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Footprint reduction by angle-weighted stacking after migration 

Joanna K. Cooper, Gary F. Margrave, and Don C. Lawton 

ABSTRACT 
In prestack migrated seismic data, acquisition footprint artefacts can manifest as 

residual migration wavefronts.  Due to inadequate spatial sampling, the wavefronts do not 
properly interfere: constructively where reflectors exist and destructively elsewhere.  
Prestack migration algorithms have different ways of sorting, regularizing, and weighting 
the input data, which results in differing abilities to deal with poor sampling.  Additional 
normalizations are performed on traces after migration but before stacking to form the 
final migrated image. In this paper, a weighting scheme in a Kirchhoff shot-record 
migration, which partially compensates for irregularities in the angle-dependent 
illumination of an image point, is described and assessed. Although the weights are 
applied in the context of migrating common-source gathers, the weights are dependent on 
the locations of all shots and receivers in a survey, and are applied to traces during the 
stacking process after migration; they are therefore not limited to the case of shot-record 
migrations. The weights are a function of image point location and delta, an angle 
describing the direction of the vector that bisects the opening angle formed by source-to-
image-point and receiver-to-image-point rays. We compute hit counts at each image point 
for different delta bins and use these to compute weights that are applied to delta-limited 
Kirchhoff migrations.  The zero delta hit-count is identical to traditional common 
midpoint fold and collectively these hit counts generalize the fold concept to prestack 
migration. The method, when applied to 2D model data shows potential for reducing 
footprint artefacts. The same type of weights can also be applied in the case of 3D data. 

INTRODUCTION 
Previously (Cooper et al., 2007), we described the initiation of a study of acquisition 

footprint in 2D and 3D seismic data. Acquisition footprint, an example of which is shown 
in Figure 1, generally consists of periodic amplitude variations that are unrelated to 
changes in elastic properties of the subsurface, but rather are artefacts of the choice of 
acquisition geometry and processing techniques. Footprint is often most obvious on time, 
depth, or horizon slices from 3D volumes, but the problem is also present in 2D data.  
The artefacts are observed to occur in many stages of processing, including stacked 
sections, poststack migrations, and prestack migrations. In our study, we take the 
approach that poor (i.e. sparse and irregular) sampling of the seismic wavefield is at the 
root of the footprint artefacts and therefore we numerically model seismic data recorded 
with ideal sampling. This ideal sampling corresponds to an acquisition geometry that we 
term “exhaustive”, with dense grids of sources and receivers that allow for prestack 
seismic data that exhibit no spatial aliasing in either common source or common receiver 
gathers. By selectively removing traces from the exhaustive dataset, we form more 
sparsely sampled datasets that mimic more realistic field acquisition geometries.  
Processing of both the exhaustive and decimated datasets with various algorithms allows 
us to examine the effect of spatial sampling on footprint, and also to observe how 
algorithmic differences influence the footprint artefacts. 
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FIG. 1. Example of acquisition footprint consisting of periodic amplitude variations on a horizon 
slice from a 3D volume. 

In this paper we focus on footprint after prestack migration and build on the 2D and 
3D footprint simulations described by Cooper et al. (2007). The model for the 2D 
simulation was 400 m long, with a reflector located at 200 m depth. The reflector had a 
uniform positive reflection coefficient, except for a small opposite-polarity anomaly in 
the exact centre of the reflector. The exhaustive acquisition geometry involved sources 
and receivers located at 5 m increments from 0 m to 400 m, on a flat surface. All 
receivers were live for every shot. Five decimated datasets were produced by simulating 
larger shot intervals, of 10 m, 25 m, 50 m, 100 m, and 200 m. Figure 2 shows the results 
from prestack Kirchhoff migration of each dataset, followed by stacking of the migrated 
shot records, from Cooper et al. (2007). The migration algorithm uses weights derived by 
Bleistein et al. (2001), modified for variable velocity. With large shot intervals, footprint 
artefacts consisting of residual migration wavefronts appear in the images. At constant 
depth, the wavefronts are regularly spaced and if amplitudes were extracted along a depth 
slice that crossed those wavefronts, periodic amplitude variations (i.e. footprint) would be 
observed. As discussed in Cooper et al. (2007), we observed a correlation between the 
presence of the wavefronts in the final images and the presence of spatial aliasing in 
common receiver gathers, which indicated a possible link between spatial aliasing and 
footprint.  
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FIG. 2. Images produced from stacking migrated shot records from the exhaustive dataset and 
the five decimated datasets, from Cooper et al. (2007). The exhaustive dataset (a) had a shot 
spacing equal to the receiver spacing.  The five decimated datasets had shot spacings of twice 
(b), five times (c), ten times (d), twenty times (e), and forty times (f) the receiver spacing.  
Footprint artefacts consisting of residual migration wavefronts are observable in d) through f) and 
are also subtly present in c). 

