 
this expression, a Green’s function which is the sum, rather than the difference, of a 
source at the receiver location and its mirror image is used.  The result is an expression 
similar to equation (11) but in which the z derivative is applied to the field not to the 
Green’s function.  Ersoy comments that the average of the two Rayleigh-Sommerfeld 
expressions has been shown to be equal to the Kirchhoff formula. 
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FIG. 3.  Rayleigh-Sommerfeld modelling is depicted as described by equation (16).  The source 
wavefield is extrapolated by phase shift to the screen.  At the screen it is multiplied by the 
function ρ  describing the “transmissivity” of the screen, and then it is phase-shifted to the 
observation plane. 

 

FIG. 4:  Rayleigh-Sommerfeld modelling applied to the seismic reflection case.  Here the screen 
of Figure 3 becomes the reflector and the screen transmissivity becomes the reflectivity.  Also the 
source and observation planes become identical. 

Although the Kirchhoff and Rayleigh-Sommerfeld theories are called “diffraction 
theories” they actually compute the entire response of the reflector and so include the 
specular component as well.  While the Rayleigh-Sommerfeld formula is much faster 
than the Kirchhoff one, the latter easily adapts to circumstances such as a non-horizontal 
reflector while the former does not.  Also, as developed here, both theories do not include 
the variation of reflection coefficient with incidence angle.  This is somewhat easier to 
accommodate with Kirchhoff theory since raytracing must be done anyway to obtain the 
incidence angles.  In the Rayleigh-Sommerfeld case, it would still be possible to include 
this effect by separately raytracing the incidence angles. 

Both theories can be extended in the same approximate way to a multi-reflector 
setting.  For this case, the first-order Born approximation can be adopted, which means 
(i) the reflectivity and the background velocity model are considered to be decoupled 
(independent), (ii) the background velocity model is taken to be smooth and describes 
wave propagation (iii) the reflectivity is only non-zero on reflecting surfaces, and (iv) 
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only primary reflections are generated.  With these considerations, the response of a 
multi-reflector model is 

 ( ) 1 1

1

,
reflectorsN

r s k k k source
k

x x W WF F F Fψ ρ ψ− −

=

= ∑  (17) 

where kρ  is the reflectivity, and kW  is the WKBJ phase shift extrapolator appropriate for 
the kth reflector given the background velocity mode.  While transmission coefficients are 
not explicitly included here they can be made a part of kW . 

APPLICATION 
It was desired to create an exhaustive dataset for the purpose of studying the 3D 

acquisition/imaging footprint.  After consideration of the available computing resources 
and the technical requirements of the study, a survey of 400m by 400m sampled at 10 m 
was chosen.  This means that there are 241 1681=  receivers and the same number of 
sources, and 441  2825761=  traces.  Figure 5 shows the velocity model, which was 
chosen to be laterally invariant (to conform with the phase-shift formulation of Rayleigh-
Sommerfeld modelling), and which was constructed to have a low velocity surface layer 
as is typical for land surveys.  The data was modelled with an impulsive source and 
subsequently bandlimited with Ormsby1 parameters of [0 0 110 180] Hz.  This means that 
the primary signal band was 0->110 Hz.  Three horizontal reflectors were modelled at 
depths of 100, 180, and 200 m.  The first two reflectors were featureless with constant 
reflection coefficients of -.05 and +.05 respectively.  The third reflector contained a 
channel model, shown in Figure 6, with reflection coefficients of +0.1 outside the channel 
and -0.1 inside the channel.  There were also 6 point scatterers embedded in the third 
reflector.  This information is summarized in Table 2.  

Table 2.  Velocity, depth, and reflector information for the model are shown. 
Depth (meters) Velocity (m/sec) Reflector Comment 

0 1200   
20 2200   
100 2400 first r.c.=-0.05 
180 2800 second r.c.=+0.05 
190 3000   
200 3000 third Figure 6 
500 3000   

                                                 
1 Although we specify our filter with Ormsby parameters, the actual implementation in our software has a 
Gaussian taper with rounded corners. 
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FIG. 5.  The velocity model chosen for the exhaustive dataset. 

 

FIG. 6.  The third reflector, placed at a depth of 200 m in the model.  The black color corresponds 
to a reflection coefficient of +0.1 while white is -0.1. 

