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ABSTRACT

The time-lapse imaging problem is addressed using least-squares shot-profile migra-
tion. The procedure for designing forward (de-migration) and adjoint (migration) oper-
ators of shot-profile wave-equation migration algorithm is explained. The least-squares
optimization of the problem is achieved using conjugate gradients. Two main approaches
for least-squares shot-profile migration of time-lapse data namely, inversion of difference
data and joint inversion, are discussed. Some practical considerations for performance of
least-squares shot-profile migration are investigated using synthetic data examples. Also, a
synthetic data examples is provided for examining the time-lapse shot-profile migration of
difference data.

INTRODUCTION

Time-lapse seismic surveys have become an industry standard in exploration seismol-
ogy. It consists of an operation to acquire and process multiple seismic surveys, repeated
at the same location over a period of time (Lumley, 2001). It can be utilized for various
purposes such as reservoir monitoring, CO2 sequestration, and environmental studies. The
main problem with processing time-lapse seismic surveys lays in the fact that multiple sur-
veys can not be acquired with the exact same geometry. Therefore, efficient processing
methods are necessary in order to account for the mismatch between the surveys.

Recently, least-squares migration and wave-field propagation techniques have also re-
ceived special attention in the geophysical community. The corner stone for almost all of
these methods is the Born approximation to the wave equation. Born approximation is an
attempt to linearize the wave equation (Clayton and Stolt, 1981) and therefore obtaining
a suitable set of linear equations to be solved using least-squares method. To solve a lin-
ear system of equation with huge number of model and data entries (As this is the case
with migration of seismic data), it is suitable to create a set of forward and adjoint opera-
tors (Kaplan et al., 2010b). The forward operator maps the image (Model) to seismic data
(de-migration) and conversely the adjoint operator maps the seismic data to the model.

In this paper, we review the derivation of forward and adjoint operators for shot-profile
migration for a constant velocity medium. The derivation is closely follows the one ex-
plained in Kaplan et al. (2010a). Then, some practical considerations for optimal perfor-
mance of least-squares shot-profile migration will be explained using synthetic data ex-
amples. Next, we will investigate possible least-square shot-profile migration approaches
for handling time-lapse data set. Finally, a synthetic example for time-lapse shot-profile
migration is provided.
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THEORY

Shot-profile migration and de-migration operators

Least-squares migration offers a robust numerical appoach to deal with migration of
incomplete seismic data sets (Nemeth et al., 1999). It depends on building de-migration
and migration operators, which map from model-space to data-space (the forward opera-
tor), and from data-space to model-space (adjoint operator), respectively. For shot-profile
migration the Born approximation is used, which is a first order approximation to the scat-
tering potential. Here, we summarize the constant velocity shot-profile wave-equation mi-
gration and de-migration operators.

The forward operator (de-migration) models the scattered seismic wave-field using the
Born approximation under the assumption of an acoustic and constant velocity Green’s
function so that (Kaplan et al., 2010a),

ψs(xg, zg|xs, zs;ω) = f(ω)

∫∫ ∞
−∞

G0(xg, zg|x′, z′;ω)

(
ω

c0

)2

α(x′, z′)G0(x
′, z′|xs, zs;ω)dx′dz′,

(1)
where G0 is a Green’s function for constant acoustic wave-speed c0, and such that,

G0(xg, zg|x′, z′;ω) =
1

2π

∫ ∞
−∞

(
− 1

i4kgz

)
e−ikgx·(x′−xg)eikgz |zg−z

′|dkgx. (2)

In equation 1, α is the first order approximation to the scattering potential. Within the
context of least-squares migration and SPDR, α is the model (a migrated shot gather).
The forward operator in equation 1 describes the mapping from the approximate scatter-
ing potential α (the model-space) to the scattered wave-field ψs (the data-space) recorded
at geophone positions (xg, zg) where xg = (xg, yg), and due to the seismic source f(ω)
located at (xs, zs) where xs = (xs, ys). Equation 1 integrates over all possible scattering
points (x′, z′) where x′ = (x′, y′). The vertical wave-number kgz in equation 2 is given by
the dispersion relation,

kgz = sgn(ω)

√
ω2

c20
− kgx · kgx, (3)

where kgx = (kgx, kgy) are the lateral wave-numbers (Fourier conjugate variables of xg =
(xg, yg)). The dispersion relation plays a role in understanding the null-space of the de-
migration operator.

