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ABSTRACT 
Based on the constant-Q theory, this article presents a complex spectral ratio method 

for Q estimation. Testing on synthetic examples shows that the complex spectral ratio 
method can obtain better Q estimates than the conventional spectral ratio method in most 
cases. Further investigation should be conducted using real VSP data.  

INTRODUCTION 
As seismic waves propagate through the earth, they experience the absorption of 

energy and the consequent changes in transient waveform shapes, resulting from the 
irreversible anelastic behavior of rocks. This energy loss (attenuation) is usually 
characterized by the quality factor Q defined as the ratio between the energy stored and 
energy loss per frequency cycle due to anelasticity. The constant-Q model (e.g. 
Kjartansson, 1979) is a simple and robust description of attenuation, which is based on 
the assumption of linearity and causality of the material and can be completely specified 
by two parameters: phase velocity at an arbitrary reference frequency and the quality 
factor Q.  Incorporation of attenuation into seismic trace models can be achieved with the 
help of constant Q theory. Margrave and Lamoureux (2002) presented a nonstationary 
convolutional model for attenuated seismic traces using the constant-Q theory and the 
theory of nonstationary linear filtering (Margrave, 1998).  

The spectral ratio method (Haase, A. B., and Stewart, R. R., 2004, and Tonn, R., 1991) 
is commonly used to estimate Q from VSP data. However, this method only uses the 
amplitude spectrum of the downgoing wavelet. If we make full use of the complex 
spectrum, i.e. both amplitude spectrum and phase spectrum, an improved estimation of Q 
may be obtained.  

The main subject of this article is to investigate a complex spectral ratio method for Q 
estimation. The first part of this article introduces the constant-Q model of seismic 
attenuation. The next section discusses the algorithm of the complex spectral ratio 
method. Following that, the performance of different spectral ratio methods is evaluated 
using synthetic examples. Finally, some basic conclusions are drawn. 

CONSTANT-Q MODEL OF ATTENUATION 
The constant-Q model (Kjartansson, 1979) predicts the amplitude decay given by 

,ሺ݂ܣ   ሻݔ ൌ ଴ሺ݂ሻexp ሺeܣ  గ௙௫ொ௩ ሻ,  (1)   

where ܣሺ݂,  ଴ሺ݂ሻܣ ,ݔ ሻ is the amplitude spectrum of the trace with a travelled distanceݔ
the initial amplitude spectrum, Q is the attenuation quality factor, ݂ the frequency, and ݒ 
the phase velocity. In the constant-Q theory, the earth can be model as a linear filter, 
which can be fully characterized by the corresponding impulse response. Kjartansson 
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(1979) gave the impulse response of the attenuating medium in frequency domain as 
following, 

ሺ݂ሻܤ   ൌ exp ሾe గ௙௫ொ௩ሺ௙ሻሿexp ሾe݅ ଶగ௙௫௩ሺ௙ሻ ሿ.  (2) 

In addition, the dispersion relation between the phase velocity and frequency is an 
essential part for the constant-Q theory. We use the following dispersion relation 
(Kjartansson, 1979, Aki and Richards, 2002),  

ሺ݂ሻݒ    ൌ ሺݒ  ଴݂ሻ ቂ1 ൅ ଵగொ ݈݊ ቚ ௙௙బቚቃ,  (3) 

which gives the phase velocity ݒሺ݂ሻ at any frequency in terms of the phase velocity ݒሺ ଴݂ሻ 
at an arbitrary reference frequency ଴݂.  When all the frequencies of interest satisfy the 
condition 

   ଵగொ ݈݊ ቚ ௙௙బቚ ا 1,  (4) 

equation (2) can be approximated by the following formulation with sufficient precision, 

ሺ݂ሻܤ  ൎ exp ሾെ గ௙௫ொ௩ሺ௙బሻሿexp ሾെ݅ ଶగ௙௫௩ሺ௙బሻ ቀ1 െ ଵగொ ݈݊ ቚ ௙௙బቚቁሿ.  (5) 

If we time-shift the attenuated impulse response to remove the linear phase delay, 
equation (5) becomes 

ሺ݂ሻ′ܤ  ൎ exp ሾെ గ௙௫ொ௩ሺ௙బሻሿexp ሾ݅ ଶ௙௫ொ௩ሺ௙బሻ ݈݊ ቚ ௙௙బቚሿ. (6) 

