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ABSTRACT

The Kaiser Bessel non-uniform Fast Fourier transform (NFké&rnel balances accu-
racy and computational cost, and we present an applicatignsoNFFT for seismic trace
interpolation. Application of the Bessel kernel for nonform samples is not a new algo-
rithm, but it is an approximation scheme that can be usedltwlede an approximate spec-
trum. In one dimension, computational complexity of KaiBesssel NFFT iS)(NlogN)
which is a dramatic improvement from tlig N?) complexity of the Discrete Fourier trans-
form (DFT), and it is comparable to Fast Fourier transfor& Tl This algorithm can be
easily extended to higher dimensions. Least squares is tosexfine an approximated
spectra followed by simple Inverse Fast Fourier transfdffi (). The applicability of the
proposed method is examined using synthetic seismic data.

INTRODUCTION

During seismic data acquisition, the continuous wavefigldampled as a discrete
wavefield on the survey grid. To reconstruct the continuoasefield, the spatial sam-
ple rate in the inline and crossline directions axis mustdiected based on the Nyquist
rule (Vermeer, 1990). When this rule is neglected, interparteis required (Liu and Sacchi,
2004). The quality of the reconstruction directly affetts various steps of data processing
processing such as Migration (Spitz, 1991), AVO analysac(®i and Liu, 2005) , imag-
ing (Liu and Sacchi, 2004), and noise removal (Abma and K&0i05) (Soubaras, 1994).
Seismic reconstruction algorithms are divided in to twaegaties: those based on wave
equation analysis and those based on Parametric analysis.

Based on a velocity model, wave equation based methods canges category of a
regression approach that use wave propagation to guidasgaction of the missing sam-
ples (Ronen, 1987; Bagaini and Spagnolini, 1999; Stolt2200ad, 2003; Fomel, 2003;
Malcolm et al., 2005; Clapp, 2006; Leggott et al., 2007).

Parametric analysis based reconstruction methods ard basepriori information in
seismic data, and most are based on the Fourier transfono8wille et al., 2003; Liu and
Sacchi, 2004; Schonewille et al., 2009; Naghizadeh andhsa2@08b,c, 2009b,a, 2010).
The central assumptions are based on the stationarity gérbeess or based on the fact
that most of the power in the power spectrum is concentratethe lower frequencies,
analysis based on this fact known as bandlimitness. Bardiss enforces only the use of
certain set of frequencies (Feichtinger et al., 1995). €lagorithms performs efficiently
even in situations where assumptions in not satisfied gx@ithd, 2008).

Seismic data reconstruction is based on data mapping, @gneapping of spatial do-
main data to the Fourier domain. The most common bases faimibg high resolution
reconstruction techniques are the Fourier transform (Sagtcal., 1998; Xu et al., 2005;
Liu and Sacchi, 2004; Naghizadeh and Sacchi, 2007b, 200882 2007a) and the Radon
transform (Darche, 1990; Verschuur and Kabir, 1995). Inghmbolic Radon transform,
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two CMP gathers are combined to improve offset sampling auod thifferences between
midpoint positions are ignored (Duijndam et al., 1999). i&ry hyperbolic and linear

Radon transforms (Thorson and Claerbout, 1985) as well gsatabolic radon transform
are suitable for estimating frequencies at irregular npbasthey suffer aliasing problem
due to sparse sampling (Hugonnet and Canadas, 1995), th&ladan transform and the
curvelet transform (Hennenfent and Herrmann, 2006b, 2D006a). Another group of sig-
nal processing interpolation methods rely on predictionrdiltering techniques (Wiggins
and Miller, 1972). Spitz (1991) and Porsani (1999) intraelgeismic trace interpolation
methods using prediction filters. These methods operatpiémrcy-space (f-x ) domain.
The low frequency in a regular spatial grid are used to egértiee prediction filters needed
to interpolate high frequency components. This regulatigpgrid make prediction filter

methods restricted to regular sampling.

