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ABSTRACT

We summarize some applications of Gabor multipliers as a numerical implementation
of certain linear operators that arise in seismic data processing, including differential oper-
ators, nonstationary filters, and wavefield propagators. We demonstrate an approximation
formula for pseudodifferential operators using Gabor multipliers. We present a demon-
stration of the almost factorization of Gabor symbols that is used in a fundamental way
for nonstationary deconvolution. We give a numerical example of wavefield propagation
through the EAGE salt model.

INTRODUCTION

Gabor multipliers are a general class of linear operators acting on numerical representa-
tions of physical signals, that are useful for a variety of signal processing and mathematical
modelling applications. As a nonstationary extension of Fourier multipliers, the Gabor mul-
tiplier is a useful tool for approximating differential operators with non-constant coefficient
functions, time- or spatial-varying filters, and evolution operators for physical processes in
inhomogeneous media.

Just as Fourier multipliers are built on the Fourier transform, the Gabor multiplier is
built on the Gabor transform, which is a time-frequency representation of a given signal
or function of time. Given a signal f(t), its Gabor transform Gf(t, ω) is a function of two
variables that specifies the spectral energy present in the signal near time t at frequency ω.
This representation can be understood as a short time (or windowed) Fourier transform of
the signal, typically given in the form

Gf(t, ω) =

∫ ∞

−∞
f(s)g(s− t)e−2πisω ds, (1)

where the window function g(s− t) is fixed to localize the signal near time t.

The Gabor transform extracts more useful information from a signal that evolves in
time, as it can identify changes in spectral contents as the signal progresses. For example,
compare the two representations in Figures 1 and 2. The first figure shows a Vibroseis
sweep with the usual Fourier transform representation, indicating a frequency content from
2Hz to 100Hz. The second figure shows how that frequency content evolves over time – in
the time-frequency display at the bottom of Figure 2, we see at the beginning of the signal,
that the energy content is at the low end of the frequency band. As time progresses, the
energy content increases linearly in frequency, indicated by the climbing ramp in the figure.

As this example shows, the Gabor transform produces a more detailed representation
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FIG. 1. A synthetic Vibroseis sweep, 2 to 100 Hz, and FFT.
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FIG. 2. A synthetic Vibroseis sweep, 2 to 100 Hz, and Gabor transform.

of the signal as it evolves in time. The Gabor multiplier is an operator that acts directly
on this more detailed representation of the signal, and as a result, the Gabor multiplier can
make a more precise modification of the the signal than is possible in the Fourier domain
alone.

In its simplest form, a Gabor multiplier simply modifies a signal in the time-frequency
domain by multiplying its Gabor representation Gf(t, ω) by a fixed function α(t, ω), and
returning to the time domain with the adjoint of the Gabor transform. Denoting this Gabor
multiplier as Gα, we can express this operation as the application of three simpler linear
operators acting on signal f in the form

Gαf = G∗MαGf. (2)

Here G is the Gabor transform operator, G∗ its adjoint, and Mα the operation of multiplica-
tion by the function α in the t-ω space.

By a judicious choice of window g(s− t) and sampling appropriately in both the time
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and frequency domain, we obtain a fast numerical algorithm that can be implemented us-
ing the Fast Fourier Transform, and with an approximate functional calculus that allows us
to compose Gabor multipliers through combination of different multipliers α. (See Lam-
oureux et al. (2008); Lamoureux and Margrave (2009).)

As an example of a simple Gabor multiplier, consider modifying the signal shown in
Figure 3, which represents a Vibroseis sweep that includes the third harmonic. In order to
eliminate this harmonic, we modify the signal in the Gabor domain by setting to zero the
terms in the upper ramp that represent the harmonic. That is, we choose the multiplier α to
take values zero on the harmonic, and take values one on the fundamental.

The multiplier α is illustrated by its data plot in Figure 4 and the results of applying this
multiplier to the sweep with harmonic is shown in Figure 5. As we see in the figure, the
odd harmonic has been smoothly eliminated.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

Time (s)

A
m

p.
F

re
qu

en
cy

 (
H

z)

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5

−400

−300

−200

−100

0

FIG. 3. A synthetic Vibroseis sweep, 2 to 100 Hz, with an odd harmonic.
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FIG. 4. The permissible region of frequencies to pass, in t-ω domain.

It is worth noting that with a stationary filter (eg. a Fourier multiplier), we could remove
the harmonics above 100 Hz, say. However, this would not be adequate to remove the lower
frequency odd harmonics in the first two seconds of the signal. Thus the nonstationary
behaviour of the Gabor multiplier is better suited to harmonic removal in this time-variant
signal.
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FIG. 5. The result of non-stationary filtering: harmonic is removed.