Combining (2) with (3), a nonstationary convolution model for an attenuated seismic 
trace can be established by convolving the attenuated impulse response with a wavelet, 
and then a nonstationary convolution of the result with the reflectivity. Margrave and 
Lamoureux (2002) presented such a model in the frequency domain, 

ሺ݂ሻݏ̂  ൌ ෝሺ݂ሻݓ ׬ ,ொሺ߬ߙ ݂ሻݎሺ߬ሻ݁ି௜ଶగ௙ఛ݀߬ஶିஶ ,  (7) 

where ̂ݏሺ݂ሻ and ݓෝሺ݂ሻ are the Fourier spectra of the seismic trace and seismic wavelet 
respectively, ݎሺ߬ሻ  is the reflectivity, and ߙொሺ߬, ݂ሻ  is the time-frequency attenuation 
function given by 

,ொሺ߬ߙ  ݂ሻ ൌ exp ሾe ௜గ௙ఛொ ൅ ܪ݅ ቀగ௙ఛொ ቁ,  (8) 

in which ܪ denotes the Hilbert transform.    

Corresponding to equation (6), a discrete formulation of the attenuated seismic trace 
can be expressed in time domain as  

 ܵ ൌ ܹܴܳ,  (9) 

where S is the attenuated seismic trace, W is the Toeplitz-symmetric wavelet matrix, in 
which each column is a time-shift version of the source wavelet, Q is the attenuation 
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matrix, in which each column is the attenuated impulse response (Q is the inverse DFT 
over f of the sampled version of equation (8) or equation (6)), and ܴ is the time-domain 
reflectivity vector. For the examples in this article, we use equation (6) to create the 
attenuation matrix ܳ, then multiply it with ܹ to get the attenuated downgoing wavelets ௗܹ as 

 ௗܹ ൌ ܹܳ. (10) 

Each column of matrix ௗܹ  corresponds to an attenuated wavelet with a particular 
travel-distance.  We use equation (10) to create synthetic data for testing the Q estimation 
algorithms.  

As long as the condition given by equation (4) holds, the created synthetic data will be 
consistent with the constant-Q model. Thus, the key point is to make our attenuation 
matrix match equation (6) precisely and this requires careful consideration of sampling 
effects.  Let ܾ′ሺݐሻ be the impulse response that has the Fourier spectrum ܤ′ሺ݂ሻ, and ܾ′ሺ݊ሻ 
be its discrete version calculated by sampling  ܤ′ሺ݂ሻ and using IFFT. Since ܤ′ሺ݂ሻ is not 
strictly band-limited, there exists a wrap-around effect at the end of ܾ′ሺ݊ሻ, i.e. the last 
part of the series ܾ′ሺ݊ሻ has nontrivial values which are not negligible. A problem would 
arise when we truncate ܾ′ሺ݊ሻ in practical processing, which makes the Fourier spectrum 
of truncated series obviously deviate from equation (6). To avoid this, we make a circular 
shift to ܾ′ሺ݊ሻ and then do the truncation. By doing so, we preserve the nontrivial end 
values, and only introduce a linear phase shift to ܤ′ሺ݂ሻ, which can be easily removed by 
followed process. 

COMPLEX SPECTRAL RATIO METHOD FOR Q ESTIMATION 

Consider two attenuated wavelets with travel-distance ݔଵ  and ݔଶ  respectively. Their 
Fourier spectra can be expressed as 

 ௗܹଵሺ݂ሻ ൌ ܹሺ݂ሻܤଵ′ ሺ݂ሻ ൌ ܹሺ݂ሻexp ሾെ గ௙௫భொ௩ሺ௙బሻሿexp ሾ݅ ଶ௙௫భொ௩ሺ௙బሻ ݈݊ ቚ ௙௙బቚ, (11) 

and 

 ௗܹଶሺ݂ሻ ൌ ܹሺ݂ሻܤଶ′ ሺ݂ሻ ൌ ܹሺ݂ሻexp ሾെ గ௙௫మொ௩ሺ௙బሻሿexp ሾ݅ ଶ௙௫మொ௩ሺ௙బሻ ݈݊ ቚ ௙௙బቚሿ,  (12) 

where ܹሺ݂ሻ is the Fourier spectrum of source wavelet. Thus, the amplitude decay and 
phase variation can be measured using the (log) spectral ratio as following, 

 ln ቂௐ೏మሺ௙ሻௐ೏భሺ௙ሻቃ ൌ െ గ௙ሺ௫మష௫భሻொ௩ሺ௙బሻ ൅ ݅ ሾଶ௙ሺ௫మష௫భሻொ௩ሺ௙బሻ ݈݊ ቚ ௙௙బቚሿ.  (13) 