Cary (2007a, 2007b) described a similar 2D footprint simulation which produced 
residual migration wavefronts after shot-record migrations. Using a common-offset 
migration algorithm also produced the same results; incomplete cancellation of migration 
wavefronts occurred when the shot spacing was not fine enough. However, applying 
partial NMO before migration to correct the offset of each trace to that of the centre of 
the offset bin was successful in reducing the presence of the footprint. In a different 
study, Cary (1999) showed the ability of partial stacking of common-offset gathers before 
migration to help overcome spatial aliasing associated with sparse sampling. In that 
paper, he commented on the ability of the technique to increase the fidelity of reflection 
waveforms of shallowly dipping events in the final migrated images, though the quality 
of steeply dipping events suffered when aliasing was severe. These studies suggest that 
regularization in the offset dimension is helpful in increasing the accuracy of reflection 
amplitudes and, perhaps in a related way, in reducing footprint artefacts. The work is also 
consistent with our ideas about the role of spatial aliasing in footprint; the reduction in 
the severity of spatial aliasing being achieved, in this case by imposing a model (i.e. 
horizontal reflectors) during partial NMO correction, is associated with the footprint 
reduction. 

Cooper et al. (2007) also described the initiation of our 3D footprint simulation. In this 
case, the model was 400 m by 400 m in x and y, with three reflectors in depth. Two 
reflectors, at 100 m and 180 m, were featureless, meaning they had a constant reflection 
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coefficient, and the third, at 200 m, had a sinuous channel feature in it. The exhaustive 
survey consisted of shots and receivers on a 10 m grid, as shown in Figure 3 a). Figure 3 
b) shows the decimated survey, which mimics an orthogonal survey design, with shots 
and receivers still spaced at 10 m but now located in shot lines parallel to the y axis and 
receiver lines parallel to the x axis. The line spacings were 80 m. All receivers were live 
for every shot. Obviously, these were not the only possible choices for the survey 
designs.  For example, the source and receiver positions could have been staggered, other 
types of decimations could have been produced, and a moving receiver patch could have 
been incorporated. These changes to the survey designs fall under future work in our 
larger study of footprint; for this paper, we stayed with these two designs in order to be 
able to compare to the results shown in Cooper et al. (2007). Figure 4 shows the results of 
the Kirchhoff shot-record migrations from that paper, created using a 3D version of the 
same Bleistein-weighted migration algorithm used for the 2D simulations. 

 

FIG. 3. Exhaustive (left) and decimated (right) survey geometries for 3D footprint simulations. 

In comparing the migrations of the exhaustive and decimated datasets in Figure 4, 
periodic amplitude variations are observable in the decimated dataset, especially on the 
two featureless reflectors. Since those two reflectors are above the channel reflector, any 
residual migration wavefronts associated with the channel reflector would be crosscut by 
the slices at the two featureless reflectors, resulting in the observed footprint. The images 
of the reflector at 180 m contain an imprint of the channel, even though the reflection 
coefficient was constant at that level. This is due to wavelet sidelobes from the nearby 
channel reflection event; deconvolution was not applied to the data. The images from the 
exhaustive dataset do not show the periodic amplitude variations, but they do exhibit the 
same pronounced aperture imprint as in the decimated survey, with amplitudes decaying 
away from the middle of the survey. 
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FIG. 4. Depth slices from prestack migrated volumes at the 100 m featureless reflector (top row), 
the 180 m featureless reflector (middle row), and the channel reflector (bottom row) from Cooper 
et al. (2007).  Images in the left-hand column are from the exhaustive survey; those from the 
right-hand column are from the decimated survey. 

Figure 5 shows two industrial prestack migrations of the same model, performed using 
common-offset and common-offset-vector migration algorithms (see Cooper et al. 2007 
for more details). Comparison with Figure 4 shows that the industrial weighting schemes 
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result in images without the strong aperture imprints. They also show reduced footprint 
artefacts. For the purposes of this study, the most important observations from the 
comparison are that the offset-domain weighting seems to do a better job then our shot 
weights, and that the industrial empirical weights do a better job than our Bleistein 
theoretical weights. These observations motivated the present investigation, on achieving 
reduction in footprint by modifying the way traces are weighted in prestack migration.  
Of course, changing migration algorithms and weights is not the only way to attempt to 
reduce footprint. Among other things, improvement could result from regularization, in a 
manner similar to that observed in the 2D case; this could be accomplished perhaps by 
interpolation or partial stacking. At the extreme of partial stacking is full stacking, and 
simulations from Cooper et al. (2007) suggest that footprint in stacks and poststack 
migrations may not be as severe as after prestack migration. Here, though, we focus on 
benefits that can be achieved by attempting to weight prestack migrated traces to 
compensate for irregular angular illumination caused by poor sampling. 