In this paper we introduce the use of Kaiser Bessel windowetfan for the seismic
data reconstruction. Combining the window function withtFsurier transform will give
us the Kaiser Bessel non-uniform Fourier kernel. The neeth@fnon-uniform kernel
is based on the constrain that Fast Fourier transform (FR&s)l regular spacing for its
application. Non uniform Fast Fourier transforms (NFFT)iethare generalizations for
the FFT are discussed by many authors in the past (Dutt antliRpk993; Steidl, 1998;
Duijndam and Schonewille, 1999; Lee and Greengard, 2008.irportant to stress that
the Non uniform Fourier kernel is been used for seismic datamstruction by Duijndam
and Schonewille (1999) using B - spline and Gaussian windmwetfons, but Kaiser Bessel
window has never been tested. Proposed Kaiser Bessel baseel Kalances between the
computational resources and reported to give better rélsait Gaussian and B- Spline
window based kernels, and already been tested in MedicainggKnopp et al., 2007).

THEORY

In the case of non-uniform sampling, direct discretizatbthe forward transformation
corresponding to the irregular grid at hand will be highlyosreous. A Better approach
will be taking the exact inverse transform from the regyl@admpled domain to irregularly
sampled domain and use this as a forward model in an invect#gon. The general form
can be written in term of matrix vector notation as

Am =d, (2)

where, A4,,..,, is the forward model, d is the observation vector in time dontansist of
true values and m represents Fourier components. Obsarwadctor is irregular sampled
spatial value in case of Seismic data reconstruction anthfix@ a unknown solution. In
Band limited approach, it will always be a over determineolyem. General least square
solution for such approach will be

m = (A*A) 'A%, (2)

where A is mapping matrix from one domain to another domaid A* is its complex
conjugate transpose.

This is basic the approach for hyperbolic Radon transforthlen@ar Radon transform
by Thorson and Claerbout (1985). If desired, data estimatdide Fourier domain can be
transform back to a regular grid in the spatial domain usmwgiise fast Fourier transform.
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Discrete Fourier Transform

The general form of the forward discrete Fourier transfonncase of the regular sam-
pling can be defined as

=

A

P, =) Pe N (m=0,--- ,N—1), (3)
J

Il
o

wherePF,, are the Fourier coordinates, aftlis the input signal.

Assuming the regular sampling the transform can be easibried as,

=2

-1

p] _ pmGQTrinm/N. (4)

i
o

Here,e2™/N is known as the data mapping kernel. All entries of this deaaping kernel
are orthogonal to each other in case of regular sampling.

The forward Discrete Fourier transform (DFT) for regulasimpled seismic data (Dui-
jndam et al., 1999) can be written to include sample spaang a

N-1
P (ky,w) = Az Z P (nAz,w) e kA, (5)

n=0

wherew is the temporal frequency)z is sample interval in spatial domain akg is the
wave number. Regular sampling in the spatial domain ensgoegiodicity.

In Equation 5, to avoid aliasing after the Fourier transfpitnis required to keep\x
small. For avoiding aliasing and maintaining economicse$mic survey, it is always
better to restrict the sampling based on Shannon sample@yhDFT is the mapping of
N point signal(xy, zs, - - - ) in to N Fourier coefficientsX x. In matrix vector form the
DFT can be denoted as

X =DFT %z, (6)

where DFT is the Fourier kernel. From equation/®&;'T" is a Fourier Matrix that mapd’
dimensional vector x in to anoth&f dimensional vector X. To transform back to the spatial
domain, we need F'T~!, which is inverse DFT Matrix. The Inverse discrete Fourier
Transform is defined by

Ak:

P(z,w) = Z P (mAk,w) e” Ak (7)
whereAk is the sampling interval in Fourier domaify, = 2M + 1, andAk = NM The
matrix vector form of Equation 7 is

z=DFT" x X, (8)
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where DF'T* is the Hermitian adjoint of the DFT. Since sampling is requiaF' Ty . v is
orthogonal, which implies
DFTH « DFT = Nly, 9)

wherely is anN dimensional identity matrix. Equation 9 shows that DFT ioahogonal
transformation, and that the inverse is computed using anHii@n operator. The cost of
inverting N x N Hermitian operator i®)(N?) instead ofD(N?). Cost is further diminished
to O(NlogN )using the fast Fourier transform (FFT) instead of matrixteemultiplication.
However, FFT can’t be applied in the case of irregular sangpli

DFTH « DFT # Nly, (10)

