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ABSTRACT

The analytic separation of upgoing and downgoing wavefieldsin acoustic media is
summarized, and explicit relations are given for use in prestack-depth migration of seismic
data under the acoustic assumption. The linearized wave equations for acoustic media are
assumed to be valid, and planewave decomposition of pressure and displacement is used to
generate a set of coupled differential equations for pressure and vertical displacement. A
wavefield-separation operator is then postulated whose effect is to separate upgoing waves
from downgoing waves, and time averaged (normalized) energy flux density is used to
determine coefficients for this operator.

INTRODUCTION

Though improvements in computational throughput have allowed for increased sophis-
tication in seismic imaging, 3D prestack depth migration isbased, often, on an acoustic
model of the earth (rather than the true elastic model). Basedon the acoustic wave equa-
tions, then, many imaging operators are designed for depth migration in elastic media. As
pointed out by Zhang and Zhang (2005), conventional acoustic operators lose amplitude fi-
delity in even the simplest media. As a remedy, Zhang and Zhang (2005) provide a source
function for use in forward modelling and migration in acoustic media. Their approach
improves amplitude fidelity of acoustic operators, and therefore seismic images, for high
wavenumbers.

An alternative remedy for amplitude fidelity is proposed by Pedersen et al. (2007) in
notes based on time averaged (normalized) energy flux density. Though not explored in
this paper, there is expectation of improved amplitude performance when the separation
operators of (Pedersen et al., 2007) are employed in seismicimaging.

This paper begins with the definition of total energy for a volume within an elastic
medium. Kinetic energy is given in terms of displacement anddensity, and potential energy
is given in terms of elasticity and 21 independent coefficients. The elastic medium is then
assumed to be acoustic so that 1 coefficient plus density completely describes the medium.
To derive a conservation relation for total energy in terms of hydrophone and geophone
measurements, the wave equations of linear acoustics, pressure and particle velocity are
introduced. then, through analysis of individual planewaves, energy flux density time-
averaged (normalized) over the duration of a passing wave yields a conservative relationξ
that is given in terms of pressure and particle velocity.

An operator for wavefield separation is then postulated based on the system of lin-
earized wave equations for acoustics, andξ is used to solve for the coefficients. The result
is a set of explicit definitions of the upgoing components anddowngoing components of
acoustic media.
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THEORY

Total energyE in volumeV within an elastic medium is the sum of kinetic energyW
and potential energyΦ

=

∫

V

[W + Φ] dV, (1)

where kinetic energyW is associated with densityρ, particle displacementU, and velocity
v = v · v =

∑3
i=1 U̇i U̇i according to Easley and Brown (1990)

W =
1

2
ρv · v =

1

2
ρ U̇i U̇i, (2)

and repeated indices indicate summation. For elastic coefficient tensorC ⇔ Cijkl, poten-
tial energyΦ is

Φ =
1

2
Cijkl Ui,j Uk,l, (3)

where indices to the right of the comma indicate differentiation. For an acoustic medium,
C simplifies to a single parameterλ

Cijkl = λ δij δkl, (4)

whereδ is the Kronecker delta-function. Substitute equation 4 forC in equation 3 and it
reduces to

Φ =
1

2
λ Ui,j Uk,l. (5)

To simplify manipulation of equations 2 and 5, we may write them in vector notation as

W =
1

2
ρ U̇ · U̇, (6)

and

Φ =
1

2
λ (∇ · U)2 . (7)

where∇· is the divergence operator. According to equations 1, 6, and7, then, total energy
E for an acoustic medium is

E =
1

2

∫

V

ρ
[

U̇ · U̇ + c2 (∇ · U)2
]

dV, (8)

wherec =
√

λ/ρ is the speed of sound.