 

FIG. 5. Depth slices at 100 m (left) and 200 m (right) from prestack migrations of the decimated 
dataset performed using industry migration algorithms from Cooper et al. (2007). Comparison 
with Figure 4 shows the influence of migration algorithm on footprint. 
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METHOD 
Different types of weighting in prestack migration produce many of the differences 

between algorithms. Weights can be applied to traces before migration, during migration, 
and after migration. With the observation in our 3D footprint simulations that different 
migration algorithms produced such different results, we began trying to improve the 
weighting in our Kirchhoff shot-record migration. We chose to stay with a shot-record 
migration, instead of moving to migrating other types of gathers such as common-offset 
gathers, because fundamentally in the absence of partial stacking before migration, the 
domain in which migration is implemented should not matter. With the Kirchhoff 
method, each trace could be migrated independently; it is only the weights that are 
applied to each trace that give rise to differences in the final image. As discussed by 
Cooper et al. (2007), the shot-record migration algorithm that was used for the 2D and 
3D simulations incorporated weights prescribed by Bleistein et al. (2001). The 
formulation used by Bleistein et al. (2001) involves analysis of the Beylkin determinant 
(Beylkin, 1985) that describes the influence of the source-receiver geometry at a given 
image point. In a sense, the Beylkin determinant attempts to perform the transformation 
from continuous, infinite receivers on the surface to uniform illumination of a unit sphere 
surrounding each image point (Bleistein, 1987). However, the Bleistein migration 
formula is still an integral expression, corresponding to continuous sampling and no 
aperture limitations. When sampling is irregular and discrete, the integral is approximated 
by a sum and irregular illumination of the imaging hemisphere results.  This process is 
analogous to calculating the integral of a function, ( )f x dx∫ , numerically by converting 

it to a sum, ( )j j
j

f x xΔ∑ . The result of the sum will only approximate the true integral.  

A first-order attempt is to just sample the function and add up the samples, such as 
( )j

j
f x∑ . If the samples were dense and regularly spaced (small, constant xΔ ) then the 

result of the sum will only be inaccurate by a scale factor, since xΔ  can be factored out 
of the sum. Sampling with a small, constant xΔ  is similar to the exhaustive dataset, with 
infinite aperture. However, if xΔ  is not constant, when samples are sparse and irregularly 
spaced in the case of a decimated dataset, ( )j

j
f x∑  will not be a good approximation of 

the integral. Weighting each sample in the sum appropriately, such as in ( )j j
j

f x xΔ∑ , is 

required. 

With this analogy in mind, our approach was that we require additional weighting 
factors in the summation or stacking process after migration, to be used in conjunction 
with the Bleistein weights applied during migration. The combination of the weighting 
schemes attempts to convert from discrete, irregular sampling to continuous, regular 
sampling. In the spirit of the Beylkin determinant, the weights should achieve uniform 
illumination of the imaging hemisphere. If we consider that the exhaustive survey 
represents ideal sampling, at least over a limited aperture, and that the Bleistein weights 
should convert that regular sampling on the surface to regular sampling on the imaging 
hemisphere, then our goal for a decimated survey is to weight traces to mimic the 
exhaustive survey. In particular, we can keep track of hit counts on the imaging 
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hemisphere and normalize by those hit counts. Industrial migration algorithms that are 
based on fold weights compensate for discrete, irregular sampling to some degree by 
performing a type of normalization, but in midpoint-offset coordinates. While angular 
illumination compensation is related to midpoint-offset weights, the two concepts are not 
the same, and moving from weighting in the surface acquisition domain to weighting in 
the image point domain may make the latter a more direct method for achieving 
normalization. 

