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ABSTRACT 
The Radon transform is a common tool used to attenuate multiple energy. The least-

squares implementation commonly used introduces artifacts and alters the amplitudes of 
the primary events. A high-resolution methodology is developed based on the truncated 
singular value decomposition (TSVD). A synthetic example shows that the TSVD 
implementation is superior, leads to fewer artifacts, and removes multiples more 
effectively. 

INTRODUCTION 
Most of the seismic migration methods used today in the industry are developed on the 

assumption that the seismic data contain only primary energy. However in reality the data 
are contaminated with different types of noise, coherent and incoherent. Multiples and 
ground roll are one example of coherent noise. The Radon transform (e.g. Yilmaz, 2001) 
is a standard tool used to remove coherent noise with linear, parabolic, and hyperbolic 
moveout. This process greatly improves the pre-stack migration velocity analysis. 
However it is well known that the current least-squares frequency domain 
implementation (Hampson, 1986) introduces artefacts in the data and alters the 
amplitudes of the primary events, which is an undesirable effect for AVO analysis (Kabir 
and Marfurt, 1999). In this paper, we review the theory of the least-squares Radon 
transform and we propose a new high-resolution implementation based on the truncated 
singular value decomposition (TSVD) (Aster et al., 2005).Through a synthetic example 
we show the TSVD implementation is superior to the least-squares one, leads to fewer 
artefacts and removes multiples more effectively. 

THEORY OF THE RADON TRANSFORM 
The forward Radon transform u(τ,q) of a 2-D function f(t,h) is defined by the integral 

expression (Beylkin, 1987; Yilmaz, 2001) 
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where t and h are input variables, and τ and q are transform variables. The function φ(q,h) 
defines the integration path. In seismic applications, t is two-way travel time and h is 
offset. The inverse Radon transform is given by the integral expression 
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which is a convolution of u(τ,q) with a rho filter. For 2-D data the rho filter is (Yilmaz, 
2001) 
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There are three forms of the Radon transform that are extensively used in seismic data 
analysis: linear, parabolic, and hyperbolic. The linear Radon transform is 
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where q has the physical meaning of a ray parameter. It represents a summation along 
straight lines in the data domain. The parabolic Radon transform is 

 ∫
+∞

∞−

+== dhhqhtdqu par ),(),( 2ττ , (5) 

and represents a summation along parabolic curves. The hyperbolic Radon transform is 
defined by 
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and represents a summation along hyperbolic curves dependant on the seismic velocity ν. 

It is important to stress that the Radon transform forward-inverse pair is a forward-
adjoint pair. It means that by applying the forward transform and then inverting it does 
not recover the data exactly. The situation is worsened in practice because we must 
implement a discrete transform using a finite set of trajectories. 

A practical solution to this problem was proposed by Thorson and Claerbout (1985) 
and Hampson (1986). In order to minimize the amplitude smearing on the conventional 
Radon space they used a least-squares formulation. For limited digital data the inverse 
Radon transform can be cast as a matrix operation 

 Lud =' , (7) 

where d’ is the reconstructed data, u is the Radon transform of the data d, and L is a 
linear operator. The forward Radon transform is then 

 dLu T= , (8) 

which is known as a low resolution solution. A least-squares solution is found by 
minimizing the error e between the actual input data d and the reconstructed data d’  

 Luddde −=−= ' . (9) 

The standard least-squares solution to this problem is: 

 dLLLu T1T −= )( . (10) 

Generally the process of finding the inverse of (LTL) is unstable. To deal with the 
instability usually the damped least-squares (DLS) solution is used (Yilmaz, 2001) 
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 dLILLu T1T −+= )( β , (11) 

where β is a constant, called the damping factor, and I represents the identity matrix 

There is a problem however with the practical implementation of this solution. The 
dimensions of the matrix L is NTxNH by NTxNQ, where NT is the number of time 
samples, NH is the number of the offsets in a CMP or shot gather (fold), NQ number of q 
values in Radon space. For example te dimensions of L could be 150 000 by 150 000. To 
overcome this problem Hampson (1986) suggests a solution in frequency domain. The 
linear, discrete Radon transform is: 

 ∑ −==
p

hphtuhtd ),(),(' τ . (12) 

By transforming the time domain variable t into frequency domain (Fourier transform) 
we get 

 ∑ −=
p

fphipfuhfd )2exp(),(),(' π . (13) 

For each component of the frequency f we can write the equation 

 Lud =' , (14) 

where L is a complex matrix with dimensions NH by NQ 

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−−
−−−

)2exp()2exp()2exp(

)2exp()2exp()2exp(
)2exp()2exp()2exp(

21

22221

11211

NHNQNHNH

NQ

NQ

hfqihfqihfqi

hfqihfqihfqi
hfqihfqihfqi

πππ

πππ
πππ

. 

In a similar way we can define L for the parabolic Radon transform 
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and the hyperbolic Radon transform 
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The low resolution Radon space is 
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 dLu H= , (15) 

where H denotes hermitian of a complex matrix L. 

The lest-squares solution in frequency domain is 

 dLLLu H1H −= )( , (16) 

however in practice due to singularities in the matrix LHL a constrained damped least-
squares (DLS) is used 

 dLILLu H1H −+= )( β . (17) 

This is a standard equation to compute the Radon transform. 

