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Zimin Zhang and Robert R. Stewart 

ABSTRACT 
Two rock physics models for cracked media are investigated in this paper: the Kuster-

Toksöz model for randomly oriented cracks and Hudson’s model for aligned cracks. The 
effects of crack shape, aspect ratio and crack density are discussed using rock properties 
from several field locations: the Ross Lake heavy oil field, Saskatchewan; Violet Grove 
Alberta CO2 injection site; and a Saskatchewan mining area. 

Inclusion shape has a large influence on the effective rock properties from the Kuster-
Toksöz model. Generally, smaller aspect ratios (thinner cracks) yield larger drops of 
moduli and velocities. Through the modeling results for the rocks from the chosen areas, 
1% porosity by penny shape cracks with aspect ratio 0.01 can produce up to 22% velocity 
decreases from Hudson’s model, and 16% P-velocity and 11% S-velocity drops from 
Kuster-Toksöz model. The results also indicate: the percentage changes of S-velocity 
from both models and P-velocity along crack planes from Hudson’s method have almost 
no dependence on uncracked rock properties; while the percentage changes of P-velocity 
(P-velocity along crack normal for Hudson’s model results) are consistent with the values 
of uncracked rocks for Kuster-Toksöz model and Hudson’s method without fluid 
substitution; and anisotropic fluid substitution introduces higher percentage of P-velocity 
changes and similar S-velocity changes.  

INTRODUCTION 
The Kuster and Toksöz (1974) method (Appendix 1) calculates the effective moduli 

for randomly distributed inclusions based on a long-wavelength, first-order scattering 
theory. The overall effect of the inclusions is isotropic. The Hudson (1981) model 
(Appendix 2) is based on a scattering theory analysis of the mean wave field in an elastic 
solid with thin, penny-shaped ellipsoidal cracks or inclusions which are aligned with a 
specific direction. The effective moduli can be calculated by applying the first- and 
second- order corrections on the isotropic background moduli. The overall effect of the 
aligned cracks is anisotropic. 

Both models assume no fluid flow between spaces, thus they simulate high-frequency, 
saturated rock behavior. At low frequencies, when there is time for wave-induced pore 
pressure increments to flow and equilibrate, Gassmann fluid substitution (Mavko et. Al., 
1998) for isotropic media and Brown and Korringa’s (1975) fluid substitution for 
anisotropic media are necessary to predict saturated rock properties. 

In this paper, the effects of crack shape, aspect ratio and crack density will be 
discussed. Some parameters for crack description are given in Appendix 3.   

Rock properties for numerical test 

Several rock types are selected to provide numerical test and examples: a Cretaceous-
aged, high-porosity (about 30%) channel sand and a tight sand from the Ross Lake heavy 
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oil field, another Cretaceous-aged low-porosity (about 12%) sandstone from Violet 
Grove, Alberta, and a Devonian carbonate and a shale from a potash mining area in 
Saskatchewan. The rock properties for these rocks are listed in Table 1. The porous 
channel sand and tight sand from Ross Lake area were used for various parameter tests 
with the Kuster-Toksöz model and Hudson’s model. Then cracked rock properties are 
calculated for all the chosen rocks assuming penny cracks with a fractional crack porosity 
0.01 and aspect ratio 0.01. For all the tests, the void spaces are filled by brine water, at a 
density of 1.1g/cm3 and velocity of 1430m/s. 

Table 1. Rock properties for numerical test for models of cracked media 

 Ross Lake Violet Grove Sask. mining 

Lithology Sandstone Sandstone Sandstone Carbonate shale 

Depth 1148m 1160m 1605m 970m 1006m 

Vp (m/s) 3026 5689 3778 5538 3765 

Vs (m/s) 1721 3413 2237 2954 2074 
Density 
(g/cc) 2.133 2.63 2.42 2.695 2.326 

Porosity 30% 2% 12% 3% <5% 

Hashin-Shtrikman bound  
When the geometries of each constituent in the rock are unknown, the upper and lower 

bounds of effective moduli of the rock can be estimated, given the volume fraction and 
moduli of each constituent. When only the volume fraction and elastic moduli are given 
for each component of the rock, Hashin-Shtrikman bound (Mavko et. Al., 1998) was the 
narrowest bound without knowing the geometries of the constituents. They were used to 
validate the modeling results. The equations can be written as: 