To accomplish the imaging hemisphere illumination compensation, we determine 
weights that are based on the angle delta. Delta describes the direction, which has both 
azimuth and dip components, of the vector that bisects the opening angle between the 
source-to-image-point ray and the receiver-to-image-point ray. Figure 6 shows the delta 
vectors for an image point and a source-receiver pair in 2D. For a flat reflector, the 
common-midpoint or Snell’s Law reflections all have deltas of zero; therefore, a map of 
zero delta hit counts is the same as a common midpoint fold map. Like fold, zero delta hit 
counts are depth independent (discounting top-mute effects), but in general the non-zero 
delta distributions change with image point depth. The non-zero deltas extend the idea of 
fold to prestack data with non-Snell’s Law raypaths, corresponding to diffractions. Even 
in the case of zero reflector dip, where the Snell’s Law or zero delta reflections are most 
important, contributions from non-zero deltas are necessary in order to image lateral 
reflectivity contrasts. 

 

FIG. 6. Illustration of the angle delta, determined by the vector bisecting the opening angle 
between source and receiver rays. The positions of sources and receivers on the surface 
determine the distribution of delta angles on the imaging hemisphere. The theory of the Beylkin 
determinant requires equally weighted contributions to the image point from each delta. 

When moving from the exhaustive survey to a decimated survey, the common 
midpoint fold decreases in a way related to the geometry of the decimation (Figure 7).  
This is not surprising, and neither is the idea that this change should be compensated for 
in prestack migration. The fold for non-zero deltas changes as well, but not in the same 
exact way as the zero deltas. The entire distribution of deltas changes in response to the 
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removal of sources and receivers. In order to achieve the same image point illumination 
with a decimated survey as was present with the exhaustive survey, the contributions of 
different deltas need to be weighted. We use two types of weighting schemes: fold 
weights that involve dividing by decimated dataset delta hit counts, and also ratio weights 
that involve the ratio of exhaustive to decimated delta hit counts. The concept of delta-
dependent weights in prestack migration is not new; it has been used in the context of 
true-amplitude migration to compensate for irregular illumination of image points (e.g. 
Albertin et al., 1999, Audebert et al., 2003). In those cases, the approach consisted of a 
replacement of the Beylkin determinant in the prestack migration weights by delta hit 
count weights. Here we attempt to apply a similar concept to the case of footprint 
produced during prestack migration. However, we keep the Bleistein weights, including 
the Beylkin determinant therein, unchanged in the migration and multiply by additional 
delta hit count weights that are applied during stacking of imaged shot records after 
migration.   

 

FIG. 7. Common midpoint fold for the exhaustive (left) and decimated (right) surveys from the 3D 
footprint simulation, as an example of delta hit count maps changing between exhaustive and 
decimated surveys, in this case for delta=0. 

In a prestack migration, delta is directly related to dip of the migration impulse 
response; the delta vector is the normal to the migration impulse response (Figure 8).  
Delta is a function of source, receiver, and image point position, so every point on the 
impulse response for a given trace corresponds to a different delta, since the position of 
the image point is changing. Figure 8 shows a 2D impulse response divided into delta-
limited bins. In our simulations of footprint, the steep dips of migration wavefronts do not 
cancel in the case of highly decimated datasets. This suggests that attempting to weight 
the different deltas on those migration wavefronts could have an impact on the footprint. 
In particular, down-weighting the large deltas could possibly reduce the presence of the 
artefacts. 
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FIG. 8. Migration impulse response divided into individual delta angle contributions.  Delta is 
determined by the opening angle bisector vector (refer to Figure 6), which is also the normal to 
the impulse response. 
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To implement the method, we first compute the delta distribution for each image 
point, for a set of predetermined delta bins. Computing these distributions requires ray 
tracing from all sources to all image points and from all receivers to all image points to 
find the bisector vector for each ray pair. Figure 9 shows the distributions for two image 
points from the 2D model, one in the middle of the model and one near the edge of the 
model, for the exhaustive survey and all five decimated surveys. Bins with a width of five 
degrees were used. Since the angles are determined by ray methods, binning of the delta 
angles appears to be necessary, otherwise the delta distributions of very closely spaced 
image points can be unrealistically different. However, the method for optimal binning 
has not yet been determined. Ray tracing to calculate the delta distributions does not 
constitute much of an additional computational burden, since the ray tracing step is 
already required in migration to compute traveltimes. In this example straight rays were 
used to compute the distributions. In practice, the delta computation step could be 
combined with the ray tracing step already being performed. As expected, Figure 9 shows 
that the image point in the middle of the survey displays a symmetric distribution of 
deltas, while the image point at the edge of the survey is dominated by deltas of only one 
sign. Figure 9 shows not only how the decimated surveys have fewer hits in each delta 
bin compared to the exhaustive survey, but also how the shape of the distribution changes 
as the decimation gets more extreme. Our weighting schemes attempt to compensate for 
this. 

