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ABSTRACT

The angle of incidence, θi, of a ray is the angle measured from the ray to the reflector
normal. Historically, ray tracing is used to compute the angle of incidence. According to
ray tracing, a wave can be modeled as a large number of rays (narrow beam), and a ray
can be considered locally straight over a very small distance. In ray tracing, Snell’s law is
used to compute ray path and the angle of incidence. We investigate a method to compute
the angle of incidence from the ratio of two reflectivity attributes known as β (reflectivity
function) and β1. Another method, the ratio of β2 and β1, is also proposed to compute the
angle of incidence with less computation. The basic objective of this paper is to verify the
proposed approach numerically. A comparative study of the two methods, β/β1 and β2/β1,
is considered here.

INTRODUCTION

According to ray theory, when a ray from the source hits a reflective surface, it gener-
ates both reflected and transmitted rays and the angles of reflection and transmission are
governed by Snell’s law. In ray tracing, the ray parameter is conserved for a ray along
its path in a medium (Shearer, 1999). The ray parameter, p, is related to the angle of
incidence,θ by p = sin θ/c, where c is the velocity of the medium. Traditionally, the ray
parameter is computed from the recorded data (Margrave, 2002). Once the ray parame-
ter is known, the angle of incidence can be computed using above relation. Alternatively
Bleistein, Cohen and Stockwell’s (Bleistein et al., 2000) approach can be used to compute
the angle of incidence. Here, the background theory of perturbation theory is discussed
and we describe how they propose to compute the angle of incidence.

In the forward problem, the material parameters, boundary conditions and source mech-
anism are known to derive the wavefield by solving the equation or set of equations which
relate the wavefield to the input parameters. In the inverse problem, the scattered field is
known at the surface and the unknowns are the material parameters and their discontinuity
surfaces, known as reflectors. The ultimate goal of the forward scattering problem is to
derive an integral equation from which the wavefield can be described at a specific receiver
location due to a source located at a different position (Bleistein et al., 2000). This equa-
tion is then converted to a solution of the inverse problem. Green’s theorem and Helmholtz
equation (Green’s functions) are essential tools for the forward scattering problem. There
is always a problem associated with Green’s function because the exact Green’s function
is seldom known. Thus approximations of the Green’s function are often used in the calcu-
lation. In forward modeling, an approximate wave speed profile is used whether or not the
exact Green’s function is known. Perturbation theory is then used to relate the approximate
wavespeed profile and Green’s function to their true counterparts. According to this theory,
the true wavefield is the sum of the incident wavefield and the scattered field. Since incident
wavefield and wavespeed are known, modeling formula will represent the scattered wave-
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field in terms of the perturbation in wavespeed. Using this theory, an integral equation for
the scattered wavefield at the receiver location is known in terms of known incident wave-
field, unknown scattered wavefield and unknown perturbation. Thus, the resulting equation
is non linear and is linearized using the Born-approximation. In the inverse problem, the
objective is to determine the perturbation from the observed data at the surface. Further,
to get the band limited version of perturbation, the objective is redefined and is referred
to as the reflectivity function β. A similar inversion attribute, β1, can also be obtained us-
ing the same approach. These two attributes differ by a factor of 2 cos θ/c, where θ is the
opening angle and c is the velocity. There are known expressions for peak values of β and
β1. These two operators, βpeak and β1peak differ by a factor of 2 cos θs/c which allow us to
estimate the angle of incidence θs, without knowing the different specular source-receiver
pair that produces the distinct value of incident angles. Another inversion attribute, β2 is
also proposed which can be constructed similarly to β1. The ratio of β2 and β1 is used to
estimate the angle of incidence and this takes fewer computation than the ratio of β and β1.
In this report we verify the above statements numerically.

METHODOLOGY

In the forward scattering problem the total wavefield, Ψ(x, xs, ω) is the monochromatic
wavefield at x due to a source located at xs, and satisfies the Helmholtz equation

(
∇2 +

ω2

v2

)
Ψ = −F (ω) δ (x− xs) , (1)

where F (ω) is the spectrum of the source and δ (x− xs) is the spatial impulse. Here
x = (x1, x2, x3) and xs = (x1s, x2s, x3s). v is the velocity as a function of position.
Presently, according to perturbation theory, v (x) is unknown and related to known back
ground velocity as

1

v2
=

1

c2
(1 + α (x)) (2)

where α (x) is the perturbation. As per scattering theory, the total field is described as the
sum of the incident wavefield and the scattered wavefield according to equation (3)

Ψ = ΨI + ΨS (3)

where ΨI is the incident wavefield and satisfies the Helmholtz wave equation whereas ΨS

is the scattered wavefield and satisfies the perturbed Helmholtz equation. By employing
both Green’s theorem and the Helmholtz equation for the incident and scattered wavefields,
the integral equation for the scattered wavefield at the receiver location, xg, due to a source
located at xs can be written as