ுௌേܭ  ൌ ଵܭ  మሺమିభሻషభାభቀభାరయఓభቁషభ , 1) 

ுௌേߤ  ൌ ଵߤ  మሺఓమିఓభሻషభାమభሺ಼భశమഋభሻఱഋభቀ಼భశరయഋభቁ , 2) 

where 

• Kଵ, Kଶ : bulk moduli of individual component; 
• µଵ, µଶ : shear moduli of individual component; 
• ଵ݂, ଶ݂ : volume fractions of individual component. 
By interchanging component 1 and 2 in the formula, the upper and lower bounds are 

calculated. When the stiffest material is termed 1, the upper bound will be given; 
otherwise, when the softest phase is termed 1, the lower bound will be calculated. 
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KUSTER-TOKSÖZ MODEL 
Figure 1a, 2 display the results of randomly oriented inclusions in the porous channel 
sand in Ross Lake Heavy Oil Field as calculated by the Kuster-Toksöz model. Dry 
moduli were calculated first supposing both bulk and shear modulus of the inclusions to 
be 0, then the Gassmann equation was used to calculate the effective moduli when the 
void space is filled by brine. From Figure 1a, we find that the rock properties largely 
depend on the inclusion shape. For fluid phase constituent, the disk shape of Kuster-
Toksöz model does not converge. For other inclusion shapes, smaller aspect ratios yield a 
larger decrease of moduli and velocities. For both dry and saturated rock, the moduli and 
velocities of sphere inclusion shape are coincident with Hashin-Shtrikman upper bound.  
The sphere inclusion shapes give the same results from the Kuster-Toksöz (1974) 
formula and generalized formula (Berryman, 1980). The effective bulk modulus of small 
aspect ratio inclusion shape approaches Hashin-Shtrikman lower bound at smaller 
volume fraction of pores. Except for the sphere shape inclusion, all other inclusion shapes 
have a limitation on volume fraction values for reasonable effective moduli values. The 
concentration value limitations decrease with aspect ratio. For needle shape inclusions, it 
does not depend on aspect ratio. It is valid for large range of concentration values, 
approximately up to 0.8. 

The same calculation was also carried out for tight sand of Ross Lake Heavy Oil Field 
(Figure 1b), it gives very close result. The concentration limitations for each inclusion 
shape are quite similar to those of the porous sand. 
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FIG. 1a. Ross Lake porous channel sand: variation of effective dry and saturated rock properties 
for several crack shapes from Kuster-Toksöz model with volume concentration of inclusion. All 
the elastic property values are normalized to the range from fluid to uncracked rock properties. 
The aspect ratio value for oblate spheroid shape is 0.1. For penny shape, aspect ratio 0.1 (noted 
as penny KTB) and 0.05 (noted as penny KTB2) are used. KT: the results from Kuster-Toksöz 
formula for sphere and oblate spheroid shape inclusions, KTB: the results from generalized 
Kuster-Toksöz model by Berryman. The green dash-dot lines are Hashin-Shtrikman bounds. 
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FIG. 1b. Ross Lake tight sand: variation of effective dry and saturated rock properties for several 
crack shapes from Kuster-Toksöz model with volume concentration of inclusion. All the elastic 
property values are normalized to the range from fluid to uncracked rock properties. The aspect 
ratio value for oblate spheroid shape is 0.1. For penny shape, aspect ratio 0.1 (noted as penny 
KTB) and 0.05 (noted as penny KTB2) are used. KT: the results from Kuster-Toksöz formula for 
sphere and oblate spheroid shape inclusions, KTB: the results from generalized Kuster-Toksöz 
model by Berryman. The green dash-dot lines are Hashin-Shtrikman bounds. 

