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Quasi-compressional ray propagation in a linearized general 
anisotropic medium 

Patrick F. Daley  

ABSTRACT 

Ray tracing for qP  rays in a linearized general (21 parameter) anisotropic medium is 
investigated. A smoothly varying inhomogeneous medium is initially assumed and the 
axes of anisotropy within the layers are allowed to be oriented at arbitrary angles with 
respect to the model coordinates. As in almost all applications of ray tracing the two point 
problem is the most useful. That is given a source and receiver location within a 
anisotropic medium, determine the ray path(s) between the two points. This introduces 
two coupled nonlinear equations which must be solved. Initially, the medium will be 
chosen to be a smoothly varying inhomogeneous anisotropic medium with no rotations of 
the axes. These assumptions may appear to be quite restrictive; however, it would seem 
to be a reasonable foundation upon which to advance to more complicated media types 
within the context of qP  ray propagation in an orthorhombic anisotropic structure. The 
density normalized anisotropic parameters used to describe an orthorhombic media, 
which have the dimensions of ( )2velocity , will be in Voigt notation, ijA , as this notation 
is familiar. One of the applications of this ray tracing method is for Born-Kirchoff 
migration, so that some attention will be afforded that topic. 

INTRODUCTION 
In the geophysical literature there have appeared a number of papers on linearized 

methods for obtaining phase velocities in a general anisotropic medium. An earlier 
derivation of the quasi-compressional ( )qP  linearized phase velocity for a media of this 
type may be found in Backus (1965). More recently, this problem has been the topic of a 
number of papers (see Pšenčík and Farra, 2005, and references contained within). 

The exact derivations of ray tracing formulae for complex media types of higher 
complexity than orthorhombic is, as expected the mathematical treatment becomes 
overwhelming and not of particular use as the associating of empirical data observations 
with formulae does not follow. A less accurate, or rather possibly a less complicated 
manner of proceeding may be pursued if some assumptions of the medium are made that 
allow for use of approximations to the exact formulae such as linearization or the 
introduction of perturbation theory, a powerful procedural method where higher order 
approximations may be obtained from lower order terms. General perturbation theory 
may be found in the text by Nayfeh, (1973) while some applications specific to 
seismology appear in Jech and Pšenčík (1989). 

The qP  eikonal is a quasi-linear partial differential equations in the slowness vector 
components related to the phase function, ( )jxτ , as ( )i j ip x xτ= ∂ ∂  (Gassmann, 1964). 
The phase function describes the propagation of the wavefront through an elastic 
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medium, so that ( )jxτ= ∇p  indicates that slowness vector is normal to the surface of 
constant phase describing wavefront propagation in a medium. Employing standard 
partial differential equation solution methods, these eikonals may be used to obtain the 
components of the quasi-compressional ( )qP group velocity (Courant and Hilbert, 1962, 
Červený, 2001, and Červený et al., 2007, as examples). 

The slowness vector components are expressed in terms of phase velocity angles 
( ),θ φ  and related velocities. For the qP  type of wave propagation only 15 independent 
parameters of the 21 total anisotropic parameters are required to specify the medium 
(Pšenčík and Gajewski, 1998 and Pšenčík and Farra, 2005). In an orthorhombic 
anisotropic media type that is a reasonably complex subset of the general case for use in 
seismic hydrocarbon prospecting only 6 independent parameters are needed to specify a 
medium for qP  wave propagation. This medium type is suitably complex to approximate 
most geological structures encountered in seismic exploration situations, especially if 
rotation of the anisotropic axes with respect to some local Cartesian coordinate system is 
introduced. 

The algorithm presented in the (Pšenčík and Farra, 2005) was designated as FORT 
(First Order Ray Tracing) by those authors. Ray equations for the two coupled shear 
modes, 1qS  and 2qS , will not be dealt with in this work due to the added complexity of 
these coupled modes. This problem type was not treated in the 2005 work above but the 
theoretical development may be found in the following incomplete sequence of papers: 
Coates and Chapman, (1990), Bakker ( 2002), Farra (2005), Farra and Pšenčík (2008) 
and Farra and Pšenčík (2009). Other relevant citations may be found in these works. 

