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ABSTRACT

We consider here a method for numerical propagation ofielastves in heteroge-
neous media based on the weak formulation of the elastodgreguilibrium equations.
The method provides high accuracy in the spatial domain amgerges exponentially.
It is appropriate for any formulation of the elastic wave &ijpn in any number of spa-
tial dimensions, but for simplicity is only presented heve isotropic media. Absorbing
boundary conditions are incorporated into the method aiyuand various time-stepping
algorithms are investigated. In the conclusion we compar®us implementations of the
method to second and fourth order finite differences.

INTRODUCTION

This report is split up into four sections, each with its owmpgmose. The first section is
on the weak formulation of the elastic wave equation and tiadyais that goes along with
redefining the problem. This is all fairly tedious and matléoally involved, but must be
done once in order to derive a numerical method as well asdorersolutions to the new
problem are meaningful. One could safely skip this sectiptalzing note of the newly
formulated problem in equations (4) and (6).

The second section derives the nodal Galerkin numericdiodeor the new problem.
The intent of this section is to write down the stumbling i®that were encountered when
building the numerical schemes and present them in a waynhgitbe more accessible.
Once the numerical scheme is constructed some compari$dins method with second
and fourth order finite-differences are made.

Lastly, an appendix presents all of the background matanidiconstruction of some of
the aspects of the method that are not entirely requireddenstand the broader picture.

WEAK FORMULATION OF THE ELASTIC WAVE EQUATION

Consider thestrong formulation of the elastic wave equation for an arbitragtrispic
heterogeneous mediuthe R?, d = 1,2, 3, with boundan®f? :=T.

Findu € C?(Q),suchthat { wu(z,t=0) = ug(x) ,Vr € Q,t >=0 (1)
u(x,t =0) = ui(x)

The stress and strain tensors are related by
oij(u) = AV - u)dy; + 2pei;(u)

whered; denotes differentiation with respect to tli¢ elementz;. Summation over re-
peated indices, as per Einstein notation, is assumed witlemsvise noted. The parameters
A, i andp are the elastic constants of the medium and all may be boysgatially depen-
dent, functions f;(x, t) is thei*® component of the body force applied to the medium.
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We obtain theweak form of the dynamic equilibrium equations through a staddar
Galerkin weighted-residuals approach. Omitting the rigorous nratteal details for the
moment we multiply both sides of (1) by an arbitrary test fimcv = v(x) and integrate
over the entire space. This yields

Q Q Q

Expanding the first term on the right hand side and applyinge@s theorem yields the
relationship

/ 6jaij(u)de = fO'Z‘j(’U,)Uﬁde — / O'ij('I.L)aj?]dQ.
Q r

Q
wheren; denotes the direction cosine between the outward-pointmmal vector and the
7" elementary basis vector. Substituting this into (2) yighis weak variational form of

? /QpﬁwdQ + /Q 0ij(w)0jvdQd = /Q fiod§+ ﬁaij(u)vﬁjdr' ®)

This is the form for thei® component of displacement,= 1,...,d. Introducing the
arbitrary vector-valued function = v (), with arbitrary components, we may then add
the d equations together to obtain

2

% ouU - vdf) + / aij(u)ﬁjvl-dﬂ = / f - vdf) + f O'Z'j(’ll,)’flj?]idr. (4)
Q Q r

For simplicity we present the following derivation fdr= 2, but the result is the same
in any number of dimensions. Expanding the integrand of étersd term on the left hand
side of (4) produces

0'11(11,)811)1 -+ 0'12(u)82v1 + 091 (u)81v2 + 0'22(’111)82’02

= 011(w)e11(v) + o12(w) vy + 091 (U) D1V + Taa(U)ege (V) (5)
adding together the second and third terms in (5) yields

/J(@ﬂtg + (92u1)8201 -+ M(azul + 81162)811)2
= (1(O1ug + Oauy ) (Oav1 + O1v2)

= o19(w)e12(v) + 091 (w)ea (V).

So we obtain
/ Jij (u)GJdeQ = / O'ij(’U/)Eij(’U)dQ
Q Q
If we then define the vectd component-wise by

Ti = oi;(u)n;

we may write the second term in the right hand side of (4) as

/Uij (U)ﬁledF = fT -vdl’
r r
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and so (3) becomes

2

d—2 pu-de—l—/Uij(u)eij(v)dQ:/f-'de—l—fT-'vdFi,j:1,...,d.
dt Q Q r

Further discussion, including derivation for a full elasensor, as well as a proof of
the equivalence of the weighted-residuals approach wélpthcipal of virtual work, can
be found in chapter three of (Zienkiewicz et al., 2005).