The real part the (log) spectral ratio theoretically has a constant slope, which can be 
expressed as 

 ݇ ൌ ଵ௙ Reሺln ቂௐ೏మሺ௙ሻௐ೏భሺ௙ሻቃሻ. (14) 

So, the Q value can be estimated as 
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 Q ൌ െ గఛ௞ ,  (15) 

in which ߬ is the time delay given by  

 ߬ ൌ ሺݔଶିݔଵሻ/ݒሺ ଴݂ሻ. (16) 

For the standard spectral ratio method, only the real part of spectral ratio is considered, 
the slope is estimated by fitting a straight line to the measured spectral ratio, in which 
either the least squares solution or the ܮଵ norm solution can be adopted. For the examples 
in this article, we use the least squares solution.  Suppose that we get N spectral ratios for 
frequencies ଵ݂, ଶ݂, …, ே݂.  Let  ܴ, ܩ ,ܮଵ and ܩଶ be the column vectors with N elements 
expressed as following 

 ܴ ൌ ቂܴ݁ ቀ݈݊ ቂௐ೏మሺ௙భሻௐ೏భሺ௙భሻቃቁ , ܴ݁ ቀ݈݊ ቂௐ೏మሺ௙మሻௐ೏భሺ௙మሻቃቁ , ڮ , ܴ݁ሺ݈݊ ቂௐ೏మሺ௙ಿሻௐ೏భሺ௙ಿሻቃሻቃ்
, 

ܫ  ൌ ቂ݉ܫ ቀ݈݊ ቂௐ೏మሺ௙భሻௐ೏భሺ௙భሻቃቁ , ݉ܫ ቀ݈݊ ቂௐ೏మሺ௙మሻௐ೏భሺ௙మሻቃቁ , ڮ , ሺ݈݊݉ܫ ቂௐ೏మሺ௙ಿሻௐ೏భሺ௙ಿሻቃሻቃ்
ଵܩ , ൌ ሾെߨ ଵ݂߬, െߨ ଶ݂߬, ڮ , െߨ ே݂߬ሿ்,   

ଶܩ  ൌ ቂെ2 ଵ݂߬ · ݈݊ ቚ௙భ௙బቚ , െ2 ଶ݂߬ · ݈݊ ቚ௙మ௙బቚ , ڮ , െ2 N݂߬ · ݈݊ ቚ௙௙ಿబ ቚቃ்
. (17) 

Then, equation (13) can be rewritten as 

 ܴ ൅ ܫ݅ ൌ ଵ݉ܩ ൅ iܩଶ݉, (18) 

in which ݉ is the reciprocal of Q, i.e 

  ܳ ൌ 1/݉. (19) 

For standard spectral ratio method, only the real part of equation (18) is used. The 
least square solution for Q estimation is as following 

 Qୣୱ୲ଵ ൌ 1/ൣሺܩଵTܩଵሻିଵܩଵTR൧.  (20) 

Similarly, considering the imaginary part of spectral ratios only, the estimated Q value 
should be 

 Qୣୱ୲ଶ ൌ 1/ൣሺܩଶTܩଶሻିଵܩଶTR൧.  (21) 

The methods above only use either amplitude or phase information of the attenuated 
wavelets. In this article, we refer to them as amplitude spectral method and phase spectral 
method respectively. Making full use of the spectral information, a complex spectral ratio 
method can be developed. Based on equation (18), the Q value can be estimated by 
solving the following matrix equation 

 ൤ܩଵܩଶ൨ ݉ ൌ ቂ ܫܴ ቃ. (22) 

Then, the estimated Q value for the complex spectral ratio method can be formulated as 
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 Qୣୱ୲ଷ ൌ 1/ሾሺGTGሻିଵGTDሿ, (23) 

where the G and D are two vectors with 2N elements as following 

 G ൌ ൤ܩଵܩଶ൨ , D ൌ ቂ ܫܴ ቃ. (24) 

For Q estimation in practical, an energy loss independent of frequency may be taken 
into account. So, equation (18) can be modifies as  