From the formula of Kuster-Toksöz-Berryman model (Appendix 1), we know that 
only spheroid and penny shape related to aspect ratio α. Figure 2 shows the variation of 
effective moduli with aspect ratio α for spheroid and penny shape pore. The volume 
fraction c of pore was set to be 0.1. When aspect ratio is too small (approximately 
α/c<0.4), the assumption of no fluid flow cannot be satisfied, thus the model can’t give 
reasonable results. When aspect ratio increases, the moduli drops will decrease. The 
results of spheroid shape will approach those of sphere shape. For penny shape, the 
aspect ratio can not be too large (α/c value depends on the volume fraction of the penny 
pores, the larger volume fraction, the less tolerance is for big aspect ratio), otherwise, the 
predicted moduli will exceed the upper bound of the effective moduli. 
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FIG. 2. Ross Lake porous channel sand: variation of dry and saturated effective rock properties 
from Kuster-Toksöz model with crack shape and aspect ratio. All the values are normalized to the 
range from saturated fluid to unaltered rock properties. The volume fraction of crack c is 0.1. The 
green dash-dot lines are Hashin-Shtrikman bounds. KT: results from Kuster-Toksöz formula; KTB: 
results from generalized Kuster-Toksöz model by Berryman. 
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FIG. 3a. Ross Lake porous channel sand: variation of effective rock properties from Kuster-
Toksöz model with α/c value (aspect ratio/volume concentration). All the values are normalized to 
the range of Hashin-Shtrikman bounds. 
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From the result displayed in Figure 2, α/c value should be within some range so that 
the predicted moduli fall within the Hashin-Shtrikman bound. To investigate the value 
range, a test on α/c value with different c values (0.01, 0.05, and 0.25) was carried out 
and the results are shown in Figure 3a. The moduli and velocity values in Figure 3a were 
normalized by Hashin-Shtrikman upper and lower bound. For various c values, both bulk 
modulus and shear modulus indicate relatively stable minimum α/c values, approximated 
0.4 for bulk modulus and 0.2 for shear modulus. However, for penny shape inclusion, the 
maximum α/c values for reasonable moduli change drastically with respect to crack 
concentration value c. Small c values will still have reasonable effective moduli for large 
α/c value. Besides, compared with shear moduli, the bulk moduli have less limitation on 
α/c value. For spheroid shape inclusions, there is no upper limitation of α/c value, but 
with increasing c value, the moduli approach upper bound quickly. From the velocities 
changes, we find the effects of c value are less than that on moduli. And the minimum α/c 
values are very similar to P- and S-velocities, about 0.2. From the similar calculation 
carried out on tight sand of Ross Lake Heavy Oil Field (Figure 3b), a similar conclusion 
can be made. 

 

FIG. 3b. Ross Lake tight sand: variation of effective velocities from Kuster-Toksöz model with α/c 
value (aspect ratio/volume concentration). All the values are normalized to the range of Hashin-
Shtrikman bounds. 
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cracks, it will display anisotropy. For the cracks are aligned for one direction, it will show 
transverse anisotropy with respect to the axis along crack normal. The P-velocity drops 
very little when the waves travel along crack plane, but it will display distinct decrease 
when the wave travels along crack normal. For SV wave, the velocity will change the 
same amount whether it travels along the crack normal or crack plane. Cracks with aspect 
ratio 0.05 are also modeled by Kuster-Toksöz-Berryman penny crack model, the effective 
P-velocities from Kuster-Toksöz model is between the P-velocities from Hudson’s model 
along crack normal and crack plane.     

We also find that small aspect ratio cracks have very limited crack density range, 
especially for Vs, approximate 0.05 (about crack porosity 0.1% equivalent) for cracks 
with aspect ratio 0.002 and 0.2 (equivalent to about 1% crack porosity) for cracks with 
aspect ratio 0.01. When crack density value is greater than the limitation, the velocity will 
display abnormal increase with increasing porosity. 

 

FIG. 4a. Ross Lake porous channel sand: variation of effective velocities of cracked rock from 
Hudson’s model with crack density. The maximum and minimum velocity values in the plot are 
those of isotropic uncracked rock and saturated fluid respectively. KTB denotes the effective 
velocities from Kuster- Toksöz model. 

From the modeling results for tight sand from Ross Lake area (Figure 4b), we found 
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properties of the uncracked rock. While the S-velocity displays quite similar variation 
with crack density. However, the reasonable crack density ranges for each aspect ratio are 
still the same due to the similar variation of S-velocity with crack density. 

 

FIG. 4b. Ross Lake tight sand: variation of effective velocities of cracked rock from Hudson’s 
model with crack density. The maximum and minimum velocity values in the plot are those of 
isotropic uncracked rock and saturated fluid respectively. KTB denotes the effective velocities 
from Kuster- Toksöz model. 
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4. Anisotropic fluid substitution introduces higher percentage of P-velocity changes 
and similar S-velocity changes.  