GENERALIZED GABOR MULTIPLIERS AND G-FRAMES

By replacing the translated window function g(s − t) by a discrete family of windows
gk(s), one obtains a more general Gabor transform defined by the formula

Gf(tk, ω) =

∫ ∞

−∞
f(s)gk(s)e

−2πisω ds, (3)

where the point tk is the center of mass of window gk. Such a transform is useful when it
is not necessary to have a uniform partition of the signal space: we use a large window for
regions where the signal is relatively stationary, and small regions where the characteristics
of the signal are changing quickly.

A good choice of windows will ensure that the adjoint operator G∗ is a left inverse for
the generalized Gabor transform. Indeed, the condition that

G∗Gf = f, for all signals f , (4)

is equivalent to the partition of unity condition∑
k

|gk(t)|2 = 1, for all t in the support of f. (5)

It is sometime convenient to use one set of windows for the forward transform G and
another set for the inverse (adjoint) transformH∗ with

Hf(tk, ω) =

∫ ∞

−∞
f(s)hk(s)e

−2πisω ds. (6)

In this case, the requirement that the adjoint operatorH∗ is a left inverse for G,

H∗Gf = f, for all signals f , (7)
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is equivalent to requiring a similar partition of unity condition, that∑
k

hk(t)gk(t) = 1, for all t in the support of f. (8)

In this case, the Gabor multiplier determined by symbol α(t, ω) is given as the operator

Gαf = H∗MαGf, for all signals f. (9)

It is straightforward to verify that this multiplier may be written as a sum of operators
(summing over the windows), with

Gα =
∑
k

M∗
hkCαkMgk, (10)

where Mgk is simply multiplication by the window function gk(t), Mhk is multiplication
by the dual window function hk(t), and Cαk is a convolution operator (over time) whose
frequency response (as a function of frequency ω) is simply α(tk, ω).

Thus, the ordinary and generalized Gabor multipliers are sums of localized convolution
operators. This is a special case of operators built from a localizing frame.

In general, given a family of (localizing) windows gk, a set of dual windows hk sat-
isfying a partition of unity condition, and a family of linear operators Ak, we define the
corresponding global operator as

Aglobal =
∑
k

M∗
hkAkMgk. (11)

These global operators have local properties given by the Ak. The mathematical theory of
generalized frames describes in detail the properties of such operators. (See Lamoureux
and Margrave (2009); Sun (2006).)

PSEUDODIFFERENTIAL OPERATORS

An order-m differential operator (in one dimension) of the form

Kf(t) =
m∑
k=0

ak(t)
dkf

dtk
(t) (12)

can be represented in the form of an integral operator, with

Kf(t) =

∫ ∞

−∞
α(t, ω)f̂(ω)e2πiωt dω, (13)

where
α(t, ω) =

∑
k

ak(t)(−2πiω)k (14)

is the symbol of the operator, and f̂ is the Fourier transform of the signal f .
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More generally, given any function α(t, ω) of the two variables t, ω, and certain mild
conditions on the smoothness and growth of the function at infinity, one can define a pseu-
dodifferential operator Kα on signals f by the formula

Kαf(t) =

∫ ∞

−∞
α(t, ω)f̂(ω)e2πiωt dω. (15)

This operator Kα is called the Kohn-Nirenberg pseudodifferential operator for symbol α.

The symbol α is suggestive of a Gabor multiplier.

In fact, we can show in the special case where the analysis windows gk are constant 1,
the synthesis windows hk form a partition of unity,∑

k

hk(t) = 1, for all t, (16)

and the symbol α is slowly varying with respect to this partition, then the Gabor multiplier
Gα is close to the pseudodifferential operator Kα.

To see this, we note that we may approximate the symbol α using the partition of unity,
so

α(t, ω) =
∑
k

hk(t)α(t, ω) (17)

≈
∑
k

hk(t)α(tk, ω), (18)

since the symbol is varying slowly. Thus we may approximate the pseudodifferential oper-
ator as

Kαf(t) =

∫ ∞

−∞
α(t, ω)f̂(ω)e2πiωt dω (19)

≈
∫ ∞

−∞

∑
k

hk(t)α(tk, ω)f̂(ω)e2πiωt dω (20)

=
∑
k

hk(t)

∫ ∞

−∞
α(tk, ω)f̂(ω)e2πiωt dω (21)

=
∑
k

M∗
hkCαkf(t) = Gαf(t), (22)

where we have noticed the last integral above is a Fourier multiplier with symbol α(tk, ω),
corresponding to the convolution operator Cαk described in the previous section.

