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ABSTRACT

We present a conjugate-gradient based inversion to cdimesurface statics and ir-
regular trace spacing. The algorithm returns a rough swiut the extrapolated wavefield
with complexityO(n?®). Convergence is fast in the wavelike region, and very slotkén
evanescent region. Decimated traces are reconstructedrexegh no smoothing operator
is applied, but recovered wavefields do not approach knowrceavavefields at low fre-
quencies. We suggest that speed and accuracy of inversioonjygate gradients can be
improved through careful smoothing, or separate treatmiethie wavelike and evanescent
regions. Computing operators by series expansion for fgsication during conjugate
gradient iterations is suggested to optimize runtime.

INTRODUCTION

A wave equation inversion for acquired seismic data deedrib Ferguson (2006) re-
cursively computes the extrapolated wavefield at depthguson-stationary phase shift
operators (Ferguson and Margrave, 2002). The operatopmmsaitomputed using an as-
sumed velocity model and the wavefield at depth is derivedgusieighted damped least
squares. This method is used to correct common shot gathretigpiography and receiver
statics, downward propagate the receiver wavefield thr@ulgbterogeneous near surface
to a flat datum, and to correct for irregular spatial sampimgne inversion.

Full computation of the extrapolation matrix has comphexit (n?), wheren is the
number of spatial co-ordinates (Ferguson, 2006). Comgute least squares Hessian
matrix requires multiplication of the extrapolation matby a weight matrix, followed by
the adjoint extrapolation matrix, with complexiy (n?*). Inversion of this matrix by Gaus-
sian elimination also has complexity (n?). Ferguson (2009) develops a series expansion
to compute the operator and Hessian simultaneousty {n) operations. Smith et al.
(2009) inverts the Hessian using conjugate gradients, awithplexityO (kn?), wherek is
the number of iterations required for an acceptable appration.

In this paper we analyse the inversion of the Hessian by gagugradients. We as-
sume that the phase shift operator perfectly models waveagtion, and observe the
effects of trace decimation, number of iterations, and tteieacy of our velocity model
on the inversion.

THEORY

A wave equation inversion for seismic data given by Ferg2006) simultaneously
corrects for velocity variation in the near surface andgular trace spacing using non-
stationary phase shift operators. First we discuss herdefnelopment of these operators,
and the application to statics and trace regularization willdhen discuss the conjugate
gradient method as a means to speed the algorithm.
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Non-stationary Phase Shift Operators

The phase-shift migration method of Gazdag (1978) modelpithpagation of a monochro-
matic wavefield through the subsurface as a function of a lyggmeous velocity model. It
gives a fast and exact solution to the scalar wave equatibarmogeneous media (Gazdag
and Sguazzero, 1984). To accommodate velocity variatiatepth, the algorithm is run
recursively on a sequence of constant velocity depth stEpat is, for each frequenay,
and each depth, the extrapolated wavefield. . A, is computed fronp, by

_ 4 an(ke,vs) / . (2" exp(ik, - (2’ — x))dx'dk,, (1)

2

whereap . is a function of spatial wavenumbgy and layer velocity. given by

exp (1Azy/ (@/v.)? — k. - k:) it 2] > |k,|
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exp (—1821y b ke = (0/0n) i 121 < Il

aAz(ka:a 'Uz) =

Equation 1 is a Fourier transform of the source wavefieldpfedd by a multiplica-
tion, then an inverse Fourier transform. Equation 2 apphesphase shift operator in the
wavelike region, whergj)—z| < |k.|, and attenuates energy in the evanescent region, where
|<| > |k.|. In practice we will represent these wavefields as vectorS"inso let us
consider these operators as matrices. In this case PSRhbsco

PSP]AZ(SOz) = []FT][QAZ][FT]@z- (3)

The matrix form ofa, ., is diagonal in Fourier co-ordinates, so using the fast feouri
transform, the cost of applying equation 31¢n log n), wheren is the length of the vector
v,. Ferguson and Margrave (2002) accommodates lateral Welaniation using a set of
constant velocity windows. The window function is defineddayiven reference velocity
V; by

=10 z
and PSPI becomes
PSPIn.(¢:) = Y [QIFT)[aa:];[FT)e.. (5)

J

Ferguson and Margrave (2002) further describes two simphase shifting operators,
NSPS and SNPS, given by equations 6 and 7. Itis trivial to $hatSNPS is symmetric in
the wavelike region, and Hermitian in the evanescent regibiich makes it preferable as
a wave extrapolation operator due to reciprocity condgififerguson, 2006). For brevity,
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we will denote byPx . any of these one-way operators that shifts a wavefield dowdhiaa
Az.

