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ABSTRACT

In this note we lay some of the groundwork for a scattering theoretic description of
anelastic wave propagation. The aim is to create a framework for (1) describing the diffrac-
tion and conversion of anelastic waves in heterogeneous media, and (2) directly inverting P,
S, and converted wave data taken over dissipative media. Here we take the simple but im-
portant step of expressing reference and perturbed anelastic wave equations in diagonalized
forms, which are then prepared for inclusion in an appropriate Scattering, or Lippmann-
Schwinger equation. As a side note we also consider appropriate situations for the use of a
popular relationship by which QP is related to QS .

INTRODUCTION

The purpose of this note is to begin constructing the mathematical ingredients required
for a scattering description of anelastic waves. Our interests are twofold. First, modeling of
the interaction of anelastic waves with heterogeneous media. Anelastic media are known to
support certain inhomogeneous S-waves that have no elastic analogue; relatively complete
theoretical descriptions of these waves have been presented for layered and homogeneous
media (Borcherdt, 2009), but far less is understood about their behaviour in an arbitrary 2D
and 3D Earth. Second, forming inverse procedures for data reflecting from arbitrary struc-
tures that dissipate seismic wave energy. Linear and nonlinear inverse scattering theory
and processing procedures have been developed for anacoustic media (Innanen and We-
glein, 2007; Innanen and Lira, 2010); however, for direct inverse procedures, which rely
on seismic amplitudes, these basic developments must be extended to the anelastic case
prior to field data application. Here we put together the first steps in the development,
namely, the expression of the reference and perturbed anelastic wave equations, and their
transformation to diagonalized form.

MODIFYING ELASTIC MODULI TO INCLUDE QP AND QS

In an elastic medium we have the following relationship between the [real] P- and S-
wave phase velocities α and β and the [real] Lamé parameters λ and µ, and the density
ρ:

ρα2 = λ+ 2µ ≡ γ

ρβ2 = µ,

ρ, α, β, λ, µ ∈ R.
(1)

Dissipation of the elastic potential energy held by a medium when it is under a shear and/or
a volumetric strain may be incorporated with little apparent alteration to these relationships.
To be given the opportunity to describe such processes, stress and strain, which are related
via the quantities in equation (1), must become functions not only of each other’s instan-
taneous values, but also of their past values. This in turn requires that the time domain
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influence of λ and µ must be convolutional rather than multiplicative, but if we focus on
frequency domain wave descriptions, the multiplicative relationship, and the forms in equa-
tion (1), are recovered, albeit with complex, frequency dependent α, β, λ and µ (Borcherdt,
2009), signified with a ·̂:

ρα̂2(ω) = λ̂(ω) + 2µ̂(ω) ≡ γ̂(ω)

ρβ̂2(ω) = µ̂(ω),

ρ ∈ R,
α̂, β̂, λ̂, µ̂ ∈ C.

(2)

Fundamentally the complex nature of equation (2) is due to our alteration of λ and µ; the
complexity of the phase velocities α̂ and β̂ is then simply a mathematical necessity. Inertial
density ρ must always remain real, or mass would not be locally conserved.

That said, in practice, convenient representation of the untold individual mechanisms
of anelasticity that we must assume occur within the Earth as a wave passes, often takes the
form of a re-casting of the phase velocities subject to several macroscopic requirements,
principally linearity, causality and constant or nearly constant amplitude losses per cycle.
Hence, in developing our description of anelastic wave scattering, we will not alter the
moduli, which physics would seem to demand, but rather, for the sake of convenience, we
will take as our starting point an anelastic alteration of the phase velocities, within which
we will incorporate two “nearly constant Q” relationships. This will imply then that we
treat anelasticity as a modification of linear combinations of the Lamé parameters, rather
than the parameters themselves.

Adopting the nearly constant Q model reviewed by Aki and Richards (2002) we con-
sider then a version of equation (2) that reads

ρα2

[
1 +

i

2QP

− 1

πQP

log

(
ω

ωP

)]−2

= λ̂(ω) + 2µ̂(ω),

ρβ2

[
1 +

i

2QS

− 1

πQS

log

(
ω

ωS

)]−2

= µ̂(ω),

ρ, α, β ∈ R,
λ̂, µ̂ ∈ C,

(3)

which, for weak attenuation, may alternatively be written

ρα2 − ρα2

[
i

QP

− 2

πQP

log

(
ω

ωP

)]
= λ̂(ω) + 2µ̂(ω),

ρβ2 − ρβ2

[
i

2QS

− 2

πQS

log

(
ω

ωS

)]
= µ̂(ω).