After a series of mathematical derivations which its detail can be found in Kaplan et al.
(2010a) we derive an efficient numerical forward and adjoint operators for shot profile mi-
gration. Let’s assume that the earth model is partitioned into nz layers of constant thickness
∆z. First, we define vs(l) for l = 1 . . . nz such that,

vs(1)(kgx, ω;xs) = up(1)(kgx, ω)g(kgx,xs, ω)

vs(l)(kgx, ω;xs) = ∆up(kgx, ω)vs(l−1)(kgx, ω;xs),
(4)

where up(1) = exp(ikgz(z1−z0))/(i4kgz) and ∆up = exp(ikgz∆z) are phase shift operators
and g(kgx,xs, ω) = 2πf(ω)e−ikgx·xs is the synthetic source term. Second, we define vr(l)
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so that,
vr(1)(kgx, ω) = up(1)(kgx, ω)

vr(l)(kgx, ω) = ∆up(kgx, ω)vr(l−1)(kgx, ω).
(5)

Then the forward operator becomes,

ψs(kgx, ω;xs) =

(
ω

c0

)2

∆z
nz∑
l=1

vr(l)(kgx, ω)F
[
F∗vs(l)(kgx, ω;xs)

]
α(xg, zl;xs). (6)

Equations 4-6 constitute an algorithm that implements the de-migration operator and the
main load of computation is in the two two-dimensional Fourier transforms required per
depth and frequency.

The implementation of the adjoint operator is also derived using two iterations. First,
we define v∗s(l) for l = 1 . . . nz so that,

v∗s(1)(kgx, ω;xs) = u∗p(1)(kgx, ω)g∗(kgx,xs, ω)

v∗s(l)(kgx, ω;xs) = ∆u∗p(kgx, ω)v∗s(l−1)(kgx, ω;xs).
(7)

Second, we define v∗r(l) for l = 1 . . . nz so that,

v∗r(1)(kgx, ω;xs) = u∗p(1)(kgx, ω)ψs(kgx, ω;xs)

v∗r(l)(kgx, ω;xs) = ∆u∗p(kgx, ω)v∗r(l−1)(kgx, ω;xs).
(8)

Then, the adjoint operator becomes,

α†(xg, zl;xs) = ∆ω
∑
j

(
ωj

c0

)2 [
F∗v∗s(l)(kgx, ω;xs)

]
F∗v∗r(l)(kgx, ω;xs), (9)

again requiring two two dimensional Fourier transforms per depth and frequency. Equa-
tion 9 is shot-profile migration for a constant velocity reference medium.

Least-squares shot-profile migration

The cost function for weighted least-squares inversion of shot-profile migration can be
expressed as

φ(m) = ||Wd(d
obs − Lm)||22 + µ||Wmm||22 (10)

= φd(m) + µφm(m), (11)

where dobs is the observed data (shot record), m is the subsurface model and L is the
forward (de-migration) operator. Also, Wd are data weights, and Wm are model weights.
It is convenient to partition the cost function into two components φd and φm, with φd being
the data misfit function, and φm being the model-norm function. The parameter µ allows
for a trade-off between fitting the observed data, and honoring the model-norm. Finding
the minimum of equation 13 results in the normal equations,

(LHWH
d WdL + µWH

mWm)m = LHWH
d Wdd

obs, (12)

which is solved to find an optimal scattering potential.
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Least-squares shot-profile migration for time-lapse application

Inversion of difference section

The first approach to apply least-squares shot-profile migration for time-lapse surveys
is to use the difference data between base and monitor surveys. Innanen and Naghizadeh
(2010) show that such an approximation is valid in the linear approximation of inverse
scattering theory. The linear system of equations can be expressed as

φ(mdiff ) = ||Wd(ddiff − Lmdiff )||22 + µ||Wmmdiff ||22, (13)

where mdiff and ddiff are the difference model and data difference sections, respectively.
For difference data one can use exactly the same adjoint and forward operators from ordi-
nary least-squares shot-profile migration. In the examples section we will provide a simple
example for this type of time-lapse inversion.