 THEORY 
Determining the linearized phase velocity in a general anisotropic medium for a quasi-

compressional ( )qP  wave using the method, initially discussed by Backus (1965) for 
seismic related problems, yields, after some manipulation, the following first order 
linearized approximation in a weakly anisotropic medium, which is the standard that now 
appears in the literature for a range of disciplines of study. 
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Voigt notation obtained from the relationship involving the more general density 
normalized anisotropic parameters kl

ijk ij ija a A= →l , where the 21 independent 

( ), , 1,6ij jiA A i j= =  have the dimensions of velocity squared, is used here (see for 
example Gassmann, 1964, page 98). The symmetry relations ij k ji k ijk kija a a a= = =l l l l  
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reduce the 81 anisotropic parameters ijka l  to 21. The direction of the normal to a wave 
front propagating in an anisotropic medium or equivalently the phase velocity 
propagation vector direction is defined as 

 ( ) ( )1 2 3, , sin cos ,sin sin ,cosn n n θ φ θ φ θ= =n  (2) 

with θ  being the polar angle measured from the positive 3x  (vertical) axis 

( )0 θ π≤ ≤ and φ  the azimuthal angle measured in a positive sense from the 1x  axis 

( )0 2φ π≤ < , specifying the normal to the ray surface for some arbitrary ray. 

Equation (2) is shown to be composed of three groups of terms: those specifying an 
ellipsoid and anellipsoidal deviation terms defining an orthorhombic anisotropic medium, 
plus an additional 9 parameters, the total of which define a general anisotropic medium. 
The ellipsoidal deviation terms, ijE , are generally spatially dependent as the ijA  have so 
been assumed. They are defined through the relationships 

 ( ) ( )12 12 66 11 222 2E A A A A= + − +  (3) 

 ( ) ( )13 13 55 11 332 2E A A A A= + − +  (4) 

 ( ) ( )23 23 44 22 332 2E A A A A= + − +  (5) 

and the additional terms that takes an orthorhombic to a general anisotropic medium are 
specified by 

 ( ) ( )1 14 56 2 3 16 1 2 15 1 3, 2i jH x n A A n n A n n A n n= + + +  (6) 

 ( ) ( )2 25 46 1 3 26 1 2 24 2 3, 2i jH x n A A n n A n n A n n= + + +  (7) 

 ( ) ( )3 36 45 1 2 35 1 3 34 2 3, 2i jH x n A A n n A n n A n n= + + +  (8) 

Of the constituents of equations (6) – (7) there are only 9 parameters which may be 
obtained from the inversion qP  travel times. These are 15A , 16A , 24A , 26A , 34A  and 35A , 
together with 14 562A A+ , 25 462A A+  and 56 452A A+ . Thus with 11A , 22A , 33A , 12E , 13E  
and 23E , only 15  of the 21 total anisotropic parameters may be ascertained using only 
qP  travel time data, the remainder requiring quasi – shear travel time data for a complete 
inversion. It is evident that these 15  parameters are not independent, 6 being expressed in 
terms of a combination of two or more of the ijA . This should be compared with an 
orthorhombic medium where 9 anisotropic parameters are required to specify the 
medium. From qP  travel time data only 6 of these may be recovered; 11A , 22A , 33A , 12E , 

13E  and 23E . 
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A linearized eikonal equation for this anisotropic medium type may be obtained by 
introducing the slowness vector components, which are given in terms of the phase 
velocity vector and the scalar phase velocity as 

 ( ),
k

k
i k

np
v x n

=  (9) 

may be written as 

 
( )

( ) ( )

2 2 2
11 1 22 2 33 3

2 2 2 2 2 2 2 2 2
12 1 2 13 1 3 23 2 3 1 1 2 2 3 3

,

4 1

qP i j

k k

G x p A p A p A p

E p p E p p E p p H p H p H p p p

= + + +

⎡ ⎤+ + + + + =⎦⎣

 (10) 

where the ijE  are as given in equations (3) – (5),  ( ) 2 2 2
1 2 3k kp p p p p= + +  and the jH  now 

have the form 

 ( ) ( )1 14 56 2 3 16 1 2 15 1 3, 2i jH x p A A p p A p p A p p= + + +  (11) 

 ( ) ( )2 25 46 1 3 26 1 2 24 2 3, 2i jH x p A A p p A p p A p p= + + +  (12) 

 ( ) ( )3 36 45 1 2 35 1 3 34 2 3, 2i jH x p A A p p A p p A p p= + + +  (13) 

Thus equation (10) is in general a function of only the slowness vector components 
and the spatial dependence of the ijA . 