 

FIG. 9. Delta bin hit count distributions for two image points from the 2D model.  Left (a) – image 
point at x=2.5 m, z=200 m, at the edge of the model. Right (b) – x=200 m, z=200 m, in the middle 
of the model. The six panels for each image point are the exhaustive dataset, and the 10 m, 25 
m, 50 m, 100 m, and 200 m decimations. 

The computation of delta distributions allows the weights for each delta-limited 
migrated trace contributing to that image point to be computed. We consider two possible 
weighting schemes: ratio weights and fold weights.  For ratio weights the weight for a 
trace with a given delta is just the delta bin hit count in the exhaustive survey divided by 
the delta bin hit count in the decimated survey. Ratio weights attempt to convert the 
illumination of the decimated survey into that of the exhaustive survey, operating under 
the assumption that the Bleistein weights are designed (hence optimal) for exhaustive 
data with infinite aperture.  For fold weights the weight is just one divided by the delta 
bin hit count in the decimated survey. Fold weights for the zero delta bin amount to just 
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the familiar division by common midpoint fold. Computation of fold weights only 
requires ray tracing for the shots and receivers in the decimated survey, while ratio 
weights involve ray tracing for the whole exhaustive survey, making them slightly more 
computationally intensive. Figure 10 shows both types of weights for the same two image 
points considered in Figure 9, again for the exhaustive survey and the decimated surveys. 
The ratio weights involve the exhaustive survey distribution in Figure 9 and dividing in 
turn by each decimated survey distribution. As expected, the ratio weights for the 
exhaustive survey are one for every bin, since in that case the weights are equal to the 
exhaustive hit count divided by itself. The weights for the decimated surveys change in 
response to the decimated hit counts changing, in a manner that attempts to compensate 
for the changing illumination. In general, the fold weights have higher weights associated 
with the larger delta angles, while the ratio weights have lower weights associated with 
large deltas. This suggests that the ratio weights may be more effective in reducing the 
presence of the step limbs of the residual migration wavefronts associated with footprint. 

 

FIG. 10. Fold weights (a, b) and ratio weights (c, d) for the two image points from Figure 9 for the 
exhaustive and decimated surveys.  Left (a, c) – image point at x=2.5 m, z=200 m, at the edge of 
the model. Right (b, d)  – x=200 m, z=200 m, in the middle of the model. Fold weights appear to 
emphasize large deltas in the middle of the model, while ratio weights down-weight the large 
deltas. Ratio weights do nothing to the exhaustive survey.   
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In either the case of using fold weights or ratio weights, the weights are applied to 
each migrated trace getting stacked in for a particular image point. The process for a 3D 
shot-record migration can be described as follows. First, the j th shot record ( ), ,j r rx y tψ  

is migrated, producing k  delta-limited output volumes ( ), , ,j i i i kx y zψ δ .  Here, rx  and 

ry  are receiver coordinates, t  is time, ix , iy , and iz  are the image point coordinates in 
the migrated volume, and kδ  indicates the k th delta bin.  The delta hit counts are also 
computed for each image point; for the k th delta bin the hit count volume is 

( ), , ,i i i kn x y z δ . Then, the migrated shots are stacked to form the final image, and during 
the stacking process the weights are applied. This is described by 

 ( ) ( )Im , , * , , ,i i i k j i i i k
j shots kbins

x y z W x y zψ δ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∑ ∑ , (1) 

where ( )Im , ,i i ix y z  is the migrated image at the image point at ( ), ,i i ix y z  and kW  is the 

weight for the k th delta bin.  In the case of fold weights, kW  is related to ( ), , ,i i i kn x y z δ  
by 

 ( )
1

, , ,k
i i i k

W
n x y z δ

= , (2) 

while in the case of ratio weights, kW  is related to ( ), , ,i i i kn x y z δ  by 

 ( )
( )

, , ,
, , ,

exh i i i k
k

i i i k

n x y z
W

n x y z
δ

δ
= . (3) 

Here, ( ), , ,exh i i i kn x y z δ  is the hit count volume for the exhaustive survey. 