In order to make the variational approach rigorous we needetotify a few function
spaces in which our various trial and test function will desi DefineH'(f2) to be the
classic Sobolev space of square integrable functions dkéin€), with square-integrable
weak first derivatives. That is,

HY(Q)={f e L*(Q)D'f € L*(Q)},

where
L*(Q) = {f Q- R|/ |f(x)]2dQ2 < oo}
Q
and D! denotes the weak first derivative operator.
Then the vector-valued version is defined as those vectaeddunctions whose com-
ponents reside i/ *(2). DenoteL?(2)¢ = L2(Q) x --- x L?*(Q)) and define this space to

be
H = {u(x) € L*(Q)*Vu € L*(Q)*}.

The variational problem is thus: find € ‘H such that, for alt > 0,
<pu7 v>Q + CZ(’U,, U) = <f7 U>Q + <T7 'U>F ,VU € H (6)

The inner-products in (6) are the standard vector-valli¢l) inner-products

(4, 0) = /Q f - gdo,

(o) = f £ -gr

and the norm or is given by

vl = (| (v, 0)q [+ | (Vo, Vo) )2

To show that there exists a unique solution to (6) we needdw shat

a(u,v) :/Qaz-j(u)aij('v)dfl

is a symmetric, V-elliptic and continuous bi-linear forndaapply the Lax-Milgram lemma
(Atkinson and Han, 2009).
To see that(u, v) is symmetric and bi-linear we must show that the followirighald:
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1. a(u,v) = a(v,u), Vu,v € H,
2. a(u+u,v) = a(u,v) + a(v/,v), Vu, v, v € H,

3. a(Au,v) = Aa(u,v), Vu,v € H, and\ € R.

The second and third equalities follow trivially from thadiarly of the derivative. For
brevity we show the first equality only far= 2. This follows from expanding;;(u)e;;(v)
as

oij(u)eij(v) = on(w)enn(v) + ora(w)erz(v) + o (u)ear (v) + o2(u)esn(v).

= MV-u)+2puer1(v)]e11(v)+2ueia(w)e1(v)+2ue0 (w)ear (V) +H[A(V-u)+2ue0 (v)]e2a (V).

The terms corresponding ic# j are symmetric and so we only need to show that the sum
of thei = j terms are as well. Adding together the first and last termyxes

AV ) + 2pe11 (v)]enn (v) + [A(V - w) + 2ue22(v) ez (v)

= AV - u)lenn(v) + e22(v)] + 2ufer1(w)ern(v) + e2(u)en(v)]
= ANV -u)(V-v)+2u(Vu - Vo)

which is symmetric and, thus,u, v) is symmetric and bi-linear. Continuity follows di-
rectly from our assumptions that all the functions includedur scheme are bounded.
A bi-linear forma(-, -) is V-elliptic, or strongly positive, if there exists > 0 such that

a(v,v) > C|v|3, Vv e V.

This follows directly from Korn’s inequality (Horgan, 199%hich ensures us that there
exists a constamt” depending only o2 such that:

o] < K(Q) /Q {0+ v+ e45(v)es; (v)} 4O, Vo € H.

CONSTRUCTION OF THE NUMERICAL SCHEMES

The weak formulation of the elastic wave equation providhesktasis for a number of
numerical methods, ranging from classic methods such afirite elements and finite
volumes, to more obscure methods such as boundary elendistentinuous Galerkin,
and moving least squares. Here we restrict to global metiwbitsh seek to approximate
the solution to the weak variational problem by decompogimgo a basis of polynomials
in space and unknown functions in time. This reduces thel@nobo one of approximating
a system of ordinary differential equations, usually by eappropriate numerical time-
stepping scheme. We will examine several methods that afuptkee second-order-in-time
problem directly, as well as comment on those that work onnancon reduction-of-order
technique.
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Begin by choosing a spade of polynomials and seek an approximate solution to (6)
of the form

w(@, 1) = pu(2)7,(t) = [pa(@) 70 (1). - (@)1 ()], 2 € Q.2 2 0.

