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ABSTRACT

Itis common in Ground Penetrating Radar (GPR) imagery te magsing or corrupted
traces. This can be either due to obstacles, noise, tedlmmaaems or economic consid-
erations. Antenna-ground coupling is another reason fppetl amplitudes in GPR data.
Most commercially available software use the famous "rultiaerd interpolation”, which
uses the spline polynomial to undo the clippings. This metisoa simple polynomial
based interpolation which performs declipping without sidering any prior knowledge
about the signal.

In this paper, a modified Projection on convex set (POCS) ndathadopted for recon-
struction of clipped amplitudes. Restoration of bandlediGPR data which has undergone
amplitude clipping is studied. This algorithm is tested eallGPR data which is clipped.
To study the effectiveness of the technique, results obthare compared with industry
standard rubber band interpolation.

INTRODUCTION

Ground Penetrating Radar (GPR) methods are based on thepsentiple as seismic
reflection methods. It is now a widely accepted geophysesdinique. It is a non intrusive
technique for detecting buried objects. The basic priecipthind the GPR method is
the transmission of electromagnetic energy into the earthsubsequent reflection from
the interfaces of differing dielectric permitivity. The GRransmissions for the targeted
subsurface form a synthetic aperture, whose impulse regpsra spatially variant curve in
the space-time domain. A common set up for GPR deploys aniéies and receiver over
a targeted zone. In some applications, trans-illuminaticthe volume under investigation
is more useful. An example of GPR response is shown in Figure 1

FIG. 1: Ground penetrating radar (GPR) uses radio wavesotoepthe subsurface of lossy
dielectric materials. The modes of measurement are commadahe first, reflected or scat-
tered energy is detected. In the second, effects on eneggritted through the material
are observed.
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The response from the subsurface is extracted from the g@tibn of all buried units
within the medium. This can be inverted using number of atgors like Synthetic Aper-
ture Radar (SAR) image formation techniques (Gazdag, 18i8)time domain standard
back projection (Feng and Sato, 2004). These algorithmsneg fine grid for spatial sam-
pling and Nyquist-rate times samples of the received sgyndkence, the data acquisition
for GPR is the bottleneck of the general subsurface imagioggss.

In difficult terrain, due to manual error or some techniceggularity it is possible to
have missing and corrupted traces in the data. This cantnesaldistorted subsurface
image. In the case of GPR acquisition, the GPR unit is fireégular time intervals and
data will be collected in continuous trigger mode. Theredsspatial direct measurement,
so instead the operator tries to maintain a constant towoegda. Variation in towing speed
can not be ignored, and is evident from stretching of the GR&)e, particularly at the end
of the section.

If the signal is clipped, then the gap size can be large, santrmot be considered
as a problem of interpolation of a regular spatial signale phoblem of interpolation of
irregularly sampled signals is more complex and less weletiged. It is mostly because
of Shannon sampling theorem (Unser, 2000), which tells us,

“If a function f(x) contains no frequency higher than a peak frequeficythen it is
completely determined by giving its ordinates as a serigmofts spaced’ = ?—” seconds
apart.”

This restricts the extension of Shannon sampling theorygoads defined over irreg-
ular grids. Still, with some constraints, algorithms haeei proposed for reconstruction
of band limited (Feichtinger et al., 1995; Duijndam et aB9®) and band unlimited sig-
nals (Naghizadeh and Sacchi, 2007a,b). These constraimtstthie methods to certain
applications. Large gaps in clipped GPR data is one restnicand most band unlimited
methods assume that the signal is stationary, which is gbyenot the case for GPR traces.
Interpolation for reconstruction of seismic data (Sacdhale 1998; Xu et al., 2005; Liu
and Sacchi, 2004; Naghizadeh and Sacchi, 2009, 2008) isrpetl along the lateral co-
ordinate as we generally have irregularity of trace coverdgdere assumption that events
are stationary is found to be effective.

In particular, the effectiveness of this theory and of theregponding algorithms is
restricted in the case of disparity compensated view inlatfpn; the derived constraints
on the maximum gaps of irregular signals under perfect rsitoation conditions cannot
be satisfied by irregular samples having big gaps. Thisaggtmakes spline interpolation
the only effective technique for the reconstruction in tHeéR3processing industry.

Other reconstruction algorithms have been proposed suPhogection on convex sets
method (POCS) (Gerchberg and Saxton, 1972). This paper nsesf the hybrid method
from the above categorized methods. Projection on convisxadeng with non uniform
fast Fourier kernel (Kunis and Potts, 2005) is used for sghthe GPR clipping problem.
This hybrid method will improve convergence rate and redbedinal reconstruction error.
The main objective of this algorithm is to use oversampledding kernel, with POCS for
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FIG. 2: The principle of POCS Method

reconstructing big gaps.

Theory

POCS method is widely used for image reconstruction. The odetlogy involves
finding a solution as an intersection property of sets rati@n by minimization of a cost
function. All image constraints are represented in a Htllspace as a series of closed
convex set§C;|i = 1,2, ---m}, then each projection is done iteratively on the intersecti
In simple terms, this algorithms estimates the missing data Hilbert space from its
known parameters.