To summarize the method, during migration a given trace contributes to all image 
points but generally with a different delta for each point. The position of the image point 
relative to the source and receiver locations determines the value of delta for each 
migrated trace. In this method, we apply a delta-dependent weight to each delta-limited 
migrated trace that contributes to an image point when the traces are stacked. In the 
simplest sense, this involves producing migrated delta-limited volumes, and then 
combining those volumes with volumes of weights that contain information about the 
delta hit counts for each image point in the volume. This produces a weighted migration.  
In reality, the step of outputting many migrated volumes is not necessary; the weights 
could be applied as traces are continually summed into the final image volume. While the 
weights are applied to individual shot records, the entire survey geometry is required to 
compute the weights. Our weights will also affect a common-image gather (CIG) because 
such a gather is usually constructed by simply not summing over sources. 
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2D EXAMPLE 
To illustrate the application of the delta weighting scheme in 2D, we applied the 

technique to the same 2D footprint study shown in Figure 2. Figure 11 shows the results 
from prestack migration of the same six datasets, with delta ratio weights implemented 
when migrated traces were stacked together. Equal width delta bins of 5 degrees were 
used, with a bin centred on zero delta and bins distributed symmetrically for positive and 
negative deltas. The image from the exhaustive survey is identical in Figure 11 to what it 
was in Figure 2. This is because the ratio weights for the exhaustive dataset are just one 
for all delta angles, as shown in Figure 10. The images from the five decimated datasets 
have changed, though. The residual migration wavefronts that form the footprint artefacts 
in Figure 2 have become less pronounced in Figure 11. This is particularly apparent for 
the 50 m shot spacing in c) and the 100 m shot spacing in d). The image from the 200 m 
shot spacing shows a reduction of the wavefronts, but it does show some degree of 
horizontal striping, which is likely related to the binning of the delta angles.  The images 
of the highly decimated datasets have not been improved to the point where they are 
identical to the image from the exhaustive dataset, but in our estimation they are an 
improvement over the same decimated surveys migrated without using the delta weights. 
Also, the image of the reverse polarity anomaly and the rest of the flat reflector have 
remained similar to the case without the delta weights, so the image of the target has not 
been degraded by application of this weighting scheme. 

Figure 12 shows the same six prestack migrations using delta fold weights instead of 
delta ratio weights. Unlike in the case of delta ratio weights, the image of the exhaustive 
dataset using delta fold weights is not identical to the case where no delta weights were 
used (Figure 2). Figure 12 shows that the fold weights cause an enhancement of artefacts 
from the edge of the surveys. However, the fold weights have helped compensate for the 
limited aperture of the surveys. Amplitudes decay at the edges of the images in Figure 11, 
while the amplitudes remain more constant towards the edges in Figure 12. This benefit, 
though, came in association with the enhancement of edge artefacts. Possibly, these 
artefacts at the edges of the survey could be reduced by tapering before migration, in the 
same way that poststack migration edge artefacts are avoided. However, the wavefronts 
from the edges of the images do not appear to be the only wavefronts remaining in the 
images from the decimated datasets. The fold weights do not appear to reduce the 
presence of the wavefronts in the same way as the ratio weights do. Figure 12 also shows 
the same horizontal striping as was apparent in the most severe decimations in Figure 11. 
Figure 12 helps to show the connection between the horizontal stripes and the delta 
binning; the way in which the wavefronts from the edges of the survey are segmented is 
similar to the way the migration impulse response in Figure 8 was divided into delta bins. 
A different way of binning delta, as opposed to this boxcar method, may produce less of 
this type of horizontal striping. Figure 13 shows a detailed comparison between the 
prestack migrations without delta weights and with the two types of delta weights for the 
50 m decimation and 100 m decimation. 
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FIG. 11. Images produced from stacking migrated shot records from the exhaustive dataset and 
the five decimated datasets. Similar to Figure 2 except here delta angle ratio weights were 
applied when migrated traces were stacked. Compared to Figure 2, residual migration wavefronts 
are less pronounced. 

 

FIG. 12. Same as Figure 11 except delta fold weights were used instead of delta ratio weights.  
Fold weights do not appear to be as effective as ratio weights in reducing footprint, though they 
do compensate for limited aperture more effectively than the ratio weights. 
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FIG. 13. Detailed comparison of images produced without delta weights (left), with delta ratio 
weights (middle), and with delta fold weights (right), for the 50 m decimated dataset (top row) and 
the 100 m decimated dataset (bottom row).   