In seismology, we record hydrostatic-pressureP , and displacement velocity vectorv,
so we wantE in terms ofv andP . For linear acoustics, then, we have the following wave
equations in terms ofP , v = U̇, andv̇ = Ü:

Ṗ + λ∇ · U̇ = 0, (9)

from conservation of mass and, from conservation of force,

ρ Ü + ∇P = 0, (10)
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where∇ is the gradient operator. The rate of change ofE in the volume is the temporal
derivative of equation 8 (Ursin, 1984; Easley and Brown, 1990) according to

∂E

∂t
=

∫

V

ρ

[

Ü · U̇ + c2
(

∇ · Ü
)2

]

dV, (11)

and, according to equation 10, replaceÜ with −1
ρ
∇P so that equation 11 becomes

∂E

∂t
=

∫

V

ρ

[

−1

ρ
∇P · U̇ + c2

(

∇ · Ü
)2

]

dV. (12)

From the first theorem of Green,

−
∫

V

∇P · U̇dV =

∫

V

P ∇ · U dV −
∫

S

P U̇ · n̂ dS, (13)

whereS is the surface enclosingV , andn̂ is a unit vector normal toS. Replace the volume
integral of∇P · U̇ in equation 12 with equation 13 to get

∂E

∂t
=

∫

V

∇ · U [P + λ∇ · U] dV −
∫

S

P U̇ · n̂ dS. (14)

From equation 9, and from the basic definition of integration, we have

P + λ∇ · U =

∫

Ṗ + λ∇ · U̇ dt = ǫ, (15)

whereǫ is a constant, and equation 14 is reduced to

∂E

∂t
=

∫

V

(

ǫ − P

λ

)

ǫ dV −
∫

S

P U̇ · n̂ dS. (16)

To determine a value forǫ, consider that, prior to the passage of an acoustic wave,P = 0
and total energyE = 0, so if we integrate equation 16 overt we have

∫

t

∂ E

∂t
dt = E = 0 =

∫

t

∫

V

ǫ2

λ
dV dt. (17)

For time invariantλ, equation 17 is reduced to a volume integral

E = 0 = [t + ε]

∫

V

ǫ2

λ
dV =

∫

V

ǫ2

λ
dV, (18)

and from equation 18, then, fort > 0 andλ << ∞, ǫ ≡ 0, equation 15 becomes

P + λ∇ · U = 0. (19)

According to equation 19,∂E/∂t (equation 16) is reduced to the following surface integral
(Ursin, 1984):

∂E

∂t
=

∫

S

λ∇ · UU̇ · n̂ dS. (20)
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Because seismic data is multidimensional, plane-wave decomposition is used to sim-
plify data analysis. It is natural, therefore, that we considerE of individual plane-waves
according to

U = [U1 ê1 + U2 ê2 + U3 ê3] ei[ω t−k·x]. (21)

whereω is temporal frequency,x = x1 ê1 + x2 ê2 + x3 ê3 andk = k1 ê1 + k2 ê2 + k3 ê3

are space and wavenumber vectors respectively, and

k3 =
ω

c

√

1 − k2
1 − k2

2. (22)

Regardless of our model of displacement-vectorU, however,∂E/∂t is real valued, and
energy flux density∇ · UU̇ from the integrand of equation 20, therefore, is also real
valued. Real-valued∇ · UU̇ is written (Ursin, 1984)

ℜ
{

∇ · UU̇

}

=
1

4

[

∇ · [U + U
∗]

[

U̇ + U̇
∗
]]

, (23)

where∗ indicates complex conjugate. Factor equation 23 so that it has two terms according
to:

ℜ
{

∇ · UU̇

}

=
1

4

[

U̇∇ · U + U̇
∗ ∇ · U∗

]

+
1

4

[

U̇
∗ ∇ · U + U̇∇ · U∗

]

. (24)

Notice that complex exponentials in the second term cancel as in, for example,U∗ ∇ · U
where, using equation21, it is reduced to

U̇
∗ ∇ · U = −ω [k1 U1 + k2 U2 + k3 U3]

[

U1
ˆ̂e1 + U2

ˆ̂e2 + U3
ˆ̂e3

]

. (25)

Complex exponentials in the first term do not cancel as in, for example,U̇∇ · U where,
using equation 21,

U̇∇ · U = −U̇
∗ ∇ · Ue2 i [ω t−k·x], (26)

andU̇
∗ ∇ · U is given by equation 25 (Ursin, 1984).