Here again summation over repeated indices is assumed pacsstipt denotes the index
of the time component. For example, if the displacement is

u(z,t) = [u(x,t), ..., ug(z, t)]"

the first component is expanded as

=Y pa(@)7(0)

For rectilinear domains, the functiong(x) are generally taken to be products of one-
dimensional polynomials as this gives a natural way to gasitend familiar families of
orthogonal functions to higher dimensions. For more comg@mnains, affine mappings
from tensor-product grids onto triangular meshes have beastructed and successfully
implemented. For further discussion see (Warburton andades, 2008), (Canuto et al.,
2007). For informal guidelines on choosing the spRagepending on the types of bound-
ary conditions that need to be satisfied as well as some discusn rational orthogonal
polynomials that satisfy radiation conditions a priori $§Beyd, 2001).

For our purposes we limit to the two dimensional case, andmphe displacements
u(x,t) = (u(x,t),w(x,t)), as well as the test functiongx) in a nodal approximation.
That is, we let

NP Np NP
Zu (t; ;)i ( Zw (t;x)li(x),v(x) = v(x;)li(x)
i=1 i=1 i=1
where
NP NP
T—T; Y — Yk
li(x) = ’
HIT=r=

The functiond;(x), shown in Figures 1 and 2, act as discrete delta functionat ish
they have the property that
_ ) Li=y
l®;) = { 0.i £ j

In order to turn this into a numerical method, we then reptifferentiation with multipli-
cation by a pseudospectral differentiation mattix and integration by Gaussian quadra-
ture. Construction of the differentiation matrix and quadra formulas is addressed in the
appendix, so for now we assure only that, for a given set obapthere exists a family
of matrices that transform vectors of function values tartderivatives, and a vector of
quadrature weights = (wy,) that transforms integration into a dot-product.

For the two dimensional regidn denotex = (x, z) and defineD”, D? to be the differ-
entiation matrices in the, z directions respectively. We assume tRais a square region
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FIG. 1. A 2-dimensional Lagrange polynomial.

FIG. 2. A family of 25 2-dimensional Lagrange polynomials.
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and its boundary i = 'y UT's UT'g U T, and we denote the quadrature weights asso-
ciated with the inner-products on each of these boundaigme@su’, w®, w?, w"'. The
construction of the entire spatial discretization is tediand so is omltted One does no-
tice when performing these calculations, however, thairther-products in (6) reduce to
4 general cases which we address here by working directty (@)t

Let (-,-) be any of the inner-products in (3) and letbe the associated quadrature
weights. Then the inner-products in (3) all reduce to thkovahg forms:

1.
(pii, v) szpuzvj (pli(x szpzpuzvjp (xp)li(zy), Ui(2k)wh
i=1 j=1 i=1 j=1 k=1
buti,,(x,) = 0., SO this reduces to
diag(v) diag(w) diag(p)it
wherediag(v) is the matrix with the vectos along the main diagonal.

2.

(ANO,w, O,v) iiiwzv] MNx) 0l () 0l (g )wi,

=1 j=1 k=1

However,0,l;(x;) = D}, and so we obtain

diag(v) (D")" diag(}) diag(w) D

3.
N, N,
ZU]f x)lj(x)wp = diag(v) diag(w) f.
Jj=1 k=1
4.
Np Np NP
(AOum, v) ZZZu ;RN (@) Opli ()1 (28 ) wi

i=1 j=1 k=1
Np Np

= Z Z u RN (X ) Oz li (1 )i, = N diag(v) diag(w) D u

i=1 k=1

The 4 type corresponds to the boundary terms and is what allows tak to the
boundary; incorporating absorbing and free-surface bagncbnditions. The most appro-
priate absorbing boundary conditions for our purposes laweet for which the time and
space derivatives appear independently. We omit the dethihe derivations here for the
sake of brevity as even the two-dimensional case involvdsliGdary integrals, 8 of which
account for the absorbing boundary conditions (all of whadttor into a single operator).
We note, however, that there are several different choicagable and refer the reader
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to (Stacey, 1988), (Sochacki, 1988) and (Quarteroni el@88) for the construction and
implementation of several higher-order methods that fiirzdly into variational schemes.
Regardless of our treatment of boundary conditions we optamthe nodal values

of the displacements i at timet > 0, a second order system of ordinary differential
equations

MU(t) + AU(t) + KU(t) = F(t)

U(0)=U, (7)
whereU is a large vector of the nodal valueswfz, t) andw(x,t) and the matriceM,
A, andK are all large, extremely sparse matrices. We may deal wishdihectly by using
second-order-in-time centered-finite-differences fathiibe first and second derivatives.
Replacing

Ultjr1) —2U(t) + U(t-1)
dt?
and dropping the error term, we obtain, for evolution in time

Uty1) — Ulty1)
2dt

Ult;) = +0(), U(t)) = +0(t?)