Since binning of delta angles is an integral part of the weighting method, we altered 
the bin width to assess the impact of this binning. In this 2D investigation, we did not 
explore bins with irregular widths; this will be the subject of future work. Figure 14 
shows the results from using 1 degree bins for the delta ratio weights, compared to Figure 
11 which involved using 5 degree bins. Figure 15 shows results using 15 degree bins.  
These figures suggest that the bin width does have a significant impact on the 
effectiveness of the delta ratio weights. Large bins do not seem to reduce the footprint 
artefacts as effectively, as they are not able to capture the detailed changes in hit counts 
as a function of delta angle. However, very small bins may make the weights too 
irregular with lateral position of the image point, resulting in some chatter in the image.  
This is especially apparent in the image of the 200 m decimated dataset using 1 degree 
bins.  There may be a trade-off between amount of decimation and bin width. Highly 
decimated datasets may benefit from larger bins, while less decimated datasets may show 
the most improvement with smaller bins. Figure 15 also shows that the horizontal striping 
is indeed related to the delta binning, since on the image from the 200 m decimation the 
horizontal stripes are still noticeable but are at a larger separation than when the smaller 
delta bins were used. The 1 degree bins are so small that horizontal stripes do not seem to 
be present. 
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FIG. 14. Same as Figure 11 except 1 degree delta bins were used instead of 5 degree bins for 
calculating delta ratio weights. 

 

FIG. 15. Same as Figure 11 except 15 degree delta bins were used instead of 5 degree bins for 
calculating delta ratio weights. 
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FIG. 16. Detailed comparison of using different delta bin widths for calculation of delta ratio 
weights for the 50 m decimated dataset (top row) and the 100 m decimated dataset (bottom row).  
The three different bin widths used were 1 degree (left), 5 degrees (middle), and 15 degrees 
(right).  

As a last comparison using 2D delta weights, we show the effect of ignoring the 
azimuth of delta. In other words, binning of the absolute value of delta, instead of signed 
delta, is performed. Figure 17 shows the results of using the absolute value of delta for 
the delta ratio weight computations. While the residual migration wavefronts have been 
reduced slightly, they have not been reduced as much as when the sign of delta was 
considered (Figure 11). Figure 18 shows the detailed comparison between not using delta 
weights, and using both signed and unsigned delta weights. Not surprisingly, these results 
suggest that it is important to consider the sign (in 2D) or equivalently the azimuth (in 
3D) of delta angles when implementing this type of illumination compensation. 
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FIG. 17. Similar to Figure 11 except the absolute value of delta was used in binning instead of 
signed delta.  This simulates not considering the azimuth of the delta angle when computing the 
delta ratio weights. 

 

FIG. 18. Detailed comparison of images produced without delta weights (left), with signed delta 
ratio weights (middle), and with absolute value of delta ratio weights (right), for the 50 m 
decimated dataset (top row) and the 100 m decimated dataset (bottom row).  
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3D EXAMPLE 
In a similar manner to the above 2D example, we are working on implementing the 

delta weighting scheme in 3D an applying it to the same 3D footprint model that was 
introduced earlier and presented in Cooper et al. (2007). The 3D case is slightly more 
difficult than the 2D case, particularly because the azimuth of the bisector vector must be 
considered. If azimuth is ignored, it is likely the same as working with the absolute value 
of delta in the 2D case. As shown above, the absolute value of delta was not as effective 
as using signed delta. This suggests that in 3D, consideration of azimuth is important. In 
2D we find the dip angle by just taking a dot product of the bisector vector with a unit 
vector along the z axis. To find the azimuth in 3D we just take another dot product, this 
time with a unit vector pointing in the x axis direction. While we have yet to produce a 
full delta weighted prestack migration, here we will show some delta fold maps for shots 
from the exhaustive and decimated surveys to show how the weighting schemes would 
work.  Figures 19 and 20 show the delta hit count maps for a shot at x=240 m, y = 400 m.  
The delta bins used were [0, 0.01), [0.01, 10), [10, 20), [20, 30), [30, 40), [40, 60), and 
[60, 90] degrees. We wanted a bin that was close to just containing zero delta to 
demonstrate that the zero delta hit count is the same as the common midpoint fold in the 
case of a flat reflector; this is shown in Figure 19. Azimuth was not considered in this 
binning example.   

   

FIG. 19. Hit count maps for delta angles between 0 and 0.01 degrees for a shot located at x=240 
m, y=400 m (position indicated by the yellow star), from the exhaustive dataset (left) and from the 
decimated dataset (right). Receiver locations for both datasets are indicated by green dots.  
These essentially zero delta hit count maps are identical to common midpoint fold maps for the 
shots. 

Figure 20 shows the hit count maps for the other six delta bins, for the same shot from 
the exhaustive and decimated surveys. The delta weights used in prestack migration 
would come from the combination of similar hit count maps for all the shots in each 
survey. The delta hit count maps in Figure 20 are reminiscent of work done on 
illumination by Margrave (2005) in a study that attempted to reduce footprint by means 
of illumination compensation in phase-shift migration. This observation suggests that 
these delta weights are a type of illumination compensation applied to Kirchhoff shot-
record migration. The delta hit count maps in Figures 19 and 20 show a lack of small 
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delta angles for image points between shot-receiver line midpoints in the decimated case.  
The delta ratio weights would attempt to compensate for this. Currently, we have the 
ability to compute the delta weights in 3D, and working code to migrate 3D shot records 
into delta bins. Soon we should have results from applying the weights to the migrated 
traces. More work is also ongoing with incorporating azimuth into the delta binning, and 
with examining different bin widths. 