Ψs (xg, xs, ω) = ω2

∫
α

c2
[ΨI (x, xs, ω) + ΨS (x, xs, ω)]g (xg, x, ω) d3x (4)

where g (x, xg, ω) is the Green’s function. This equation shows that the scattered field is a
function of unknown perturbation α (x) and the scattered field itself. Thus, this equation
is non linear. Using the Born approximation, the scattered wavefield is assumed to be
much less than incident wavefield. Following the Born-approximation, the product of the
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scattered wavefield and perturbation is removed from the right side of equation (4) and
thus, the modeling formula can be described as the linearized version of equation (4)

Ψs (xg, xs, ω) = ω2

∫
α

c2
ΨI (x, xs, ω) g (xg, x, ω) d3x. (5)

Now, the main objective of the inverse problem is to determine the perturbation α from the
observed data. This is obtained by taking the inverse of the equation (5) (Bleistein et al.,
2000) and expressed as

α (y) =
1

8π3

∫
d2ξ

|h (y, ξ) |
a (y, ξ) |∇yφ (y, ξ) |

∫
dωe−iωφ(y,ξ)Ψs (xs, xg, ω) (6)

where |h (y, ξ) | is Beylkin determinant, a (y, ξ) is the amplitude spreading factor and ξ
defines the co-ordinates of the acquisition surface. Term φ (y, ξ) contains the travel time
information.

Due to the band limited nature of real-world experimental data, a band limited version
of α is required. Further, by taking the gradient of the band limited version of α, a new
function, namely the reflectivity function can be obtained. Thus, to correct for band limit-
ing, our goal is redefined as to obtain the reflectivity function from the observed data. The
reflectivity function β can be obtained from equation (6) by taking the derivative of α and
is

β (y) =
1

8π3

∫
d2ξ

|h (y, ξ) |
a (y, ξ) |∇yφ (y, ξ) |

∫
iωdωe−iωφ(y,ξ)Ψs (xs, xg, ω) . (7)

2.5D Inversion

Traditionally, seismic data is collected along a straight line whenever possible. This
type of collected data is two dimensional (2D). It is known that an inversion formula using
2D assumption will not recover amplitude correctly (Bleistein et al., 2000). However, it
can be recovered using the inversion formulas which are obtained from the 3D expressions
by applying the methods of high frequency asymptotic to 3D expressions. This type of
formulation is called 2.5D formulation and it recovers the amplitude variation correctly for
2D data.

Common-Shot Inversion

Common-shot geometry can be described by a fixed source location and spatially vary-
ing receiver positions. After putting the values of Beylkin determinant, amplitude factor
and phase term for 2D in the expression of the reflectivity function, equation (7), the re-
flectivity function can be simplified further and expressed as

β (y) =
4y3√
2πc3

∫
dξ

√
rs + rg

r
(3/2)
g

√
rs cos θ

∫ √
ωdωe−iωφ(y,ξ)+iπ/4sgn(ω)Ψs (xg, xs, ω) (8)

where rs is the distance between shot point and scattering point and rg is the distance
between the receiver point and scattering point. Another reflectivity estimate, β1, can be
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obtained by multiplying |∇yφ| in the denominator of the equation (7). This inversion
attribute is expressed as

β1 (y) =
2y3√
2πc

∫
dξ

√
rs + rg

r
(3/2)
g

√
rs cos θ

∫ √
ωdωe−iωφ(y,ξ)+iπ/4sgn(ω)Ψs (xg, xs, ω). (9)

Finally, another reflectivity function, β2, can be obtained by removing the |∇yφ| from the
denominator of the equation (7) and expressed as

β2 (y) =
8y3√
2πc5

∫
dξ

√
rs + rg

r
(3/2)
g

√
rs cos θ

∫ √
ωdωe−iωφ(y,ξ)+iπ/4sgn(ω)Ψs (xg, xs, ω).

(10)
The peak values of the above inversion estimates are also known (Bleistein et al., 2000)
and given by

βpeak

β1peak

∼ 2 cos θs

c
(11)

and
β2peak

β1peak

∼ 4 cos2 θs

c2
(12)

where θs is the angle of incidence. Equations (11) and (12) allow us to compute the cosine
of the angle of incidence with out ever having to determine the specular source -receiver
pair. It is proposed that time taken for estimating the angle of incidence by equation (12)
is less than by equation (11). The verification of above statements is shown numerically in
the next section.
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FIG. 2. Common-shot seismic section across the model.
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NUMERICAL EXAMPLE-A DISCUSSION OF RESULTS