Pseudodifferential operators also come in an adjoint form. For symbol α, the adjoint
operator is given in terms of the Fourier transform of its output, as

Âαf(ω) =

∫ ∞

−∞
α(t, ω)f(t)e−2πiωt dt. (23)

For these adjoint operators, we may approximate Aα with Gabor multiplier Gα provided
the windows gk form the partition of unity, the hk are constant 1, and the symbol α is again
slowly varying with respect to the partition of unity.
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PRODUCT RESULTS FOR DECONVOLUTION

Gabor methods have been used extensively for seismic trace deconvolution (see Mar-
grave and Lamoureux (2001); Margrave et al. (2002, 2004); Montana and Margrave (2006).).
A key fact used in the decon algorithm is that the source, reflectivity, and attenuation pro-
cess approximately factor in the Gabor domain. That is, for seismic data d(t) recorded
from a seismic test with source input s(t), reflectivity r(t), and attenuation process given
by symbol α(t, ω), we expect an approximate factorization in the form

Gd(t, ω) ≈ ŝ(ω)α(t, ω)Gr(t, ω), (24)

where Gd,Gr are the Gabor transforms of the recorded data and reflectivity respectively,
and ŝ is the Fourier transform of the source wavelet.

This approximation has been noticed numerically in our earlier work. We can justify
it mathematically using the approximations in the last section. We assume the attenuation
symbol α(t, ω) is slowly varying relative to the partition of unity given by windows gk,
and the source wavelet is concentrated to a small time interval near t = 0. These are
reasonable physical assumptions in the case of moderate Q-attenuation and an impulse
source (eg. dynamite blast).

Our mathematical model for the seismic experiment is that the recorded data d(t) is
obtained as the result of an attenuation operators Aα (expressed in the adjoint form of a
pseudodifferential operator with symbol α), applied to the relectivity, and then convolved
with the source wavelet. That is, we may write the data as the output of a sequence of
operations

d = s ∗ (Aαr), (25)

with ∗ denoting the convolution operator over time.

The Gabor transform for signal d is obtained by taking the Fourier transform of the
product of the signal with the k-th window gk, so we obtain an expression in the time-
frequency domain of the Gabor transform

Gd(tk, ω) = ĝk · d(ω) (26)

= (ĝk ∗ d̂)(ω) (27)

= ĝk ∗ (ŝ ·
∫
α(t, ω)r(t)e−2πiωt dt) (28)

= ĝk ∗ (ŝ ·
∫ ∑

j

gj(t)α(t, ω)r(t)e−2πiωt dt) (29)

≈ ĝk ∗ (ŝ ·
∫ ∑

j

gj(t)α(tj, ω)r(t)e−2πiωt dt) (30)

where we have used the Fourier transform to change a product into convolution, and used
the assumption that the symbol α is changing slowly with respect to the partition of unity.

CREWES Research Report — Volume 22 (2010) 7
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Pull out the sum from the integral to obtain

Gd(tk, ω) ≈ ĝk ∗ (ŝ ·
∑
j

α(tj, ω)

∫
gj(t)r(t)e

−2πiωt dt) (31)

=
∑
j

ĝk ∗ (ŝ · α(tj, ω) · ĝj · r) (32)

=
∑
j

ĝk ∗ F(s ∗ aj ∗ (gj · r)), (33)

where we have used the Fourier transform F to change products to convolutions. We have
used the notation aj = aj(t) for the inverse Fourier transform of the function α(tk, ω),
transformed with respect to frequency ω. Next, pull the convolution with ĝk into the Fourier
transform to obtain

Gd(tk, ω) ≈
∑
j

F([s ∗ aj ∗ (gj · r)] · gk). (34)

Now, using the assumption that the attenuated source wavelet s ∗ aj has small support,
we may pull the factor gk past the convolution to get a second approximation

Gd(tk, ω) ≈
∑
j

F([s ∗ aj ∗ (gj · r · gk]) (35)

= F([s ∗ aj ∗ (
∑
j

gj · r · gk)]) (36)

= F([s ∗ aj ∗ (r · gk)]), (37)

where the sum collapses because of the partition of unity condition on the gj .