If we compute the time average of∂E/∂t for the periodt1 → t2, wheret1 > 0, t2 > 0,
and if t2 − t1 is large, the first term of equation 24 cancels. For example, the time integral
of U̇∇ · U according to

1

t2 − t1

∫ t2

t1

U̇∇ · U =
1

t2 − t1
U̇

∗ ∇ · U e−2 i [k·x]

∫ t2

t1

e−2 iωt dt = 0, (27)

is zero because of the complex exponential int. Normalized energy flux density, therefore,
is

ξ =
1

t2 − t1

∫

λ∇ · UU̇ dt =
1

4
λ

[

U̇
∗ ∇ · U + U̇∇ · U∗

]

+ ǫ, (28)

whereǫ is a constant. Again, from steady-state considerations,ǫ = 0, and

ξ = −1

4

[

U̇
∗ P̃ + U̇ P̃ ∗

]

, (29)
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where, from equation 19,∇ · U = −P̃ /λ has been substituted, and̃P is the plane-wave
decomposition of pressureP according to

P̃ =
1

(2 π)3

∫ ∞

−∞

P ei [k·x−ω t] dx. (30)

From U̇ = ṽ, whereṽ is the plane-wave decomposition of the particle-velocity vector
according to

ṽ =
1

(2 π)3

∫ ∞

−∞

v ei [k·x−ω t] dx, (31)

normalized energy flux (equation 29) is (Ursin, 1984)

ξ = −1

4

[

ṽ
∗ P̃ + ṽ P̃ ∗

]

. (32)

Fourier domain linear acoustic equations

For conventional acquisition of seismic data, a recording plane is established where
x3 = x̄3 is constant nominally. In this case, plane-wave decomposition of P andv become

P̃ =
1

(2 π)2

∫ ∞

−∞

P ei [k1 x1+k2 x2−ω t] dx1 dx2, (33)

and

ṽ =
1

(2 π)2

∫ ∞

−∞

v ei [k1 x1+k2 x2−ω t] dx1 dx2. (34)

In the Fourier domain, according to equations 33 and 34, the linear, acoustic wave equa-
tions of equations 9 and 10 become

−i ω P̃ + λ

[

i k1 ṽ1 + i k2 ṽ2 +
∂

∂x3

v3

]

= 0, (35)

and

ρ [−i ω] ṽ +

[

i k1 P̃ ê1 + i k2 P̃ ê2 +
∂

∂x3

P̃ ê3

]

= 0. (36)

Equation 36 is a vector equation that provides the followingsystem of three equations:

ρω ṽ1 = k1P̃

ρ ω ṽ2 = k2P̃

ρ (i ω) v3 = ∂
∂x3

P̃ ,

(37)

So, from equation 37 we have the following differential equation

∂

∂x3

P̃ = i ω ρ v3. (38)
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to relateP̃ and v3, wherev3 is particle velocity in the normal to the recording plane.
Further, use equation 37 to eliminateṽ1 andṽ2 in equation 35 to give (Ursin, 1984)

∂

∂x3

v3 =
iω p3

ρ
P̃ , (39)

where

p3 =

√

1

c2
−

(

k1

ω

)2

−
(

k2

ω

)2

. (40)

Separation of up-going and down-going waves

Equations 38 and 39 provide the following system of coupled wave equations:

∂

∂x3

[

P̃
v3

]

= i ω

[

0 ρ
p2

3

ρ
0

]

[

P̃
v3

]

. (41)

In reflection seismology, we are interested in up-going reflections from boundaries of in-
terest, and down-going waves are a component of seismic noise. We seek, therefore, filter
L such that (Amundsen, 2001)

[

P̃
v3

]

=

[

L11 L12

L21 L22

] [

U
D

]

, (42)

where

L ⇔
[

L11 L12

L21 L22

]

, (43)

andU andD are the up-going and down-going wavefields respectively. IfL can be deter-
mined, and if it’s inverseL−1 exists, thenU andD can be separated.

Assume, then, thatL is independent ofx3 in homogeneous media and substitute equa-
tion 42 for[UD]T in equation 41, and then left multiply byL−1 to get

∂

∂x3

W = i ω
[

L
−1

A
]

[LW] , (44)

where

W ⇔
[

U
D

]

, (45)

and

A ⇔
[

0 ρ
p2

3

ρ
0

]

. (46)

Apply the associative law of matrices to equation 44 to get

∂

∂x3

W = i ω
[

L
−1

AL
]

W. (47)
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Eigenvalue-value decomposition ofA gives (Amundsen, 2001)

A = BDB
−1, (48)

where
B = [e1|e2] , (49)

has columns made up of the eigenvectorse1 ande2 of A, and

D =

[

λ1 0
0 λ2

]