Equation 10 shows that when sampling is irregular, its mop$e to invert the DFT matrix,
since columns of the DFT matrix are no longer orthogonal. dpyeroximation converging
closest to DFT for irregular sampling is the weighted Foufiensform (DFT)

N-1
P(mAk,w) =Y P(a,,w)e™ " A, (11)

n=0

where Ak is the regular sample interval in Fourier domain, represents the positions
of the irregular nodes, andz, is the weighting factor which depends upon the distance
between the samples in spatial domain according to

Axn:w, n=0,--,N—1. (12)
The DFT in Equation 11, however, is not a unitary transforomtas it fails the dot prod-
uct test (i:e the dot product of two vectors before the tramsation should be equal to
dot product after the transformation). For this reasors ot possible to reconstruct the
original domain by a simple inverse FFT (IFFT).

Feichtinger et al. (1995) suggests an approach to handlerégeilar grid problem by
putting a band limitation restrain on the data. Ak is the sampling interval in Fourier
domain than the data is band limited to betwéed/ Ak, M Ak]. Accordingly, Equation
4 for N irregular sampleézg, z; - - - ,zx_1) can be denoted in matrix vector notation as

y = Ap, (13)
where,
Y, represents the values on the non-uniform grid,
bm = P(mAk,w), (15)
and Ak
Anm = _e—ijkmn’ (16)
2w

wherep,, is the solution for the linear least square problem, dng is the data mapping
kernel. However, real data is never band limited; there alllays be some spatial frequen-
cies above the restricted bandwidth. It can be treated a& mothe forward model and can
be included in Equation 13 as

y = Ap + Noise. a7)
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Further,p can be estimated by
p= (ATWA+ K1) AT Wy, (18)

wherelV is a weight matrix% is the stabilization factor, and’’ is the complex conjugate
transpose of A. From equation’s 14, 15, and 16, the last témgaation 18 can be written
as

H Ak pl imAkz
AWy = o E P(z,,w)e’ "W, (19)
T
n=0

whereW,,,, = Ax,,. Here, except for consta@l’f, equation 19 is equivalent to equation 11,
which represents weighted DFT. Estimated Fourier specfrean be transformed back to
the spatial domain by direct inverse transform. The DFT issgomcomputational task for
the forward transform, as computational complexity of tH€TDs O(N?). Many inversion
schemes that are use in data processing Sacchi et al. (1R28&8)hi and Ulrych (1996) rely
on the solution of normal equations the right hand side otWwis DFT.

The Kaiser Bessel kernel is a solution that can replace sIBv With faster algorithm.
Fast algorithm will make many algorithms where DFT is usegrastical for industry.

METHODOLOGY

Methodology is divided in to two categories Forward problend Inverse Problem.
Both is calculated using NFFT Kaiser Bessel Kernel. Methagipcan be divided in Fol-
lowing steps

1. AWy = b, calculates direct forward transform using NFFT kernel.

2. U = (APWF + K*I) is the deconvolution operator using NFFT and adjoint NFFT
kernels.

3. UA = b, calculates least squares systemyfor

4. y = [FFT(p) calculates direct backward transform on regular grid usiast IFFT.

Forward problem

The non-uniform Fast Fourier gridding algorithm can be ntiocadly expressed in fol-
lowing steps: gridding, FFT, deconvolution. The griddisgbtained by convolution of the
sampled signal values with a convolution function followsdre-sampling onto a Carte-
sian grid. Convolution with Kaiser Bessel functiét(x) is carried out to make the signal
approximately band-limited according to

pg(m) = kb(z) * p(x), (20)

wherep,(m) is the result of spatial convolution. Equation 20 can betemiias multiplica-
tion in the Fourier domain as

P,(m) = KB(m) x P(m), (21)
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where P,(m) is the Fourier spectrum agf,(m) in Fourier domain. For efficiency Kaiser
Bessel need to be truncated, thus generating n samplgg(fa) where