NSPSa.(p:) = [IFT] Z [ [F T8 0- (6)

SNPSA.(p.) = PSPIn.jo(NSPSa.p2(.)) (7)

Statics and Trace Regularization

Ferguson (2006) presents an application of these phafiespbrators to correct for
surface statics and irregular trace spacing. Acquiredrseidata is modelled recursively as
follows: given a recorded wavefield at depthz, we assumethat, = W.P_a.p.1a. ¢,
whereP_A. is an upward phase shift, as in equation 5, 6 di’Z,is a weighting operator
that models irregular trace spacing and topography, assh&t¢1991), andis an additive
noise term. This is a mixed-determined linear system (Meh®89), so the least-squares
approximation ofp., o, can be recovered by minimizing the misfit function

M(p) = [|P-nz¢p — ¢.|I5, +elle —¢mll?, - (8)
HerelV,, is a smoothing operatag,, is the a priori information on the model parameters
(Tarantola, 2005), andis a user parameter that controls the amount of smoothingKile
1989). The norms here are induced by the scalar productsrestbect tolV, and W,
respectively, as defined in Tarantola (20055ince M is minimized when the normal
equations are satisfied, we can recayera. by solving

[S—Az]¢z+Az = [PjAZWeP—Az + ‘ng] PetAz = PjAZWeQOZ + €Wm80m> (9)

where P*, , is the adjoint of P_A,. If we consider our operators as matrices here,
then the cost of recovering., ». is dominated by the cost of computing then inverting
the matrixS_A.. Ferguson (2006) derives a series approximatioy of. to speed up
computation of the matrix, and we consider using conjugeddignts to speed inversion.

Conjugate Gradients

The conjugate gradient method is an iterative algorithna tis@pproximate a solution
x to a linear systemdz = b. In our case it can be used to recover the source wavefield
.1, from equation 9. Inverting an x n matrix by Gaussian elimination has complexity
O(n?) (Strassen, 1969), whereas solving the system by conjugadiegts can return an
acceptable approximation in aboyt: iterations, provided the matrix is well-conditioned
(Burden and Faires, 2001). A matrix is well-conditioned iisi not sensitive to rounding
errors, which are likely to occur as our computations willgesformed by a computer
using floating-point arithmetic.

*SinceW, will be positive semidefinite, a seminorm is induced
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Computationally, an iteration of the conjugate gradienthoé is dominated by the
cost of computing the residual vectoe= Ax — b, which measures the error between our
guessr and a solution to the system. Af is a matrix, this operation i&® (n?). So if the
algorithm converges quickly, we can expect a total compleodi O (n?9).

METHOD

Synthetic data is modelled to satisfy the forward operatacty, up to a random ad-
ditive noise terme, set to 40db below the signal level. An arbitrary source \iialee
of n = 256 traces withn temporal samples (Figure 1a) is Fourier transformed in time
and synthetic data is generated from the resultant monowitio wavefields according to
wo = WeP_100100 + €, WhereP_yoy is NSPS (Margrave and Ferguson, 1999) computed
with respect to the ‘true’ reference velocity model. We utsrge depth stepXz = 100m)
to exaggerate the visual impact of the phase shift (Figuyea&owe will be restricting our
attention to a single depth step. The effects of smoothiagat considered here, san
equation 9 is set t6. We apply Matlab’s pcg algorithm to equation 9, whétg, is com-
puted with respect to the reference velocity model. No prditmning is applied, and we
use the zero vector as an initial guess. We run the pcg ahgouintil the prescribed max-
imum number of iterations is reached, or the relative residuror falls below a tolerance
of 1075,