, (50)

is a diagonal matrix made up of the eigenvaluesλ1 andλ2 of A. Substitute equation 48 for
A in equation 47 to get

∂

∂x3

W = i ω
[

L
−1

BDB
−1

L
]

W. (51)

From the requirement that
det{D − A} = 0, (52)

we have

D =

[

λ1 = −p3 0
0 λ2 = p3

]

. (53)

Then, from equations 51 and 53, wave equation 41 becomes (Amundsen, 2001)

∂

∂x3

W = i ω DW. (54)

Equation 54 implies[L−1
BB

−1
L] = I, and this is satisfied by the following definition

(Amundsen, 2001):
B ≡ L = [e1|e2] . (55)

Eigenvectorse1 ande2 are computed according to (Amundsen, 2001)

[−p3 I − A] e1 = 0, (56)

and
[p3 I − A] e2 = 0, (57)

whereI and0 are the identity matrix and the zero matrix respectively. Equations 56 and
57 have no explicit solution, however, but they do restrict the elements with ine1 ande2 as
follows:

e1 ⇔ e11

[

1
−p3

ρ

]

, (58)

and

e2 ⇔ e21

[

1
p3

ρ

]

(59)

wheree11 ande21 are unknown (for now) scalars, and

L = [e1|e2] ⇔
[

e11 e21
−e11

Z
e21

Z

]

, (60)
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whereZ = ρ

p3

. For a hydrostatic medium, normalized energy flux density inthex3 direc-
tion is given by Pedersen et al. (2007)

ξ3 = −1

4

[

P̃ v∗
3 + P̃ ∗ v3

]

. (61)

From equation 42, equation 61 is computed

ξ3 = −1

4

[

(L11 U + L12 D)
(L21 U + L22D)

]T [

(L21 U + L22 D)∗

(L11 U + L12D)∗

]

. (62)

From equation 60, SubstituteL11 = e11, L12 = e21, L21 = −e11/Z, andL22 = e21/Z in
equation 62, and then collect terms ofU U∗, U D∗, D U∗, andD D∗ to get

ξ3 =
1

2 Z
[e11 e∗11 U U∗ − e21 e∗21 D D∗] , (63)

where we assumeZ = Z∗. (Note,Z = Z∗ corresponds to real valuedρ and non-evanescent
propagation.) According to equation 60, we are free to choose e11 ande21, so

ξ3 = [U U∗ − D D∗] , (64)

is satisfied for (Pedersen et al., 2007)

e11 = e∗11 = e21 = e∗21 =
√

2 Z. (65)

From equation 60, we may now writeL explicitly as

L ⇔
√

2

[
√

Z
√

Z
− 1√

Z

1√
Z

]

, (66)

and forL−1 we have

L
−1 ⇔

√
2

4

[

1√
Z

−
√

Z
1√
Z

√
Z

]

. (67)

From equation 42 and 67, then, we have for up-going waves (Pedersen et al., 2007)

U =
1

2
√

2 Z

[

P̃ − v3 Z
]

, (68)

and for down-going waves (Pedersen et al., 2007)

D =
1

2
√

2 Z

[

P̃ + v3 Z
]

. (69)

DISCUSSION

Equations 68 and 69 provide a starting point from which prestack depth migration may
be developed. OperatorD (equation 69) is now available to derive the source wavefieldof
depth migration, andU (equation 68) is now available to condition the recorded wavefield.
Because bothD andU are developed strictly for the acoustic case, they should perform
well in imaging for smooth media variations. Future application to prestack depth migra-
tion are planned. The expectation is that, for media that vary with depth, amplitude fidelity
to 90 degrees will be preserved usingU andD in the provision of starting wavefields.
Unclear, for the present, is accuracy in media that vary in all coordinates.
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CONCLUSIONS

Operators for the separation of up and downgoing wavefields are developed. These
operators are valid for acoustic media and so they are suitable for use in the provision of
starting wavefields for common methods of prestack imaging.The operators are devel-
oped from the linearized wave equations of acoustic media with planewave decomposition
of pressure and displacement. The resulting set of coupled differential equations for pres-
sure and vertical displacement are then compared to a conservative relation derived from
normalized energy flux density.
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