Table 2. Modeled effective rock properties for selected reservoir rocks assuming penny shape 
cracks with aspect ratio 0.01, crack density 0.01 in the rock. %: velocity change percentage with 
respect to original velocity; Vp0: P-velocity along the crack plane; Vp90: P-velocity along crack 
normal; Vsv: S-velocity along the crack plane. 

 Ross Lake Violet Grove Sask. mining 

Lithology Sandstone Sandstone Sandstone Carbonate Shale 

Depth 1148m 1160m 1605m 970m 1006m 

Raw 

Vp (m/s) 3026 5689 3778 5538 3765 

Vs(m/s) 1721 3413 2237 2954 2074 

Density 
(g/cc) 2.13 2.63 2.42 2.695 2.326 

K
us

te
r-

 T
ok

sö
z Vp(m/s) 2800 5047 3442 4944 3464 

% 7.5 11.3 8.9 10.8 8 

Vs(m/s) 1449 2856 1875 2505 1753 

% 15.8 16.3 16.2 15.2 15.5 

H
ud

so
n 

N
o 

flu
id

 su
bs

tit
ut

io
n 

Vp0(m/s) 3019 5649 3767 5425 3739 

% 0.3 0.7 0.3 2 0.7 

Vp90(m/s) 2912 4934 3537 4819 3534 

% 3.8 13.3 6.4 13 6.1 

Vsv(m/s) 1338 2643 1734 2308 1616 

% 22.3 22.6 22.5 21.9 22.1 

Fl
ui

d 
su

bs
tit

ut
io

n 

Vp0(m/s) 2971     5613 3721 5461     3698     

% 1.8     1.3     1.5     1.4   1.8     

Vp90(m/s) 2497     4398 2964     5034     3253     

% 17.5     22.7     21.6     9.1     13.6     

Vsv(m/s) 1348 2696 1762 2311 1622 

% 21.7 21 21.3 21.8 21.8 
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FIG. 5. Modeled effective velocities for selected reservoir rocks assuming penny shape cracks 
with aspect ratio 0.01, crack density 0.01 in the rock. KT: velocities from Kuster-Toksöz model. 
Hudson 1: P-velocity along the crack plane; Hudson 2: P-velocity along crack normal. The plots in 
the right are percentage changes with respect to original velocity. 

CONCLUSIONS 
Two rock physics models (Kuster-Toksöz and Hudson) for cracked media are 

discussed. With given assumptions, the Kuster-Toksöz and the Hudson’s methods can 
predict rock properties within Hashin-Shtrikman bounds for randomly oriented cracks 
and aligned cracks respectively. 

From the results of Kuster-Toksöz model, we found the rock properties largely depend 
on the inclusion shape. Generally, the smaller aspect ratios yield a larger decrease of 
moduli and velocities. For both spheroid and penny shape inclusions, α/c values should 
not be smaller than about 0.4 (equivalent to c<2.5α). As for penny shape inclusions, the 
valid maximum α/c values change drastically with respect to concentration value c. Small 
c values will still have reasonable effective moduli for large α/c value. 

For Hudson’s model, smaller aspect ratio cracks have smaller valid crack density 
range, especially for Vs, approximate 0.05 (about crack porosity 0.1% equivalent) for 
cracks with aspect ratio 0.002 and 0.2 (equivalent to about 1% crack porosity) for cracks 
with aspect ratio 0.01.  

The modeling results for several rocks assuming 1% crack porosity, 0.01 aspect ratio 
penny shape cracks indicate: the percentage changes of S-velocity from both models and 
P-velocity along crack planes from Hudson’s method have almost no dependence on 
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uncracked rock properties; while the percentage changes of P-velocity (P-velocity along 
crack normal for Hudson’s model results) are consistent with the values of uncracked 
rocks for Kuster-Toksöz model and Hudson’s method without fluid substitution; 
anisotropic fluid substitution introduces higher percentage of P-velocity changes and 
similar S-velocity changes.  
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APPENDIX 1: KUSTER-TOKSÖZ MODEL  
Based on a long-wavelength first-order scattering theory, Kuster and Toksöz (1974) 

derived a method to calculate effective moduli for randomly distributed inclusions. A 
generalization of the expressions for the effective moduli Kכ and µכ  can be written as 
(Kuster and Toksöz, 1974; Berryman, 1980), 