We consider three cases. First a base case, with no traceatean and an exact veloc-
ity model. Then we allow for trace decimation, then add utaiety to our velocity model.
For each case we display the results of the conjugate gtaaligorithm aftern and/n
iterations. For each of these six examples, the originabfield (a) is displayed along with
the forward modelled data (b), the recovered wavefield (d)the absolute error (d). We
also compute the norms associated with the misfit functiothfe original, and recovered
wavefields, with the norms of the modelled data included dotiast. We refer to the value
of the first norm in equation 8 as the model misfit of the wavefie), which indicates how
well the recovered wavefield agrees with the given data, laadalue of the second norm
as the smoothness of the wavefield (f), which indicates hoaecthe recovered wavefield
is to any a priori information we might have about the souremefield. In our example,
smoothness is calculated with respect to the true sourcefigl, with smoothing operator
W = 1.

EXAMPLES

As a baseline, we sét, = I, then x n identity matrix, to model perfectly uniform
trace spacing, and assume the true velocity model is knowa tbhe simple velocity model
given by Figure 1b. We allow the pcg algorithm to run for a fulterations (Figure 2) and
for \/n iterations (Figure 3).

When the algorithm is run for iterations, all monochromatic wavefields converge to
within the tolerance, except in the 5 - 15Hz range. Rate ofemence is fast in the high
frequencies - less than 6 iterations - but decreases ragiditing at 90Hz. We note that
given our input parameters: 10m trace spacing, and refereglocities between 800 and
1800m/s, 90Hz corresponds to the uppermost edge of the ssamteboundary. We can
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therefore attribute this slow convergence to the evanésegion, where the phase shift
operator is a real exponential with large negative expanent

Running the algorithm for/n iterations, convergence is observed only in the high
frequencies, above 85Hz. The effect of the phase shiffigfactively inverted, the model
misfit of the recovered wavefield agrees strongly with thahefsource (Figure 3e), and the
image is focused (Figure 3c), but the solution does not agithethe expected solution, as
the value of the smoothness norm is much larger than 0 in thhérémuencies (Figure 3f).
Note also that increasing the number of iterations doesmptave the smoothness, as the
smoothness norm of the recovered model in Figure 3f is snfalleach frequency than the
corresponding value in Figure 2f, where more iterationsevegaplied. This is unexpected,
as whenl¥, = I, this problem should not be underdetermined, so no smapgtiould
be necessary. However, the wavefield extrapolator, has very small eigenvalues in the
evanescent region, which may caude, . to be almost singular.

Next, we set a random selection of approximately 30% of tagatal elements df’,
to zero, and re-compute the synthetic daga We then invert as above, again using the
velocity model in Figure 1b as both the true and referencecit models, fom and./n
iterations. The results are displayed in Figures 4 and 5.

Similar to the previous case, if the algorithm is run for thi £ iterations, we achieve
convergence almost everywhere, with the number of itematrequired increasing as fre-
guency decreases to 0. Again, increasing the number dfidesadoes not seem to improve
the quality of the solution: the model misfit norms of the nemred wavefields (Figures 4e
and 5e) agree with those of the source wavefield, but the $mes$ norms (Figures 4f and
5f) are much greater than 0 in the low frequencies. Also rtwg even without a damping
term, the conjugate gradient algorithm manages to fill inesofrthe information from the
missing traces. This smoothing is less effective for lam@iouous gaps in trace coverage.
However, it is surprising that the algorithm does any smimgtlat all, since the search di-
rections prescribed by the algorithm are computed fromék&lual vectors, which should
always be zero in the co-ordinates corresponding to the tlaees.

Finally, we assume incomplete knowledge of the near sunatecity variation. To
model this, we compute the data with respect to the more acayalocity model (Figure
1c), while computing the inverse operator with respect todimpler model (Figure 1b).
We then invert as above, and the results are displayed irésdguand 7.