If we haven properties of the original signal, then each property define one of the
convex setg’;. Also, the original signal will be part of all sets as well dgtee intersection
of sets as in Figure 2.

SeC=n",C; (1)

Equation 1 defines sets forn properties of signal. The initial value of the signal is
projected iteratively onto the intersection of all convexssunder the projection operator
P. The optimal solution will be the point lying on the boundaffythe intersection. Given
the projection operataP; onto C;,

St+1:PnPn—1"'P15t t:1’2’ (2)

Equation 2 shows an iterative procedure for the signal vistiprojection operators. In
Equation 2S converges to its limiting point of the intersectiéhin the Hilbert spaced.
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FIG. 3: flowchart

The projection operataP; will satisfy,
1S = BiSil| = mingec |15 — kI, 3)

where ||.|| denotes the norm#Ah The limiting point can be reached fromproperties ofS
by using Equation 2.

The first step is to grid the data onto a regular grid using ddynig kernel. In this case
the gridding kernel used is the kaiser Bessel kernel (Kezthat., 2008), which convolves
with the irregular data and distribute the samples onto aleegrid. This gridding kernel,
which is used as non uniform fast Fourier transform (NFFThké(Kunis and Potts, 2005),
acts as simple FFT when the samples are already on a regidarTgpe point to be stress
that, if the gaps are small then the simple FFT kernel can pbkespinstead of NFFT.

POCS is iterative and typically projects consecutive sohgionto consecutive proper-
ties sets. Each iteration is followed by the NFFT kernel,chtis the FFT when sampling
is regular enough. A threshold is applied to the Fourier dartegaving components greater
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than the threshold as zero. During the first few iteratioas@e points with high energy
are restored. In each iterations, higher frequencies aderero in the frequency domain.
The threshold parameter enforces a cut off in amplitude whiges some amplitude to
unknown values. After this, the value of known componenggastored by replacing them
with their true values. This will reconstruct the high fremey values. Samples will be
reconstructed in each iteration (Figure 3). The whole pgeaan be written in form of

Equation 4.

Sk = Sops + (I = S)F'T*B(NFFT)S** (4)

where, S, IS a original data at kth iterationS,;, will keep getting updated until it
finally converges to a solution. NFFT ard! represents non uniform fast Fourier trans-
form and inverse fast Fourier transform which operates.as\is a sampling operator that
identifies known and unknown valu€eE” is threshold operator with elements.

k) 0, Froqy >y
g _{ L Fii <l ©)

Where,F},_, denotes the Fourier domain representation of the recartstiisignal after
the (k — 1)th iteration./ represents thé&/ dimensional threshold sét= [;, {5, - - - [y where
Iy > Iy > Iy and N denotes the maximum number of iterations.

Experiment

The proposed reconstruction algorithm has been testedimgrgally on the GPR data.
The data is acquired along an ice sheet. Snow and ice areGdRImedia because their
stratification presents reflecting horizons with great canty and interesting configura-
tions. Due to antenna-ground coupling or some other teehissue the amplitudes in the
acquired GPR data are clipped. They are clipped bel@¥ and above'® — 1, so there
IS no positive amplitude greater than 32767, and no negatiyaitude below -32768.

Figure 4 shows the GPR data with a lake bottom reflection. &h&péing rate for the
acquired data set ins. The bandwidth of data is 0-1250 MHz. Clipped amplitudes ar
clearly visible in Figure 4 along the top horizon. The dataasnpromised of 300 traces,
each sampled for 750 ns. Sample traces from the data set csgehan Figure 5, where
it is clearly evident that it is clipped with maximum ampliel of 32767 and minimum
amplitude of -32768.

The first step in commercial GPR processing software is thamentation of rubber
band interpolation (spline interpolation). Figure 6 shdtws effectiveness of spline inter-
polation for a GPR trace. Implementation of different ipation technique on GPR data
is carried out. Cubic interpolation along with linear and resaneighbour interpolation is
compared with spline interpolation. Cubic spline interpiolais implemented on the trace,
itis a piecewise third-order polynomial passing througthodg@oints. The result is not very
effective with any other method except spline interpolatio
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FIG. 5: Random extracted clipped trace from acquired GPR.dat
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FIG. 6: Comparative study for reconstruction of clipped aimpke

This effectiveness of spline interpolation makes it a faiteumodule in declipping or
desaturation for various GPR processing software. Howévisrmethod does not use any
information from the signal. The whole reconstruction gdare is based on the fact that
the interpolater is calculated on the basis of a few nearlg paints. Figure 6, in which
spline is use for reconstruction of single trace from GPRgsttows relatively good results
as compared to other interpolators. Amplitudes are regtoré-igure 7 on application of
the spline based interpolation.

Effectiveness of modified POCS method is validated by compgatiwith spline inter-
polation on different GPR traces. Figure 8a shows that fet tth trace, there is difference
in the reconstructed negative and positive clipping as @meypto the spline method. Fig-
ure 8b shows a difference in all four reconstructed clippirigese four clips represent four
different horizons. All of the clippings reconstructed kaw significant error in both neg-
ative and positive amplitudes. Figure 8b shows anotheefratere spline and Modified
POCS give us similar results. Figure 8c and 8d also shows ffezatice in reconstructed
amplitudes.