1 1
n:—int(%>+1,---,]\f—i—mt(%>—1, (22)

and wherent(z) truncates to the largest integer smaller thaior = > 0. The algorithm
is initialized atp;(n) = 0, where subscripg indicates we apply a Kaiser Bessel filter and
keep updating by summation of thé shifted filters. This summation a¥ shifted filter
can be given by

ps(n) — pz(n) + Azp,kb(nAx — x,). (23)
Equation 23 for spreads the irregular samples on to a reguldr The sampling;(n) =
Axp;(nAz) is similar to equation 24 in Fourier domain which can be \eritas

Py(m) =Y _P(m+IN)KB(m+IN). (24)
IeZ

When P,(m) is broadband, aliasing will occur whei B(m + IN) # 0 for any I # O.
It is suggested by (Duijndam and Schonewille, 1999) thaetoave the aliasing, there is
requirement of making the signal periodic according to

pz(n) = Zpg(n+IN), n=0,12-.-- ,N—1, (25)

I=—

wherep;(n + IN) = 0 is outside the interval given by equation 22. Convolutionhef t
signal followed by the discrete transform can be represktioye

N-1 N N
Pg(m)FFT = Zpg(n)GJQan/N7 m = 57 Tty 5 - 17 (26)
n=0
whereP, (m) ppr is the spectrum obtained using the FFT. Finally correctamrcdnvolution
is carried out by deconvolution in the Fourier domain acecwdo

Py(m)rrr

KB(m) ’
where P(m) is the approximate spectrum, ahfB(m) is the spectrum obtained by equa-
tion’s 11 and 27.

P(m) = (27)

Window function

NFFT algorithms are based on convolution of sampled sigitalaband limiting filter,
and several different names are indicated in the literatdeckson et al. (1991) discuss
these algorithms in terms of image processing and referémths griding algorithms.
Beylkin et al. (1991) proposes a similar as the irregularrfesaransform algorithm where
convolution with B-spline is carried out to make the signgpeximately band limited.
Jackson et al. (1991) discuss several forms of filters whah ke used, and a truncated
Gauss filter is introduced by Dutt and Rokhlin (1993).

Most of the recent development in these algorithms deals aptimization of above
windows functions, but still Kaiser Bessel window functigimes best result (Knopp et al.,
2007).
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Kaiser Bessel window function

Prolate Spheroidal wave function (PSWF) have finite time supmnd maximum con-
centration of Energy within a given bandwidth. The closetdaw function which provides
good approximation is Kaiser Bessel function. The PSWF iethgenfunction having the
largest eigenvalue of the operation of repeatedly low-pi¢tesing a function and band-
limiting it. It is difficult to compute but the Kaiser-Besdehction is a close approximation
of the PSWF. For a given filtefAx and Bandwidth B, the least amount of energy outside
desired passband i:e minimization of

f\m\>B |§(m) |2dm

S : (28)
Joo 19(m)|2dm
The Kaiser Bessel function can be represented as Knopp(208l7)
1 2t \° —qAz qAx
- == <gp<—=
9(z) qAzx Loy /1 (qAx) 2 = = 2 (29)

wherel, is the zeroth order modified Bessel function of its first kitmdFrequency domain,
its Fourier transform is used for deconvolution purposeurtes domain representation of
Kaiser Bessel function

sin(y/m2(q(Ax)2m? — 3?)

V2 (q(Az)2m? — 32 (30)

g(m) =

Figure 2a represents Kaiser Bessel window for various vafugin spatial domaing is

the parameter for Kaiser window, which gives control ovade off between mainlobes
width and sidelobes level. Largegives wider main lobe but lower side lobes as shown
in Figures 2a and 2b. For maximum frequency resolution, ywaarrowest main lobe is
preferred. Jackson et al. (1991) carried out detailed amalyf the various convolution
functions leading to the approximation for the prolate splal function. Different value

of (3 is suggested for 30 in (Jackson et al., 1991). For all calicuigurpose value of g is
taken a$ and value of3 = 2. These values are taken as a optimum by Knopp et al. (2007).