RADON TRANSFORM VIA TSVD 
The stability problem of the matrix L may be analysed by singular value 

decomposition (SVD) (Aster at al., 2005). Any matrix A can be decomposed as 

 TUSVA = , (18) 

where 

U is an orthogonal matrix with column that are unit basis vectors spanning the data 
space 

V is an orthogonal matrix with columns that are unit basis vectors spanning the model 
space 

S is a diagonal matrix with nonnegative elements called singular values 

Some of the singular values can be zeros or very close to zero. The existence of such 
values creates a stability problem for inverting LHL and usually requires some kind of 
regularization. One way is the damped least-squares discussed previously. Another way 
to stabilize the solution is by truncated singular value decomposition (TSVD) (Aster et 
al., 2005). TSVD can recover a useful solution by truncating the singular values at some 
point when they approach zero. The lowest singular value can be picked by visually 
inspecting the singular values or by applying the discrepancy principal (Aster et al., 
2005). Using the TSVD the Radon space can be found by the equation 

 dUSVu T
kkk

1−= , (19) 

where k is the index of the lowest singular value used to solve for u. 

SYNTHETIC EXAMPLE 
Hampson (1986) has shown that the parabolic radon transform can be used to 

attenuate multiples on moveout corrected CMP gathers. After moveout correction, the 
primary energy is flat, while the multiples have parabolic moveout. So by transforming 
the data into a parabolic radon space we can separate the primaries and the multiples, 
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mute the multiples and inverse back to time. This algorithms has been used in industry, 
however it introduces artefacts and fails to remove some of the multiple energy. 

We developed a MATLAB code to implement, apply, and display three radon 
applications for multiple removal: low-resolution, damped least-squares, and TSVD. 
Figure 1 shows a model containing two primary events (Figure 1, a), one with constant 
amplitude and one with type II AVO anomaly. Three multiples with a parabolic moveout 
(Figure1, b) were added to the primaries model (Figure 1, c). In practice we do not have 
uniformly sampled data in offset domain, so we have tested the algorithms with an 
incomplete model as well (Figure 1, d). Figure 2 shows the radon space of the complete 
model using low-resolution (a), DLS with regularization factor 0.05 (b), and TSVD using 
cutoff 0.05 (c). In theory a parabolic event should collapse to a point in radon space, 
however the low-resolution radon panel show a large amount if smearing, while the DLS 
and TSVD solutions show much better focusing. 

The energy above 150 ms was muted in radon space and the inverse radon transform 
was used to reconstruct the data (multiple attenuation). Figure 3 shows the reconstructed 
data with low-resolution solution (a), DLS (b), and TSVD solution (c). We can observe 
that most of the near offset multiple energy is still present in the near offsets in a), while 
both, the DLS and the TSVD solutions have attenuated the multiples successfully.  

Figure 4, a) and b), shows the radon space of the incomplete model using the DLS and 
the TSVD solution. Although for the complete model the two methods showed similar 
results, the TSVD solution is superior to the least-squares on for the incomplete model. 
The energy is better focused and fewer artefacts are visible.  Figure 4, c) and d), shows 
the reconstructed data after multiple attenuation. We can see that the TSVD solution has 
been much more effective in attenuating the multiples. Figure 5 is a display of the type II 
AVO anomaly before and after the multiple attenuation. The actual amplitudes are 
displayed in black, amplitudes with multiples in green, the DLS solution in blue, and the 
TSVD solution in red. We can notice the better fit of the TSVD result in the near offset 
range, i.e. the method introduces less artefacts on the primary amplitudes, which leads to 
better AVO analysis. 

By altering the regularization parameter in the DLS method we manage to achieve a 
better multiple energy attenuation (Figure 6, regularization factor 40, TSVD cutoff 0.1). 
However the error between the actual type II AVO anomaly grew so large in near and far 
offsets for the DLS result, that any AVO analysis would be extremely inaccurate (Figure 
7). 

CONCLUSIONS 
The low-resolution Radon transform is a very poor choice and fails even with 

complete data. The DLS and the TSVD solutions are very close for a complete data set 
(all offsets). However, for incomplete data (missing offsets) the TSVD shows superior 
properties for multiple attenuation. The TSVD approach may lead to better results in 
other areas of Radon transform usage, like data interpolation and velocity analysis. 
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FIG. 1. Test model to evaluate parabolic radon transform. a) primaries b) multiples c) complete 
model primaries + multiples d) incomplete model with missing offsets. 
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FIG. 2. Radon space using a) low-resolution, b) DLS solution, and c) TSVD solution of the 
complete data set. 

 

FIG. 3. Multiple attenuation using a) low-resolution, b) DLS solution, and c) TSVD solution of the 
complete data set. 
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FIG. 4. Radon space of a) DLS solution, and b) TSVD solution. Multiple attenuation using c) DLS 
solution , and d) TSVD solution. DLS regularization factor 0.05, TSVD cutoff 0.05. 

 

FIG. 5. Type II AVO anomaly amplitudes, actual in red, with multiples in green, DLS solution in 
blue, and TSVD solution in red. DLS regularization factor 0.05, TSVD cutoff 0.05. 
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FIG. 6. Radon space of a) DLS solution, and b) TSVD solution. Multiple attenuation using c) DLS 
solution , and d) TSVD solution. DLS regularization factor 40, TSVD cutoff 0.1. 

 

FIG. 7. Type II AVO anomaly amplitudes, actual in red, with multiples in green, DLS solution in 
blue, and TSVD solution in red. DLS regularization factor 40, TSVD cutoff 0.1 

  