The spatial sampling was chosen such that a ray with an reflection angle of 90º on the 
first reflector will just lie on the boundary of spatial aliasing at 110 Hz.  To appreciate 
this, it is instructive to calculate the critical frequency, that is the frequency at which 
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spatial aliasing begins, for a 90º ray from each reflector assuming the 10 m sample 
interval.  Since such a ray propagates to the surface while conserving its horizontal 
slowness (Snell’s law), a simple calculation shows that this critical frequency is given by 

/ (2 )critf v xΔ+= , where v+  is the velocity immediately above the reflector.  For the first 
second and third reflectors, v+  is 2200 m/s, 2400 m/s, and 3000 m/s and the resulting 
critical frequencies are 110 Hz, 120 Hz, and 150 Hz. respectively.  Thus only frequencies 
in the Ormsby taper will suffer any aliasing and, for the third reflector this is quite 
minimal, and will correspond only to very large scattering angles. 

Since this model is to be used for migration testing, the receiver data recorded on the 
10m grid will be downward extrapolated to each reflector and examined.  From a 
traditional perspective of NMO correction and CMP stack, the receivers on a 10m grid 
sample the reflector in the subsurface on a 5m grid.  To accommodate this effect the 
reflectors were all specified on a 5m grid and the complete 3D Rayleigh-Sommerfeld 
response was computed on that finer grid.  Thus the wavefields were actually computed 
on an 81x81 grid and every other trace was saved to simulate the receivers recording on a 
41x41 grid. 

As a first example of calculated responses, Figure 7 compares Rayleigh-Sommerfeld 
modelling and Kirchhoff modelling.  Each panel is a time slice through the 3D response 
of a single shot.  The complicated reflection response is due to the channel.  The times 
beside each panel are representative CPU times.  The ( )2O N  scaling for Kirchhoff is the 
reason for the huge change in run times when the grid spacing is halved.  It seems that 
Kirchhoff modelling is slightly superior to Rayleigh-Sommerfeld at the same grid 
spacing; however, the difference in computation times is dramatic.  It is obviously 
preferable to use Rayleigh-Sommerfeld on a fine grid whenever the limitations of the 
technique are acceptable. 
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FIG. 7.  Rayleigh-Sommerfeld modelling compared to Kirchhoff at two different grid spacings. 
Each panel is a constant-time slice through a 3D response. 

Figure 8 displays an entire 3D source record for a source in the geometric center of the 
survey (x = y = 200 m on Figure 6).  The record is displayed as a 2D array in which each 
y-line is identifiable by the hyperbolic reflection signatures of the three reflectors.  The 
featureless first reflector manifests as a sequence of white hyperbolae occurring at delays 
which are minimal in the center of the figure.  The featureless second reflector is 
similarly structured but is at overall greater delays corresponding to its greater depth.  
The two reflectors also have reflection coefficients of opposite sign. The third reflector is 
much more complicated and shows an intricate mix of reflection and diffraction effects. 
Figures 9 and 10 show an x-line and a y-line sorted from the data of Figure 8; the two 
lines cross at the source location. Comparison with Figure 6 allows for the identification 
of channel edge diffractions, channel reflections, and off-channel reflections. In general 
the diffraction events are quite complicated, possibly because there are strong out-of-the-
plane effects from the sinuous channel. Figure 11 is a time slice through the 3D source 
record, demonstrating a nice circular (non-dispersive) wavefront, and Figure 12 shows a 
3D perspective view of the source record. 
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FIG. 8.  An entire 3D shot record for a source location at the center of Figure 6.  Each small 
hyperbolic event is a reflection as recorded on a line y =constant.  The more complicated nature 
of the third reflector, compared to the first two, is readily apparent. 

 

FIG. 9.  The 3D response of Figure 8 is shown isolated along a single 2D receiver line at x=200. 
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FIG. 10.  The 3D response of Figure 8 is shown isolated along a single 2D line at y=200. 

 

FIG. 11. A time slice at t=0.2 seconds through the 3D source record of Figure 8. 
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FIG. 12.  The 3D source record of Figure 8 is shown in a true 3D perspective. 

The 3D source records were migrated with a 3D Kirchhoff algorithm, as described in 
Cooper and Margrave (2007). Figures 13, 14, and 15 show depth slices corresponding to 
each of the three reflectors from the 3D migration of the source record of Figure 8.  
While the source record was sampled at 10m, these migrations are sampled at 5m.  As 
mentioned previously, the modelling was actually done on a 5m grid and then 
downsampled, without antialias filtering, to the 10m receiver grid.  Thus there is every 
reason to expect to see 5m detail in these migrated images.  The 100 m reflector has 
produced an appropriately featureless image whose significant values are largely 
confined to the areal extent of the CMP coverage.  The 180 m reflector, although it is 
featureless, has imaged with a very significant imprint from the nearby 200m reflector 
(Figure 14).  As seen in Figure 15, the 200m reflector has produced a very good channel 
image, showing significant channel detail well outside the CMP coverage box. 
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FIG. 13.  A single depth slice at 100 m from a 3D migration of the data of Figure 8.  The crossing 
red lines locate the source position and the red square denotes the boundary of the CMP’s 
expected.  This was modelled as a featureless reflector with a negative reflection coefficient. 