The method of characteristics (Courant and Hilbert, 1962 and Červený, 2001) is used 
to determine the rays, along which the energy traverses between one point in the medium 
and another. The ray (group) velocity vector and corresponding slowness vector 
components are given generally in terms of the eikonal equation, ( ),i jG x p , defined in 
(10) as 

 ( ),1
2

k ki

i

G x pdx
d pτ

∂=
∂

 (14) 

 ( ),1
2

k ki

i

G x pdp
d xτ

∂= −
∂

. (15) 

The independent parameter along the ray is chosen to be the propagation time specified 
by the variable τ  in equations (14) and (15).  

The initial value problem above is fully specified, given some initial conditions  

 ( ) ( )ando oτ τ= =0 0x x p p  (16) 

at a reference time 0τ . The progression of the ray in 3D Cartesian space as well as the 
magnitude and direction of the slowness vector at these points may be determined. The 
group velocity in terms of its components is given by 



Anisotropic ray tracing 
 

 CREWES Research Report — Volume 22 (2010) 5 

 31 2, , dxd dx dx
d d d dτ τ τ τ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

x  (17) 

with the magnitude defined as 

 
1 22 2 2

1 2 2d dx dx dx
d d d dτ τ τ τ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

x . (18) 

The ray velocity vector components are idx dτ  equivalent to those used in FORT 
(Pšenčík and Farra, 2005) may be given explicitly in Voigt notation as 
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 (19) 
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with the corresponding quantities idp dτ  having the form 

 

( )

2 2 23311 22
1 2 3

2 2 2 2 2 213 2312
1 2 1 3 2 3

2 2 231 2
1 2 3

1
2

4

j

j j j

j j j

k k
j j j

dp dAdA dAp p p
d dx dx dx

dE dEdE p p p p p p
dx dx dx

dHdH dHp p p p p
dx dx dx

τ
⎧⎪= + + +⎨
⎪⎩

⎡
+ + +⎢

⎢⎣
⎫⎤⎛ ⎞ ⎪+ + ⎥⎜ ⎟ ⎬⎜ ⎟⎥ ⎪⎝ ⎠⎦ ⎭

 (22) 

It is convenient to introduce the group velocity angles, that is, the azimuthal and polar 
angles at which the ray propagates. The azimuthal angle, Φ , ( )0 2π≤ Φ <  may be 
determined from 

 2 2

1 1

tan dx dx d
dx dx d

τ
τ

⎡ ⎤ ⎡ ⎤
Φ = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
. (23) 

Defining the projection of the 3D group velocity vector onto the ( )1 2,x x  plane as 

 
1 22 2

1 2dx dxdr
d d dτ τ τ

⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

, (24)  

the group polar angle, Θ , ( )0 π≤ Θ ≤  is obtained from 

 
3 3

tan .dr dr d
dx dx d

τ
τ

⎡ ⎤ ⎡ ⎤
Θ = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (25) 

As the formulae presented here are linearized approximations to the exact ray 
propagation problem, it may be useful to obtain an appreciation of this problem, starting 
with the qP  eikonal given in Schoenberg and Helbig (1996) and employ equations (14) 
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and (15) above will produce the exact ray tracing equations after a moderate amount of 
basic mathematics. (See also, Gajewski and Pšenčík, 1987). 

It should be clear that there is much more to the most general case of this problem than 
has been presented. However, the formulae derived are enough to undertake a 
preliminary investigation of tracing rays in a general anisotropic medium. A large section 
dealing with the 3D anisotropic analogue of Snell’s Law has been deleted as the velocity 
model used in this report is parametric. Additionally, for both parametric and non-
parametric interface specifications, the ray tracing program has been designed to rely 
heavily on the model building algorithm. A fairly general model building algorithm has 
not yet been implemented. 