{M + %A] Ultjs) + [d2K —2M| U (t;) + {M — %A} U(t;1) = dt*F(ty).

For higher-order in time we can reduce (7) to a first order lgroldy making the substitu-
tion V(t) = U(t). This results in the problem

(o i) (V)o=(k ) (V)o(z)o

U (U,
v | O=1 v,

This can be time-stepped by explicit higher-order, more patationally expensive, meth-
ods that have less prohibitive step-size requirements ephcit finite differences. An-
other possibility is to use the matrix exponential to conepilie exact-in-time solution to
(8), or to construct a fully-explicit time-stepping methwdh no step-size stability require-
ments. In general the matrices involved are huge and, fage laumber of nodes, is not
feasible computationally. However, if it were possible tmstruct such a matrix that was
diagonalizable the computational cost would be reducesdtanbally. For a fixed problem,
such a matrix could be stored to further reduce the comunalicost.

NUMERICAL RESULTS

To test this we consider a forcing term with Ricker waveleioomponent

2 2 2
)= ——7|1—=]e>?
f( ) 30'7Ti ( 0_2) e2
and conservative spatial component
(u(x), w (x)) = — Ve lxxoll®

and propagate a 15 Hz wavelet in a 4500m square bipartiteummeith properties listed
in the following table.
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0 1000 2000 3000 4000

FIG. 3. Nodal Galerkin. Comp time = 206 s.

Region| p Vp Vs
1 2.064| 2305| 997
2 2.14 | 4500 2600

A nodal Galerkin method is compared to fourth and second dirdéee difference meth-
ods on a 501 by 501 node grid. Figures 3, 4 and 5 show the norhedafisplacement
for the three models propagated to 1 second and then noadalird clipped to exaggerate
the dispersion effects. The extended arcs in the fourterarmbdel result from the wider
stencil moving over the large step in the velocity model dhtbeing propagated. Again,
this is exaggerated here and is mainly due to the relativabllsnumber of grid points we
are using, but the effect is apparent.

The computation times are listed with the figures but are eot indicative of the as-
sociated computation costs of the three methods. The ingiation of the three methods
are nearly identical, with the only difference being thelegapion of the derivative approx-
imations. For the finite-difference methods the cost of ihis + N? wherek is the width
of the finite-difference stencil (3 for second order, 5 fourfih order). The differentiation
matrices for the nodal Galerkin methods can be considerdd-flifference matrices with
stencils of widthV and so the cost of applying these methoda’is We takedt = .0008
and so take 1179 steps to reach one second. We could takelardins step, but the one
chosen assures us that the wavelet in time is well-repredemtd that the error associated
with time stepping will not taint our results as we are moteiliested in spatial accuracy.
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0 1000 2000 3000 4000

FIG. 4. Second-Order Finite Difference. Comp time = 64 s.

0 1000 2000 3000 4000

FIG. 5. Fourth-Order Finite Difference. Comp time = 75 s.
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Locally the fourth order model approximates the wavefrdrgtter than the second-
order model (as is expected), but the size of the stencil st we must alter it somehow
at the boundaries, this is not the case with the differantiatnatrices that appear in the
nodal Galerkin methods as they are global and so for the &ppation of the derivative
at one node they take information from all other nodes in tloel@h In order to enforce
different types of boundary conditions (such as clampedymsnn, Dirichlet, periodic,
etc...) the first and last rows and columns of the differéiotamatrix must be altered.

Figures 6 and 7 show comparisons of the centerline of the hfode 2250, for all z)
at time corresponding wavefront in various regions of theaity model. The amplitude
error associated with the second-order stencil is appa®rg the dispersion of all three
methods near a jump. Figure 8 shows a close-up of the regitreahodel at the jump

—— Galerkin |
—v—FD2

—a—FD4

2050 2100 2150 2200 2250 2300 2350 2400

FIG. 6. Close-up of the centerline of the horizontal component of a 2D elastic wave propagated to

t = .4150 sec. The region plotted shows the disagreement of the three methods in a smooth region

of the velocity model.

att = 1 second where the incident P-wave is being trasmitted anectetl. TheRGB
colour channels in the image correspond to the directiorieetlisplacement as listed in
the following table.cement as listed in the following table

Displacement Positive| Negative
Horizontal R R+G
Vertical B B+G

Figures 9, 10 and 11 show the vector field of the same regioarging levels of zoom.
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—— Galerkin
—v—FD2
—A—FD4

2400 2500 2600 2700 2800 2900

FIG. 7. Close-up of the centerline of the horizontal component of a 2D elastic wave propagated to
t = .6 sec. The region plotted shows the disagreement of the three methods in a the presence of a
sharp jump in the velocity model.