We observe that the rate of convergence is similar to theque\cases, however mod-
elling errors are apparent in the model misfit plots (Fig@esnd 7€), as the curve cor-
responding to the source misfit is nonzero, indicating thatsource wavefield is not an
approximate solution to equation 9. That s, the computedaipr does not map the known
source wavefield to the data we are given, since the data waguted with respect to the
‘true’ velocity model (Figure 1c), and the operator withpest to the reference model
(Figure 1b). These errors do not affect the rate of convexgeout they do affect the ac-
curacy of the final recovered image. Once again, increabmgumber of iterations above
\/n has little effect on the end result.
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CONCLUSION

Using NSPS as our model of wavefield propagation, we find beatonjugate gradient
algorithm applied to the least squares minimization pnobigves a rough solution to the
extrapolated wavefield iR/n iterations, and no significant improvement is gained from
subsequent iterations. We note that convergence is fabeiwavelike region, and slow
in the evanescent region, and postulate that the slow cgenee is caused by very small
operator eigenvalues from the evanescent part of the wavapekatora ., causing the
Hessian to be almost singular. Solution damping could béaet through the use of a
nontrivial smoothing operatdd/,,,, as in Smith et al. (2009) and Ferguson (2006), or we
might attempt to treat the wavelike and evanescent regepearately.

We find that the/n speed up in inversion of the Hessian leaves this step asrjesta
bottleneck in the method - much slower thén) for computation of the Hessian - and
suggest that we might be able to speed up computation of Hieued vectors if we can
apply the Hessian as an operator in the main loop of the catgugradient algorithm,
provided the cost of applying the operator is lower than dfi@omputing a matrix vector
product (O(n?)).
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8 CREWES Research Report — Volume 21 (2009)



Interpolation & Statics by CG

a)
200
100
0
-100
. -200
0 1000 2000
Offset (m)
c)
200
100
0
-100
. -200
0 1000 2000
Offset (m)
e)
x 10° -
—Model
4r —Data
—Recovered model
T
3 T
g Fd
= 2— | 1
/ \
o | Y
! e o MM\W“M
0
-200 -100 0 100 200
Frequency (Hz)

b)

d)

0 1000

200

100

-100

—-200

2000

Offset (m)

70
, 60
50
2 0.
g 40
i 0. 30
20
0.4
10
0.5
0 1000 2000
Offset (m)
x 10" -
—Model
4f —Data t
—Recovered model
% / hv
O 3r M [
[ fl i
£ (—
8 2 r“ ‘1
& I
1r N/V\/\/\,‘ﬁ \,\/\“‘”\
N M 11
v //A\ T
0 L
-200 -100 0 100 200
Frequency (Hz)
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b) Forward modeled image. c) Recovered image. d) Absolute error. €) Model misfit. f) Smoothness.

CREWES Research Report — Volume 21 (2009)



Wilson & Ferguson

a) b)
200 200
. _ 100
2
0 £ 0
|_
~100 -100
-2
. -200 3 00
0 1000 2000 0 1000 2000
Offset (m) Offset (m)
c) d)
250
100 150
0
100
-100
50
-200
"0 1000 2000 0 1000 2000
Offset (m) Offset (m)
e) f)
X 104 ‘ : x 10°
6t —Model 15/ ‘ —Model
5l — Data I —Data
‘Recovered model " ——Recovered model
I
o 47 @ B ‘
% M‘JK‘W g 10 ‘H\
S 3r N b'\ bS] [l
’ lM“ WW"‘A g r\“n
i ' N 5 I
/ > //J \'\“5
. \MW Mﬁ \ “\M
-200 -100 0 100 200 0 -200 -100 0 100 200
Frequency (Hz) Frequency (Hz)
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FIG. 5. Case 4: 30% trace decimation, known velocity model, v/n iterations a) Source wavefield. b)
Forward modeled image. c) Recovered image. d) Absolute error. €) Model misfit. f) Smoothness.
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FIG. 6. Case 5: 30% trace decimation, uncertain velocity model, n iterations a) Source wavefield.
b) Forward modeled image. c) Recovered image. d) Absolute error. €) Model misfit. f) Smoothness.
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