DISCUSSION OF METHOD 

In a related report in this volume a similar problem is addressed using linearized qP  
group velocities so that there are only two levels of embedded equations that must be 
solved rather than the three for this problem specification. As mentioned in the other 
report, model building for some three dimensional structure can be as involved as the ray 
tracing procedure. For that reason, only an anisotropic halfspace will be considered in 
this section. The square roots of the anisotropic parameters (velocities) will be allowed 
linear gradients in all three Cartesian dimensions. The type of spatial variation just 
mentioned has the ijA  being specified as 

 ( )( ) ( )( ) ( )( ) 20 0 00
1 1 1 2 2 2 3 3 31ij ijA A g x x g x x g x x= + − + − + −⎡ ⎤⎣ ⎦  (26) 

or more generally 

 ( )( )[ ]200 1ij ijA A= + ⋅ −g x x  (27) 

where ( )0
ijA  are the known values of the anisotropic parameters ijA  at some point ( )0x  in a 

three dimensional ( )3D  Cartesian space. The vector ( )1 2 3, ,g g g=g  defines the three 
dimensional velocity gradient common to all of the ijA  relative to the reference point 

( )0x . The point ( )1 2 3, ,x x x=x  is some point within some 3D  volume at which the group 
velocity is required. 

The model that will be considered is the weakly anellipsoidal orthorhombic material, 
whose anisotropic properties are similar in degree of anisotropy to transversely isotropic 
clay-shale associated with hydrocarbon deposits that could have been made orthorhombic 
(azimuthally anisotropic) through the introduction of vertical fracturing. The model is 
defined by the density normalized anisotropic parameters, ijA , which have the dimensions 

of velocity squared ( )2km s  and given in Table 1 and is similar to olivine. 

A cone of rays from a point source locate at the surface are shot at azimuthal phase 
angles ( )0 360φ≤ < o  at 5o  increments. Polar angles ( )80 80θ− ≤ ≤o o  at 5o  
increments are used. The rays are forced to lie within the spatial volume ( )10 10x− ≤ ≤ , 
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( )10 10y− ≤ ≤ , ( )0 20z≤ ≤ . The dimensions are in km. The velocity gradient used is 
( )0.01 ,0.01 ,0.01km s km s km s=g . The rays generated are shown in Figure 1, with a 

scatter plot of those rays which arrive at the reference plane at a depth of 20z km=  given 
in Figure 2. The corresponding travel times for these arrivals are given in Figure 3. 

CONCLUSIONS AND FUTURE WORK 
A quasi-compressional (qP) linearized eikonal is presented for elastic wave 

propagation in a general 21 parameter parameter medium. Using Hamilton’s method, six 
coupled nonlinear ordinary differential equations are derived for determining the 3 
Cartesian components of the spatial locations of points along the ray as well as the 
Cartesian components of the corresponding slowness vector in slowness space. There 
exists standard (free) software for this solution method. However, a problem specific 
algorithm was written to provide better control of the solution, particularly the size of the 
time step, time being the dependent parameter. The above code is the nucleus of a two 
point ray tracing scheme. A significant amount of other code is required for a true two 
point ray tracing program, but the part described here is basic. 
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( )0
11a  ( )0

22a  ( )0
33a  ( )0

44a  ( )0
55a  ( )0

66a  ( )0
12a  ( )0

13a  ( )0
23a  

9.779 5.970 7.103 1.952 2.359 2.388 2.006 2.163 2.284 
Table 1. Anisotropic parameters at the surface (z=0km). The dimensions are (km/s)2. 

 

 

 

 

Fig. 1 Rays from a point source locate at the surface at azimuthal phase angles ( )0 360φ≤ < o  at 5o  

increments. Polar angles ( )80 80θ− ≤ ≤o o  at 5o  increments are used. The rays are forced to 

lie within the spatial volume ( )10 10x− ≤ ≤ , ( )10 10y− ≤ ≤ , ( )0 20z≤ ≤ . The 
dimensions are in km. 
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Fig. 2 Scatter plot of the (x,y) locations of those rays that arrive at the reference depth level of 
20km. 

 

Fig. 3 Ray travel times at the reference depth of z=20km. 