Inversion

In general the linear system we will solve in this problemtls® solution can only be
approximated up to a residual of the form

r=y— Ap. (32)

In order to compensate for the missing samples it is impot@nncorporate a weight
function W,W > 0 and the problem becomes a

M-1

argminlly — Apl[y, =Y wily; — f(x;)]2 — min, (32)

j=0

where W =liag(w;)j—o.... pr—1-
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EFFICIENCY

The problem of regularization in the least squares NFFT &a&ork is divided in two
categories: forward method and inversions. The Direct &mdaransform is been computed
using NFFT which isA# and for the inversion purpose operator= (AW A + k1) is
computed. For computing the inversion operator, the fotwourier kernelA” and its
adjoint A is already computed using NFFT. It has already been that Nfitela computa-
tional advantage over DFT. Further more iterative solutb82 has been analysis in detail
in large number of papers (Feichtinger et al., 1995). Thetdaweights conjugate gradi-
ent Toeplitz method (ACT) applies the conjugate gradienhoetto the weighted normal
equation which can be written as

ABW Ap = ATy (33)

SYNTHETICTESTS

Purpose of any reconstruction algorithm can only be solvetdis tested as general
algorithm. Its important stress that not all the methodsapable of dealing with regular as
well as irregular sampling. In fact, most of the Parametignal reconstruction technique
fails to deal with irregular sampling (Naghizadeh and Sa&08b,c, 2009b; Hennenfent
and Herrmann, 2008, 2007).

Synthetic 1D examples

Figure 1 demonstrates effect of the sampling on seismic. d8tanthetic hyperbolic
events (Figure 1la) and its Fourier domain representatiayu(é 1b). In case of regular
decimation (Figure 1d), strong coherent noise (Figure lil)b& created due to acquisi-
tion. Noise is highly structured with strong amplitudes. $¥lof the regular interpolation
techniques is based on the idea of using non aliased low drexyuand de-alias higher
frequency. Abma and Kabir (2005) pointed out that most puation method based on
regular sampling whereas irregular sampling generate we#e. In irregular sampling
(Figure 1e), Power is focused at few Fourier coefficients mmide is spread whole trans-
form domain (Figure 1f). Sparser the signal, straightfadwaill be the reconstruction.

For examining the performance of Kaiser Bessel NFFT algoritvith various sam-
pling operators, we created a simple sin signal in Figure Sv@l$ as another signal in
Figure 4 which is composed of two harmonics. Detailed amaydth varying gaps, ex-
trapolation, random sampling and uniform sampling is earout.

For 1 dimension examples we will take case of simple sinaaeiith 256 samples, at
sampling rate of 10ms. Top panel will show the Decimatediapddmain and panel below
it is reconstructed missing samples. Figure 3a shows th&@h# randomly decimated
signal and reconstructed sinusoidal. Even with 50% rangaitaetimation in Figure 3b
algorithm seems to do pretty well. On implementing high dedion sampling functions
of 60% in Figure 3c results are good, all missing samples haen successfully recon-
structed. On going further decimation in Figure 3d due to ddshe Fourier coefficients its
is not able to recons truct the same amplitude back, excepteapoint where it is missing
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most of the samples.

Gaps

In the previous test, it is observed that algorithm fails sdime when more number of
Fourier coefficients are missing from a single location. sTimhaviour is further tested in
gap test. In this different gaps will be created by takingenmumber of Fourier coefficients
from a single location. Algorithm is tested for all size ofpga Input signal composed of
two harmonics , with sampling interval of 10ms for 256 sarapla the case of small gaps
in Figure 4b, reconstruction is perfect. Even in the presesiclarge gaps in Figure 4d,
algorithm works effectively.

Extrapolation

Extrapolation test is done for the reconstruction algonitipurpose of algorithm is to
extrapolate the missing samples. Extrapolation is bedadem combination of two har-
monics for two categories, small gaps and large gaps in Egyde and 4g. Reconstructed
extrapolated harmonics can be seen in Figures 4f and 4h.ri&lges can easily handle
the stationary harmonics with large gaps. Algorithm cam dde applied on simple non
stationary harmonics when taken small windows, and eveatassumed to be stationary.

SYNTHETIC 2D EXAMPLES

In the case of 2D data reconstruction, the Fourier recoastmuis iterative on each fre-
quency slice in fk domain. NFFT least square will be applirctach frequency slice, with
iteratively moving to next slice. In Figure 5, there are theeismic events with different
dips and amplitudes. The seismic wavelet is Ricker wavellt peak frequency of 50 Hz.
Sampling rate for seismic data acquisition is 4ms. Figuretheé an original synthetic sec-
tion. Figure 6 represents Fourier domain representatiooriginal section. Before testing
algorithm for heavy decimation operators, its been tesbed 3% random decimation in
Figure 6. NFFT Least squares works perfectly in Figures 5 @uor the small random
decimation.