Now the Fourier transform converts those convolutions to products, so we obtain

Gd(tk, ω) ≈ F([s ∗ aj ∗ (r · gk)]) (38)
= ŝ(ω) · α(tk, ω) · r̂ · gk(ω) (39)
= ŝ(ω) · α(tk, ω) · Gr(tk, ω) (40)

where we use again the fact that the Gabor transform of r is just the Fourier transform of
the product r · gk.

This verifies the approximate factorization.

Q-ATTENUATION

Gabor deconvolution, discussed in the previous section, models the earth’s attenuation
process with a pseudodifferential operator whose symbol α(t, ω) decays exponentially with
time and frequency. More precisely, the symbol magnitude is given by

|α(t, ω)| = e−tπ|ω|/Q, (41)
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for a fixed constant Q, positive time t and frequency ω. For discretely sampled signals,
we may assume the exponential decay holds only to Nyquist, so we obtain a Fourier series
expansion for the log amplitude as

log |α(t, ω)| = −tπ|ω|/Q = −(tπ/Q) ·
∞∑
n=0

an cos(πnω/Nyq), for ω ∈ [−Nyq,Nyq],

(42)
where the an are the coefficients in the cosine expansion of the even function |ω|.

The phase of the symbol is obtained from the minimum phase assumption, and thus is
given as the exponential of the harmonic conjugate of the log amplitude. The conjugate of
cosines are sines, so we have explicitly

argα(t, ω) = −(tπ/Q) ·
∞∑
n=1

an sin(πnω/Nyq), for ω ∈ [−Nyq,Nyq]. (43)

This phase factor may also be obtained by taking the Hilbert transform of the log ampli-
tude spectrum at fixed time t, which is an alternative method of obtaining the harmonic
conjugate.

The symbol is thus determined by combining these two terms, so

α(t, ω) = exp(−(tπ/Q) ·
∞∑
n=0

an(cos(πnω/Nyq) + i sin(πnω/Nyq)). (44)

In a numerical implementation, the infinite sum may be replaced by the finite sum of the
Fast Fourier Transform. The minimum phase symbol α(t, ω) can be easily obtained from a
cepstral computation, such as in the MATLAB command ‘rceps,’ in the Signal Processing
Toolkit.

In Figure 6 we demonstrate the effect of Q-attenuation on two pulses, one at time delay
t = 1, another at time t = 2. The first pulse is only moderately attenuated, with a slight
phase delay. The second pulse has greater attenuation, and a greater phase delay, due to
the increased effect of the term exp(−tπ/Q|ω|). These attenuated pulses were computed
numerically, using an exact formula phase and amplitude terms in the attenuation operators.

The observed increasing phase delay is a consequence of the mathematical operator
implementing the minimum phase Q-attenuation. This may be the source of an observed
linear phase error in Gabor deconvolution, discussed in Montana and Margrave (2005).

The Gabor multiplier implementation replaces the symbol α(t, ω) with a sampled ver-
sion α(tk, ω). The resulting operator is locally minimum phase preserving, but we have no
results to show that it is globally so.

It is possible to consider Gabor multipliers that model more general attenuation pro-
cesses, where the value of Q changes with the window, such as

|α(tk, ω)| = exp(−tkπ|ω|/Qk), (45)

CREWES Research Report — Volume 22 (2010) 9
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FIG. 6. Two pulses and the result of Q-attenuation.

or where the Q value depends on frequency

|α(tk, ω)| = exp(−tkπ|ω|/Q(ω)). (46)

However, we do not have a theory that indicates when such operators are minimum phase
preserving, which would be a useful physical constraint on our model.

WAVEFIELD PROPAGATORS

The windowing method of Gabor multipliers may be used to propagate a wavefield
through a complicated velocity model, as discussed in Ma and Margrave (2008). As a
demonstration of the method, we consider here the case of wave propagation through a
salt dome. Figure 7 show the velocity model for a complex geological region around a
salt dome, with velocities ranging from a low of 1500 m/s to a high of 4500 m/s. We
can approximate this complex region using six spatial windows, each one representing one
fixed velocity, for six evenly spaced velocities between 1500 and 4500 m/s. A fixed velocity
wavefield propagator is created for each window, and the full wavefield is decomposed by
each window, propagated one time step, and the various parts recombined before repeating
the window/propagate step again.

Figures 8 through 10 show every tenth step of the iteration. Observe in the last few
frames how the presence of the salt dome is indicated by the acceleration and breakup of
the wavefront.
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FIG. 8. Numerical simulation of seismic wave propagation through salt model.
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FIG. 9. Numerical simulation of seismic wave propagation through salt model.
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FIG. 10. Numerical simulation of seismic wave propagation through salt model.
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