Model 1

Model parameters are given in the appendix. Figure (1) shows a model in which a
single reflector is defined. Figure (2) shows the common-shot seismic section, created with
MATLAB function, afd− shotrec−alt, of the CREWES MATLAB tool box. The source
is taken at the center of the model with receivers on the surface in the split-spread pattern.
The inversion for the reflectivity function is shown in figure (3). In addition to obtaining
the reflectivity function, a MATLAB function is written on the basis of the equation (8).
Further, two more MATLAB function are written on the basis of the equations (9) and (10)
to obtain β1 and β2, respectively. These two functions are shown in figures (4) and (5). It is
demonstrated from figures (3), (4) and (5) that degradation of resolution can be seen away
from the center of the model. Figure (6) shows the value of the cosine of the incident angle
with offset. Presently, the angle of incidence is computed from the ratio of β/β1 , β2/β1,
and using simple trigonometry. This figure demonstrates that the values of the cosine of
the incident angle, extracted from β/β1 , β2/β1 are approximately same but differ from the
expected values, computed by using simple Pythagorean theorem. Extracted and expected
values are the same at the center of the model. Here, a falloff in accuracy with the falloff
in resolution with increasing offset is seen. The extracted values are differing from the
expected values with offset because of lack of focused energy with offset, as mentioned
before. By using relation, percentage error = (|Extracted value- Expected value|/Expected
value), the percentage error in the estimation of the cosine of incident angle is shown in
figure (7). This demonstrate that error is zero or near to zero at the center of model but
increasing with offset. Further, the maximum percentage error with far offset is 6.5%
approximately which is acceptable.
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FIG. 3. Inversion for the reflectivity function(β).
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FIG. 4. Reflectivity function multiplied times the cosine of the incident angle(β1.)
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FIG. 5. Inversion for the reflectivity function multiplied times the cosine square of the angle(β2).
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FIG. 6. Estimation of angle of incidence with proposed methods and compared with analytic one.
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FIG. 7. Percentage error in computing angle of incidence from proposed methods.
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FIG. 8. Velocity model for two layer.
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Model 2

Model parameters are given in the appendix. Figure (8) shows a model in which two
reflectors are defined. The common-shot seismic section, created with MATLAB function
afd− shotrec−alt of the CREWES MATLAB tool box, is shown in figure (9). This figure
is plotted with a higher clipped display than the display of figure (2), otherwise, only
first hyperbolic reflection, the response of first layer, would be visible with less resolution.
Thus, the focused energy is less here in comparison of model 1. Further, the degradation
of resolution of the second reflector’s image at zero offset compared to the resolution of
the first reflector is seen here. The inversion for the reflectivity function is shown in figure
(10). The reflectivity functions, β1 , β2 are shown in figures (11) and (12). The loss of
the resolution of the reflectors image is demonstrated from the figures (10), (11) and (12).
Figure (13) shows the values of the cosine of the incident angle for first layer, extracted
from the ratios of the β/β1, β2/β1 and computed by using simple Pythagorean theorem.
Again, values are matching at the center of the model and varying with offset. As seen from
the figures (10), (11), (12), the lacking of focused energy is seen here, thus, the extracted
values differ from the expected values at the central part of the model more in model 2 than
in model 1. Figure (14) shows the values of the cosine of incident angle for second layer
computed with a MATLAB function of ray tracing, traceray−pp and due to lack of focused
energy extracted values are differing from the computed. The error in the estimation of the
cosine of the incident angle for second layer is shown in figure (15). This demonstrates
that error is not zero as expected at the central part of the model but it is near to zero. The
maximum percentage error with offset is about 4.5%. A ray tracing for second layer is
shown in figure (16) which is created with a MATLAB function, traceray−pp and is used
to compute the angle of incidence. The MATLAB function,traceray−pp, gives the ray
parameter and the angle of incidence is computed by relation,p = sin θ/v, because velocity
is known, here. Now, the times taken by the ratios, β/β1 and β2/β1 are computed. Figure
(17) shows the comparison of times which are taken by methods 1 and 2 for different 2D
model. Presently, β/β1 and β2/β1 are taken as method 1 and 2. This figure shows that time
taken by both of these methods are approximately same for both 2D models respectively.
Both methods are applied also on joanna−channel(Margrave and Cooper, 2007). Subplot
of figure (17) shows that in the case of joanna−channel, time taken by method 2 is less
than the time of method 1.

CREWES Research Report — Volume 21 (2009) 11



Sharma and Margrave

Common shot

Offset(m)

T
im

e(
se

c)

−800 −600 −400 −200 0 200 400 600 800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 9. Common-shot seismic section.
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FIG. 10. Inversion for the reflectivity(β).
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FIG. 11. Inversion for the reflectivity multiplied by the cosine of the angle(β1).
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FIG. 12. Inversion for the reflectivity multiplied by the cosine square of the angle(β2).
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FIG. 13. Values of the cosine of the incident angle for 1st layer.
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FIG. 14. Estimation of the cosine of the incident angle for 2nd layer.
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FIG. 15. Error estimation for 2nd layer.
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FIG. 17. Time comparison of proposed methods for different models.

CONCLUSION

The specular angle of incidence can be computed with both methods, namely, the ratio
of β/β1 and the ratio of β2/β1. Both of these methods give approximately the same result
for both the models. At the central part of the model the extracted values of the angle of
incidence match with the computed values. The results may be improved with a common-
shot seismic section of high resolution. Computationally, the time taken by both of these
methods is same for 2D models but for 3D model, method 2 is more efficient than 1.
Method 2 takes 18% lesser time than time of method 1.
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APPENDIX

Depth(meter) Velocity(meter/sec.)
0 2000

630 2000
640 3000

1270 3000
Table 1. The depth and velocity of model 1

Depth(meter) Velocity(meter/sec.)
0 2600

590 2600
600 3200

1190 3200
1200 3800
1790 3800

Table 2. The depth and velocity of model 2
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