Randomly decimated Dipping Events

Random sampling in the spatial domain (Figure 7a) can rasldtv amplitudes artifact
like in Figure (7c) along with the original Fourier eventsheTartifacts are the resultant of
random sampling operator which % resultant due to decimation in original data in
Figure 7a. Reconstructed data in Figure 7b in cas@@f random decimation is as good
as original. Figure 7b proves that algorithm works for thisiséc section with half of the
missing samples. Even Fourier domain in Figure 7c show$alenergy concentrated on
the dipping events, with no energy getting dissipated.

Further moving to higher decimation 86% in 7e low amplitudes artifacts are more
dominant. Along with the dominant artifacts, aliasing fbetdips can be seen in Figure
79. Noisy artifacts are observed in Figure 7f as comparedidgarg 7f, its because of
the big gap in Figure 7e. It was seen before that algorithmksvéor big gaps in case
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of simple harmonics in Figures (4b, 4d), but it is effective® in case of linear dipping
events. Its important to test when algorithm fails for knogyits limitation. Therefore final
data is tested using random sampling operator806f decimations in Figure7f. Figure
7e shows30% decimated data, with its Fourier domain in Figure 7g. It dtidae notice
that Fourier domain o80% decimation in Figure 7g has more aliased events than with
50% decimation, its again due to the presence of more gaps ingbiendted section in
Figure 7e as comparison &% decimation in Figure 7a. Algorithm started to fails with
80% decimation as seen in reconstructed section in Figureh&fetare low amplitudes
artifacts in the recovered Fourier domain (Figure 7h) ad.vw&lents in recovered section
are still well defined (Figure 7f) but with the high amplitudeise in the section. Both
reconstructed, t-x domain and f-k domain in Figure 7f anduFeg7h demonstrates the
limitation of the algorithm.

Uniform decimation for dipping Events

In order to generalize the algorithm for the interpolatiam will be testing it with the
uniformly decimation operators. Parametric reconstarctechnique seems not to perform
very well, when implemented on the uniformly decimated s&issection. In case of uni-
form decimation, replicas of events are created in the Eowomain which is difficult to
separate. But with the band-limiting approach like Leastesg NFFT, replicated spectrum
of event can be isolated in the low frequency of data. It isabbse of the higher power
spectrum at low frequencies. Uniform decimation factorg of Figure 8a and 4 in Figure
8e are implemented.

2D Synthetic section is decimated by a factor 2 in Figure 8eacEreplicas of planar

and dipping events are created in FK domain of Figure 8c. R&toacted data in Figure
8b and its Fourier domain in Figure 8d is recovered. On irgirgpthe decimation factor
to 4 in Figure 8e, we have more replicas of planar and dippienes in Figure 8h as

compare to 8d. But the recovered data in Figure 8f has welhd&vents like in Figure 8f,

setting reputation of algorithm to work on uniformly decited data as well. Further for
uniform sampling, like random sampling there is need of munin number of samples so
that algorithm can recover the data.

Hyper bolic events

In case of hyperbolic events in Figure 9, data can always beawed thus assuming
that events are linear. But, we already seen the applicafi&wS-NFFT on linear events.
Applying LS-NFFT on the decimated data without windowindHigure 9a. In upper part
of reconstructed data in Figure 9b apexes are successédbynstructed. But still some
high amplitude noise is observed.

CONCLUSIONS

Low computational cost of LS-NFFT make it a robust and pcattalgorithm. This
method successfully reconstruct the missing samples. dlg@ithm is effective both in
case of random sampled data as well as uniform sampling. ridhgo can be easily ex-
tended to higher dimensions, and it will prove to be costatiffe even for it. Though it
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is able to reconstruct the curved events. But a good windgwstrategy which enforces
linearity for curved events will sure provide better resutt that case. NFFT and Adjoint
NFFT is a strong tool and can be use as a effective tool in @hiemic processing steps.
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