(4)

Equation (4) is strongly suggestive that, in deciding how quality factors thus defined can
be seen as alterations of the nominal elastic properties, we view QP and QS as parameters
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that generate deviations, in λ̂(ω) + 2µ̂(ω) and µ̂(ω) respectively, away from real reference
values γ = λ+ 2µ and µ:

γ̂(ω) = γ

[
1 +

FP (ω)

QP

]
,

µ̂(ω) = µ

[
1 +

FS(ω)

QS

]
,

(5)

where

FP (ω) = −i+
2

π
log

(
ω

ωP

)
FS(ω) = −i+

2

π
log

(
ω

ωS

)
,

(6)

and ωP and ωS are the reference frequencies at which the P-wave and the S-waves propagate
at α and β respectively.

ANELASTIC WAVE EQUATIONS

Displacement formulation

Anelastic displacements in a volume of space absent sources, can be expressed in the
space-frequency domain as an elastic wave operator LA acting on the displacement vector
u = u(x, ω):

LAEu = 0, (7)

where u = (ux, uy, uz)T , and x = (x, y, z)T , and

LAE =

 Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

 . (8)

The elements of Le contain instances of the density, and spatial derivatives acting on
spatially-variant Lamé parameters and quality factors, in addition to the elements of u:

Lxx = ∂xγ

[
1 +

FP

QP

]
∂x + ∂yµ

[
1 +

FS

QS

]
∂y + ∂zµ

[
1 +

FS

QS

]
∂z + ρω2

Lyy = ∂yγ

[
1 +

FP

QP

]
∂y + ∂xµ

[
1 +

FS

QS

]
∂x + ∂zµ

[
1 +

FS

QS

]
∂z + ρω2

Lzz = ∂zγ

[
1 +

FP

QP

]
∂z + ∂xµ

[
1 +

FS

QS

]
∂x + ∂yµ

[
1 +

FS

QS

]
∂y + ρω2,

(9)
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and

Lxy = ∂x

{
γ

[
1 +

FP

QP

]
− 2µ

[
1 +

FS

QS

]}
∂y + ∂yµ

[
1 +

FS

QS

]
∂x

Lxz = ∂x

{
γ

[
1 +

FP

QP

]
− 2µ

[
1 +

FS

QS

]}
∂z + ∂zµ

[
1 +

FS

QS

]
∂x

Lyx = ∂y

{
γ

[
1 +

FP

QP

]
− 2µ

[
1 +

FS

QS

]}
∂x + ∂xµ

[
1 +

FS

QS

]
∂y

Lyz = ∂y

{
γ

[
1 +

FP

QP

]
− 2µ

[
1 +

FS

QS

]}
∂z + ∂zµ

[
1 +

FS

QS

]
∂y

Lzx = ∂z

{
γ

[
1 +

FP

QP

]
− 2µ

[
1 +

FS

QS

]}
∂x + ∂xµ

[
1 +

FS

QS

]
∂z

Lzy = ∂z

{
γ

[
1 +

FP

QP

]
− 2µ

[
1 +

FS

QS

]}
∂y + ∂yµ

[
1 +

FS

QS

]
∂z.

(10)

where FP and FS are the complex, frequency dependent functions defined in equations (6).
If the medium is homogeneous, we have instead the simpler form

L0
AE =

 L0
xx L0

xy L0
xz

L0
yx L0

yy L0
yz

L0
zx L0

zy L0
zz

 , (11)

where

L0
xx = γ

[
1 +

FP

QP

]
∂2

x + µ

[
1 +

FS

QS

]
(∂2

y + ∂2
z ) + ρω2

L0
yy = γ

[
1 +

FP

QP

]
∂2

y + µ

[
1 +

FS

QS

]
(∂2

x + ∂2
z ) + ρω2

L0
zz = γ

[
1 +

FP

QP

]
∂2

z + µ

[
1 +

FS

QS

]
(∂2

x + ∂2
y) + ρω2,

(12)

and

L0
xy =

{
γ

[
1 +

FP

QP

]
− µ

[
1 +

FS

QS

]}
∂x∂y

L0
xz =

{
γ

[
1 +

FP

QP

]
− µ

[
1 +

FS

QS

]}
∂x∂z

L0
yz =

{
γ

[
1 +

FP

QP

]
− µ

[
1 +

FS

QS

]}
∂y∂z

L0
yx = L0

xy

L0
zx = L0

xz

L0
zy = L0

yz.