 ܴ ൅ ܫ݅ ൌ ଵ݉ܩ ൅ Nܾܧ ൅ iܩଶ݉, (25) 

in which ܧN is a column vector with all ones, and b is a constant. For all the three method, 
Q estimation will reduce to estimate parameter ݉  by solving the following forward 
model 

ܕࡸ  ൌ  (26) ,܌

where ࡸ is the model operator that can be easily constructed from ܩଵ and ܩଶ, ܕ is the 
model vector that only contains parameter ݉ and b, and ܌ is the data vector that can be 
directly obtained from ܴ  and ܫ . The least square solution for equation (26) can be 
formulated as 

ෝܕ  ൌ ሺࡸࢀࡸሻି૚(27) .܌ࢀࡸ 

Sometimes, in order to improve the estimation, priori information or constraints about 
the model parameters may be added to the model. For this case, the model parameters are 
estimated by minimizing the following objective function 

ሻܕሺ܎  ൌ ԡ܌ െ ԡ૛ܕۺ ൅ λ૛ฮܕۯ െ ୟ୮୰ฮଶܕۯ
, (28) 

where λ  is a scaling factor; ۯ represents the imposed constraints in the form of linear 
operator; ܕୟ୮୰  represents priori information about the model. The solution can be 
formulated as 

ෝܕ  ൌ ሺۺ܂ۺ ൅ λ૛ۯ܂ۯሻି૚ሺ܌܂ۺ ൅ λ૛ܕۯ܂ۯୟ୮୰ሻ. (29) 

The choosen reference frequency ଴݂ and measuring frequency ݂should satisfy equation 
(4). In addition, ଴݂  should be properly chosen to make the calculation of division in 
equation (13) stable in case of noise. 

EXAMPLE 
For the examples in this article, the time sample rate is 0.002 s, reference frequency is 

the Nyquist frequency, the reference velocity is 2000 m/s, and the parameter Q is 50. The 
attenuated impulse response of the earth is calculated using equation (6). Figure 1 shows 
two truncated results of the original impulse response. One is truncated directly, and the 
other is circularly shifted 0.002 s (10 samples) and then truncated. Their corresponding 
slopes of amplitude (log) spectral ratio calculated by equation (14) are shown in Figure 2, 
which should be theoretically constant over all frequencies. We can see that the circular 
shift operation helps preserve all the information of original impulse response.  Figure 3 
shows two attenuated wavelets created by convolving the impulse response with a 



Cheng and Margrave 

6 CREWES Research Report — Volume 20 (2008)  

minimum phase wavelet. The progressive amplitude decay and waveform change caused 
by attenuation are apparent. Figure 4 shows the Q estimation results at different signal-to-
noise levels, and Figure 5 shows the repeated Q estimations result at fixed signal-to-noise 
level. The phase spectral ratio method has comparable estimation results to the amplitude 
spectral ratio method, and the complex spectral ratio method, in most cases, gives a better 
result than the other methods. 

 

 

FIG. 1. Attenuated impulse response of earth. 

 

FIG. 2. Slope of amplitude (log) spectral ratio of attenuated impulse response. 
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FIG. 3. Attenuated wavelet: (a) noise free, (b) with noise. 

  

FIG. 4. Comparison of Q estimation at different SNR levels  
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FIG. 5. Comparison of Q estimation at fixed SNR. 

CONCLUSIONS 
The circular shift operation helps to make the attenuated impulse response of earth 

more consistent with the constant-Q theory. The synthetic downgoing wavelet can be 
created by convolving the attenuated impulse response with source wavelet, which can be 
thought as the ideal version of VSP data. 

The amplitude spectral ratio method, phase spectral ratio method and complex spectral 
ratio method for Q estimation are evaluated using synthetic data. Results show that the 
phase spectral method is comparable to the conventional amplitude spectral ratio method, 
and the complex spectral method can obtain the best estimation in most cases.  Thus, the 
complex spectral ratio method may serve as an alternative to conventional spectral ratio 
method for Q estimation using VSP data.  

The above conclusion is based on a simplified theoretical model. Actually, the key is 
that whether the phase spectral method can obtain similar estimation to the amplitude 
spectral method. In practice, the phase spectral method may be more sensitive to the 
difference between the real attenuation mechanism and constant-Q model, and to the 
noise in the real world. Therefore, further investigation should be conducted using the 
real VSP data.  
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