 ሺܭ െ ሻכܭ ାరయఓכାరయఓ ൌ ∑ ܿሺܭ െ ሻܲ,ேୀଶܭ   (A1) 

 ሺߤ െ ሻכߤ ఓାிఓכାி ൌ ∑ ܿሺߤ െ ሻܳ,ேୀଶߤ   (A2) 

and 
ଵߩ   െ כߩ ൌ ∑ ܿሺߩଵ െ ሻ,ேୀଶߩ  (A3) 

where, 

• ܿ ൌ Ω/Ω is volume concentration of each inclusion types and ∑ ܿ ൌ 1ேୀଵ , Ω: 
volume; 

 ;: moduli of inclusionߤ ,ܭ •
 ;: moduli of matrixߤ ,ܭ •
ܨ • ൌ ሺߤ/6ሻሾሺ9ܭ  ܭሻ/ሺߤ8   ;ሻሿߤ2
• ܲ ,ܳ : coefficients describing the effect of an inclusion of material i in a 

background medium m (Table A1); 
 .density of matrix, inclusion and effective density :כߩ,ߩ ,ଵߩ •

Table A1. Coefficients P and Q for four types of inclusion. Where, F ൌ ሺµ/6ሻሾሺ9K  8µሻ/ሺK 2µሻሿ  , γ ൌ µሾሺ3K  µሻ/ሺ3K  7µሻሿ , β ൌ µൣ൫3K  µ/ሺ3K  4µሻ൯൧ , and the aspect ratio α. The 
expressions for spheres, needles, and disks were derived assuming K୧/K୫ ا 1 and µ୧/µ୫ ا 1. 

Inclusion shape Pmi Qmi 

Spheres 
ܭ  43 ܭߤ  43 ߤ ߤ   ߤܨ  ܨ  

Needles 
ܭ  ߤ  13 ܭߤ  ߤ  13 ߤ  15 ቌ ߤߤ4  ߤ  2 ߤ  ߤߛ  ߛ  ܭ  43 ܭߤ  ߤ  13  ቍߤ

Disks 
ܭ  43 ܭߤ  43 ߤ ߤ   ߤܨ  ܨ  

Penny cracks 
ܭ  43 ܭߤ  13 ߤ   15ߚߙߨ ቌ1  ߤ4ߤ8  ߤሺߙߨ  ߚ2  2 ܭ  23 ߤ  23 ܭߤ  43 ߤ   ቍߚߙߨ
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APPENDIX 3: CRACK DESCRIPTION 
There are several parameters often used to describe simplified versions of a cracked 

rock:

APPENDIX 2: HUDSON’S MODEL 
The Hudson (1981) model is based on a scattering theory analysis of the mean wave

field in an elastic solid with thin, penny-shaped ellipsoidal cracks or inclusions. The
effective moduli,  

 , (A4) 

where  are the isotropic background moduli, and ,  are the first- and second-
order corrections, respectively. 

For a single crack set with crack normal aligned with the 3rd axis (Figure A1), the
cracked media show transverse isotropic symmetry, and the corrections are

•   
•  
•  
•  
•  

 

FIG. A1. Schematic diagrams of aligned 
cracks (shown in blue). 

   

where 

   

K’ and μ’ are the bulk and shear modulus of the inclusion material. The criteria for an
inclusion to be “weak” depend on its shape or aspect ratio α as well as on the relative moduli of
the inclusion and matrix material. Dry cavities can be modeled be setting the inclusion moduli to
zero. Fluid-saturated cavities are simulated by setting the inclusion shear modulus to zero. 
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The quantity α=b/c is called the aspect ratio. 

 

The crack density is the number of cracks per unit volume:  ߝ ൌ ேయ್ೠೖ 

where, 

 N: number of cracks in volume Vbulk;  

 c: semi-major axis value of cracks. 

If we assume a rock contains N/Vb thin oblate spheroidal cracks per unit bulk volume, 
each having semi-major axis and semi-minor axis b=αc, where α is the aspect ratio, the 
crack porosity will be: 

 ߶ ൌ ே್ ସగమଷ ൌ ே್ ସగయఈଷ    

Where N is the number of cracks in volume Vb; c: semi-major axis value of cracks; α: 
aspect ratio. 

Thus, crack density is: 

 ߳ ൌ ே ܿଷ ൌ ଷథସగఈ 

 

 