 

FIG. 20. Hit count maps for non-zero delta angles for a shot located at x=240 m, y=400 m, from 
the exhaustive dataset (top six panels) and from the decimated dataset (bottom six panels). The 
six delta bins were [0.01, 10), [10, 20), [20, 30), [30, 40), [40, 60), and [60, 90] degrees. 
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DISCUSSION AND CONCLUSIONS 
Applying weights based on the distribution of raypath opening angle bisector 

directions to attempt to compensate for irregular image point illumination appears to 
reduce the presence of footprint produced when migrated shot records are stacked. The 
2D simulation of decimated datasets show that the weighting scheme is not a substitute 
for proper sampling and cannot reproduce the quality of images produced from the 
exhaustive dataset, but the results do show that this type of compensation provides some 
benefit. The migrated sections incorporating delta ratio weights during stacking are an 
improvement over simple stacking of migrated shots, suggesting that more investigation 
is warranted. 

An aspect that we have yet to investigate is the manifestation of footprint in common 
image gathers and whether this type of weighting would also show a benefit in that 
context. For now though, our aim is to produce a final image from stacking migrated 
traces that exhibits the least footprint. In our shot-record migration, this means that we 
are not focusing on producing the best migration of a single shot record, but the best 
stack of all migrated shots. Since the final image produced will result from stacking many 
migrated shots it makes sense that any weighting scheme used should have weights that 
depend on the distribution of shots as well as the distribution of receivers. Perhaps the 
apparent advantage of common-offset migration methods compared to a shot-record 
migration in our previous 3D simulations is related to this; common-offset migrations 
necessarily incorporate both source and receiver sampling because of the coordinate 
transform to midpoint and offset. However, if no partial stacking is being done before 
migration, it should not matter what type of gather is being migrated. Each migrated trace 
should be able to be weighted appropriately to get the most accurate amplitudes in the 
final image as possible. The delta weights for any migrated trace are a function of the 
distribution of all shots and receivers in the survey and are independent of whether the 
trace was in a shot record or in a common-offset gather. 

We like the idea of these delta hit counts because the zero delta bin is the same as 
common midpoint fold for flat reflectors and the concept of dividing by fold when we do 
stacking is very well established. The non-zero delta hit counts extend the idea of fold to 
prestack data. We also like the fact that the ratio weights do nothing in the case of the 
exhaustive survey, since we consider the exhaustive survey to already have ideal 
sampling. However, we would like to see the weighting remove the strong aperture 
effect, which plagues even the exhaustive survey, and fold weights have the ability to do 
this, while ratio weights do not. Overall, in this simulation we think that the ratio weights 
perform better than pure fold weights. This may be related to the fact that we are 
combining the delta weights applied after migration with Bleistein weights that get 
applied during the migration. Possibly fold weights could perform better than shown 
here; perhaps the Bleistein weights should not be applied during the migration when 
using fold weights after migration.  In an attempt to investigate this, we tried turning off 
all weights during the migration but retaining the fold weights or the ratio weights, which 
produced worse results than when the Bleistein weights were included. Probably, though, 
instead of turning off the migration weights completely, some type of weighting should 
still have been included in order to perform gain, etc.   
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As shown to some degree in the above 2D simulation, binning is an important factor in 
the method. The binning appears to be resulting in some horizontal striping in the images 
in some cases. It is possible that Gaussian windows in delta instead of boxcar windows 
would reduce this problem; this is currently under investigation. It is also unclear at this 
stage whether bins should be equal in size or not; in the 2D simulations the bins used 
were all regular in size, while the 3D delta hit count maps involved unequal bins. In 3D, 
consideration of azimuth is probably quite important, considering the 2D comparison 
between signed and unsigned delta. In 3D the choice of binning is even more complicated 
than in 2D because bins could be either on a polar grid or a rectangular grid; this is 
similar to the choice in binning offset in 3D into polar coordinates (offset and azimuth) or 
rectangular coordinates (inline offset and crossline offset). Despite all of the uncertainties 
that remain at this stage in our investigation, our purpose here was to present the idea 
behind the method and our results to date in 2D and 3D in order to solicit feedback. 
Further results in 3D are currently being produced. 
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