(13)
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P- and S-wave formulation

A unified scheme developed by Stolt and Weglein, which diagonalizes all of the im-
portant mathematical objects involved in elastic scattering, leading to quantities directly
expressed in terms of P-waves and S-waves, has been used to good effect in a number
of applications (e.g., Matson, 1997; Zhang, 2006). Since the anelastic modifications we
have so far introduced affect the time-frequency dependence of the equations of motion,
and only involve new space dependences in the sense that QP and QS are heterogeneous
properties of the medium, this same apparatus can be employed now with little alteration.

The key ingredient in the diagonalization is the operator Π, which performs a decom-
position of any 3× 1 vector into Helmholtz potentials:

Π =


∂x ∂y ∂z

0 ∂z −∂y

−∂z 0 ∂x

∂y −∂x 0

 , (14)

and, for all cases that will affect us, possesses the inverse

Π−1 = (ΠT Π)−1ΠT = (∂2
x + ∂2

y + ∂2
z )−1

 ∂x 0 −∂z ∂y

∂y ∂z 0 −∂x

∂z −∂y ∂x 0

 . (15)

In Appendix A we demonstrate by recovering (L0
AE)11 that L0

PS, where

L0
PS =


LP 0 0 0
0 LS 0 0
0 0 LS 0
0 0 0 LS

 , (16)

and

LP = ρα2

[
1− FP

2QP

]−2
{
∇2 +

ω2

α2

[
1− FP

2QP

]2
}

LS = ρβ2

[
1− FS

2QS

]−2
{
∇2 +

ω2

β2

[
1− FS

2QS

]2
}
,

(17)

is the consequence of applying the Π operators to L0
AE:

L0
AE = ΠL0

PSΠ−1. (18)

Hence the P- and S-wave decomposition of equation (7) is of the form

L0
PS


∇ · u

(∇× u)x

(∇× u)y

(∇× u)z

 = 0, (19)
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which, defining φ = ∇ · u and ψ = [(∇× u)x, (∇× u)y, (∇× u)z]T , represents the four
equations

ρα2

[
1− FP

2QP

]−2
{
∇2 +

ω2

α2

[
1− FP

2QP

]2
}
φ = 0,

ρβ2

[
1− FS

2QS

]−2
{
∇2 +

ω2

β2

[
1− FS

2QS

]2
}
ψ = 0,

(20)

which is really only three since

∇ · ψ = 0. (21)

ON THE INTERDEPENDENCE OF QP AND QS

We end with a side note. A medium involving a completely elastic, i.e., non-attenuative,
bulk modulus, can still support attenuating P-waves if the shear modulus behaves anelas-
tically; in fact under those circumstances, a simple QP -QS relationship exists. Beginning
again with

α2ρ = λ+ 2µ, κ = λ+
2

3
µ, (22)

we may write down expressions relating the two wave velocities α and β with the two
moduli κ and µ:

α2ρ = κ+
4

3
µ,

β2ρ = µ.
(23)

Again if we take QP and QS to parametrize causal attenuation and dispersion in the P-
wave and the S-wave respectively, anelastic versions of equation (23) would read, for weak
attenuation,

ρα2

[
1− i

QP

+
2

πQP

log

(
ω

ωP

)]
= κ+

4

3
µ,

ρβ2

[
1− i

QS

+
2

πQS

log

(
ω

ωS

)]
= µ,

(24)

where ωP and ωS are the reference frequencies at which the P-wave and the S-wave propa-
gate with real phase velocities α and β respectively. Eliminating complex µ from equation
(24), enforcing κ to be real, and taking the imaginary part of the result, constrains QP to
take on a finite value that is fixed by α, β and QS:

1

QP

=
4

3

1

QS

(
β

α

)2

. (25)

This is consistent with the relationship discussed by Waters (1978). Taken out of context,
equation (25) might sensibly be construed as an equation that allows QS to be fixed given
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a QP value. But the derivation above cautions against such an interpretation – the QP in
that relationship is incomplete, so to speak, representing only attenuation that has leaked
into the P-wave from the anelasticity of the shear modulus, and saying nothing about actual
compressive anelasticity. This relationship must only be used if it is felt that all attenuation
in the seismic disturbance arises from loss mechanisms associated with the shear modulus.
Waters himself says this, but in slightly roundabout language, and the danger of misuse
seems real.
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