Figure 9 shows that it is not always the case that Modified P@E8ristructing ampli-
tudes smaller than the spline method. It can be seen in Fagutieat the amplitude restored
in the first clipping is higher compared to spline based tepin Also, in Figure 9c, the
restored clips have higher amplitude than the splines. th Bayure 8 and 9 results obtain
from our method differs from conventional spline based rodth
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FIG. 7: Spline interpolation of clipped GPR data.
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FIG. 10: Reconstructed data using Hybrid NFFT-POCS

Figure 10 shows the reconstructed GPR section. Horizonswageessfully recon-
structed, and the energy is continuous along the horizoeyeds the spline based recon-
structed GPR section in Figure 7 seems to losing energy ifildteand second horizons.
It is also noted in Figures 8 and 9 that there is differencesgtared amplitudes from both
the methods.

We compute residuals between original clipped GPR data @iS*based reconstruc-
tion. Figure 11 shows smoothness in the restored amplitadesss the horizons. The
first, second and third horizon shows constant lateral shrests in reconstructed energy
across the horizons in each layer. The residual of origiipped data and spline based
method in Figure 12 shows that energy is not constant in fhddoizons, which indicates
the drawback of spline interpolation. Figure 13 indicatéBerence in the reconstructed
horizons between Modified POCS and spline method, which teftee difference in the
reconstructed data.
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FIG. 11: Residual between original and reconstructed aectsing Hybrid NFFT-POCS.
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FIG. 12: Residual between original and reconstructed @ectsing spline interpolation.
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FIG. 13: Residual between restored GPR section using spfidéHybird NFFT-POCS.
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CONCLUSION

In this paper, an algorithm for clipped amplitude restanatusing hybrid POCS has
been presented and tested. It is able to completely redterelipped amplitudes of GPR
data. Two different methods for estimating the clippingénaeen tested. The first one is
conventional method of spline interpolation, which is Eygadopted in GPR industry. The
second is hybrid POCS, which ussgpriori information from the signal to recover clipped
amplitudes. A comparative study is done, which showed thdirid POCS is better than
conventional spline interpolation. Hybrid POCS is bettehtgque due to improved lateral
continuity of the energy across the horizons in reconstdidata.

REFERENCES

Duijndam, A. J. W., Schonewille, M. A., and Hindriks, C. O. H999, Reconstruction of
band-limited signals, irregularly sampled along one spatirection: Geophysic$4,
No. 2, 524-538.

Feichtinger, H. G., Grochenig, K., and Strohmer, T., 199&¢cient numerical methods in
non-uniform sampling theory: Numerische Mathema®, 423—440.

Feng, X., and Sato, M., 2004, Prestack migration appliedptofgr lanmine detection:
Invrese problemg20, 99-115.

Gazdag, J., 1978, Seismic migration problems and soluti@esphysics43, 1342—-1351.

Gerchberg, W., R, and Saxton, O., W, 1972, A practical atgorifor the determination of
phase from image and diffraction plane pictures: OR,237-246.

Keiner, J., Kunis, S., and Potts, D., 2008, Using nfft 3 — d@veamfe library for various
nonequispaced fast fourier transforms.

Kunis, S., and Potts, D., 2005, Nfft2.0 users manual: a¥dd online at:
http://www.math.mu-luebeck.de/potts/nffggrsion 2, 1-22.

Liu, B., and Sacchi, M. D., 2004, Minimum weighted norm ip@ation of seismic
records: Geophysic$9, No. 6, 1560-1568.

Naghizadeh, M., and Sacchi, M. D., 2007a, Multistep aut@gjve reconstruction of seis-
mic records: Geophysicg2, No. 6, V111-V118.

Naghizadeh, M., and Sacchi, M. D., 2007b, Reconstructianegularly sampled, aliased
data with multistep autoregressive operators: SEG Teehioogram Expanded Ab-
stracts 26, 2580-2583.

Naghizadeh, M., and Sacchi, M. D., 2008, Sampling functemd sparse reconstruction
methods: EAGE Conference, Rome, Italy.

Naghizadeh, M., and Sacchi, M. D., 2009, Sampling consiaers for band-limited
fourier reconstruction of aliased seismic data: EAGE Cafee, Amsterdam, Nether-
lands.

14 CREWES Research Report — Volume 22 (2010)



Hybrid POCS

Sacchi, M. D., Ulrych, T. J., and Walker, C. J., 1998, Integtioh and extrapolation using
a high-resolution discrete fourier transform: IEEE Trastgmn on Signal Processings,
No. 1, 31-38.

Unser, M., 2000, Sampling - 50 years after shannon: Prongedif the IEEE88, No. 4,
569-587.

Xu, S., Zhang, Y., Pham, D., and Lambare, G., 2005, Antilgaki@urier transform for
seismic data regularization: Geophysié8, No. 4, V87-V95.

CREWES Research Report — Volume 22 (2010) 15