  

FIG. 14.  Similar to Figure 13 except that the depth slice is at 180 m, where a featureless reflector 
with a positive reflection coefficient was modelled. The zero phase (non causal) wavelet has 
allowed the 200 m reflector (Figure 15) to influence this image. 
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FIG. 15.  Similar to Figures 13 and 14 except that the depth slice is at 200 m, where the reflector 
of Figure 6 was modelled. 

Obviously space precludes showing even a tiny fraction of the 1681 source records in 
the exhaustive dataset, so we content ourselves to showing just one more.  Figure 16 
shows the 3D record for a source in the upper left-hand corner of the survey, that is at x = 
y = 0 in Figure 6.  Compared to Figure 8, the significantly larger offsets and their one-
sided nature are apparent.  Figures 17 and 18 show 2D receiver lines sorted from the 3D 
gather and should be compared both to the channel reflector of Figure 6 and to the 
corresponding figures for the previous source record (Figures 9 and 10).  Figure 19 is a 
time slice comparable to Figure 11.  Finally, depth slices from the 3D migration are 
shown for each reflector in Figures 20, 21, and 22.  Compared to Figure 13, the 100 m 
reflector has produced an image that has filled only about 50% of the CMP coverage box.  
The 180 m reflector (Figure 21) has also not filled the CMP box but there is a false 
channel image far outside the box.  The 200m reflector has more fully filled the CMP box 
and has, in fact, imaged well beyond it. 
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FIG. 16.  A 3D source record for a source located at x = y = 0 (Figure 6). Compare with Figure 8. 

 

FIG. 17.  A 2D receiver line sorted from the data of Figure 16.  The receivers were all at x=0. 
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FIG. 18.  A 2D receiver line sorted from the data of Figure 16 for receivers at y=0. 

 

FIG. 19.  A time slice from the data of Figure 15, taken at t= 0.200 seconds. 
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FIG. 20.  A depth slice at 100 m from the 3D migration of the data of Figure 16. 

 

FIG. 21.  A depth slice at 180 m from the 3D migration of the data of Figure 16. 
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FIG. 22.  A depth slice at 200m from the 3D migration of the data of Figure 16. 

The entire 3D dataset was calculated in a single fast Linux workstation.  One source 
record required about 150 seconds of CPU time and the entire calculation of all 1681 
source records required 3 days.  Kirchhoff migration of the exhaustive dataset, reported 
in Cooper and Margrave (2007), required 5 days with an algorithm that produced images 
only at three specific depth levels. 

DISCUSSION AND CONCLUSIONS 
Acoustic seismic modelling in 3D, using the Rayleigh-Sommerfeld theory of 

diffraction, has been described and demonstrated.  The method was shown to be closely 
related to the more familiar Kirchhoff modelling and, when extended to a multi-reflector 
environment using the first-order Born approximation, is essentially phase-shift migration 
running in reverse.  On theoretical principles, it is demonstrated that Kirchhoff modelling 
has a computational effort of ( )2O N  while Rayleigh-Sommerfeld is only ( )logO N N .  
For each depth level from which a response is desired, a reflectivity map must be 
prepared that is specified on a grid that has half the spatial sample size of the desired 
receiver sampling.  Then, for each reflective depth plane, the source wavefield is phase-
shifted down to that depth, multiplied, point-by-point, by the reflectivity map, and then 
phase-shifted back to the surface.  Although not specifically tested, it is anticipated that 
dipping reflectors can be modelled by simply transcribing their reflectivity signature onto 
a series of horizontal depth planes.  The modelling theory was then applied to create an 
exhaustive 3D seismic dataset, which means that the dataset has no significant spatial 
aliasing in either source or receiver gathers.  Careful examination of the resulting seismic 
response shows that the modelling technique produces very high-fidelity seismic models 
containing both reflection and diffraction events.  Migration of the modelled data yielded 
very high resolution images of the reflective planes in the model.  While the Rayleigh-
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Sommerfeld technique as presented here does not model angle-dependent reflectivity, 
this would be possible with a modest extension by incorporating v(z) raytracing to build a 
table of incidence angle versus offset (from source to reflection point) for each reflector. 
It would also be possible to model lateral velocity variations using the same extensions 
that have been developed for phase-shift migration. 
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