1400
1600
1800
2000
2200
2400
2600
2800

3000

2400 2600 2800 3000 3200 3400 3600

FIG. 8. A P-wave being converted into reflected and transmitted P and S waves
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FIG. 9. Vector field of a P-wave being converted into reflected and transmitted P and S waves
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FIG. 10. Vector field of a P-wave being converted into reflected and transmitted P and S waves
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FIG. 11. Vector field of a P-wave being converted into reflected and transmitted P and S waves

To test the absorbing boundary conditions we initiate a Pewaa homogeneous media
with Vp = 4500, Vs = 2600 andp = 2.14. We then allow the wave to propagate to
timet = 1 and place absorbing boundaries on the horizontal edgesireFig2 shows
the reflection of the displacement. As is expected, the ntadmiof the reflected wave is
nearly zero as the p-wave hits the boundary head-on andisesas the angle of incidence
reache$0°.

APPENDI X

In order to be as general as possible, assume a funétan be expanded in such a
way that the series coefficients,, are chosen so approximation interpolatesn a set of
grid points{¢;|i = 1, ..., N, }. This is possible since it strictly yields a set/§f equations
for the V,, unknowns{an}fjil. The points used may be arbitrary but are generally chosen
to be a set of Gauss-Lobatto points whose quadrature wkightionw(z) is most suitable
to the problem at hand. These are the zeros of\tﬁeorder Jacobi polynomial, defined as
the («, #)-family of solutions to the singular Sturm-Liouville eigeatue problem

d 2
(1 - 2*)u(a)

%P}La’ﬁ) (z) +n(n+a+ B+ Dw(z) PP () = 0,2 € [-1,1],
w(z) = (1 —2)*(1+x)°.

For general purposes this is usually the Legendre-Gaubattm(LGL) points, chosen by
a = 0,5 = 0, yielding the Legendre polynomials with weight functiotiz) = 1. There
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100 200 300 400 500 600 700 800

FIG. 12. Boundary reflections from incident P-wave

is no closed form expression for the LGL points, and so theycamputed numerically
by a suitable root-finding method. This can be done at the $aneeas one computes the
Legendre polynomials using standard recursion methods.

Once a set of points is chosen we have two equal approxingation

Ny Ny
fl@) =) anpa(x) =Y f(&)i(w) €)
n=1 =1
where thd;(x) are the Lagrange interpolating polynomials defined as
N,
= TTE=%
Li(z) = L[ e
We may then write
(&) @1(&1) - - - (&) o
f(&2) @1(&2) - - - (&) a2
: = : (10)
f(fn) Sol(EN) s ‘pn(fn) any,
/ 0 a
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and the interpolary approximation

1) p1(81) - - p1(8n) h()

902.@) p2(81) - - p2(&n) 12(_$)

o) onl&)enl&) )\ o)
@ " !

or
/(&) 1(&) ... U (& f(&)
/(&) ng@; 1;2523 f(&2)
rey ) \ne)ne )\ se)
I Dy f
and using (8) we have the relationship
@1 (&) - 01(8n) e1(&1) -+ p1(8n) (&) - 1h(n)
@5(&1) - - - 3(&n) p2(&1) - - - p2(6n) [5(&1) - - 15(&n)
PLE). .- o) enl€) . onl&) )\ L&) ... 1(E)
o7 o7 DT

and so the matrixD, which maps a vector of function values to derivative valcas be
computed directly a® = ®,d ! for any set of arbitrary points as long as one can invert the
matrix ¢. In practice this is not always possible. For example, whangithe Legendre
polynomials,® is a Vandermonde matrix and is ill-conditioned at the setafidistant
points. Choosing the LGL points however, fixes this problemm iAddepth analysis of
these problems is found in (Warburton, 2008).

In two-dimensions, a regioft is mapped onto the reference squiré, 1]>. As most
models are defined df, z,.x] X [0, zmax] this is achieved by the affine mapping

2 2
F:[O,xmax]x[O,Zmax]—>[—1,1]2:(x,z)»—>( T, = —1>

:L‘max Zmax

with inverse

1 1
PP 5 O] 02 (61) = (g 2 )

The Jacobian of the map is constant so its implementationhgeed by performing all
calculations ori—1, 1)> and multiplying the associated quadrature weights by thehlan
of the mapping.
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