Joint inversion of base and monitor surveys

Another alternative for time-lapse inversion is the joint inversion. Some modifications
are required for applying joint least-squares shot-profile migration for time-lapse data.
Let’s db and dm represent the data sets for base and monitor surveys, respectively. Simi-
larly, mb and mm represent the subsurface scattering potential at base and monitor survey,
respectively. One can make an augmented linear system of equation for time-lapse survey

[
db

dm

]
=

[
Lb 0
0 Lm

] [
mb

mm

]
+

[
nb

nm

]
, (14)

where nb and nm are noises in base and monitor surveys, respectively. A regularized solu-
tion can be found by minimizing the following cost function (Ayeni and Biondi, 2010)

J =

∥∥∥∥[ Lb 0
0 Lm

] [
mb

mm

]
−
[
db

dm

]∥∥∥∥2
+

∥∥∥∥[ µbRb 0
0 µmRm

] [
mb

mm

]∥∥∥∥2
+

∥∥∥∥[ λbDb λmDm

] [ mb

mm

]∥∥∥∥2 ,
(15)

Where Rb and Rm are model regularization terms and Db and Dm are temporal regulariza-
tion terms. Model regularization terms impose specific restrictions on each of the base and
monitor surveys while the temporal regularization highlights some relationship between
the base and monitor surveys. The model regularization can be in the form of smoothness
or sparseness for spatial dimensions and the temporal regularization can be a derivative
operator serving to magnify the differences between the models.
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FIG. 1. Modeling and migration of two scatterers without zero-padding of the spatial axis. a)
Scattering model. b) Forward modeled data. c) Adjoint model.
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FIG. 2. Modeling and migration of two scatterers with zero-padding of the spatial axis. a) Scattering
Model. b) Forward modeled data. c) Adjoint model.

EXAMPLES

Implementation of shot-profile migration

Several practical issues need to be taken into account for an efficient implementation of
the least-squares shot-profile migration. Since the theoretical application of wave-equation
migration method is developed in the Fourier domain, one has to be aware of the possible
artifacts that can be produced in the Fourier domain. One of the important issues is the
proper zero-padding of both data and model spaces to avoid the wrap-around artifact in the
Fourier domain. Figure 1 shows a simple example of the outputs of forward and adjoint
operators of shot-profile migration without zero-padding. Figure 1a shows the original
model with two point scatterers at (x, z) = {(750, 1000), (1250, 1000)}. The source is
located at (xs, zs) = (1000, 0). Figure 1b shows the output of forward modeling operator
(de-migration). There are high amplitude artifacts at the bottom of the shot gather. Figure
1c shows the output of applying adjoint operator (migration) on the synthetic data in Figure
1b. The adjoint model also suffers from some artifact due to no zero-padding of the model
and data spaces. Figure 2 shows the same modeling test as in Figure 1 but this time with
proper zero-padding of the model and data spaces. Both the data (Figure 2b) and the adjoint
model (Figure 2c) spaces are now artifact-free.

Figure 3 shows another test with point scatterers located as the same location as the
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FIG. 3. Modeling and migration of two scatterers without zero-padding of the spatial axis. a)
Scattering Model. b) Forward modeled data. c) Adjoint model.

a)

500

1000

1500

D
ep

th
 (

m
)

500 1000 1500
Distance (m) b)

0.5

1.0

T
im

e 
(s

)

500 1000 1500
Distance (m) c)

500

1000

1500

D
ep

th
 (

m
)

500 1000 1500
Distance (m)

FIG. 4. Modeling and migration of two scatterers with zero-padding of the spatial axis.a) Scattering
Model. b) Forward modeled data. c) Adjoint model.

model in Figure 1a. For this test the source is located at (xs, zs) = (0, 0). Figures 3b and
3c show the outputs for data and adjoint model spaces with no zero-padding, respectively.
Figures 4b and 4c show the data and model spaces after using proper zero-padding for both
model and data spaces. It is clear that zero-padding has eliminated great amount of artifacts
in both data and model spaces. Also notice that the quality of imaging for point scatterers
is directly related to the aperture cover of the source.

In the next example (Figure 5a), we placed the point scatterers in different depths
(x, z) = {(750, 750), (1250, 1250)}. Figures 5b and 5c show the data and adjoint model
spaces of shot-profile migration without zero-padding. The artifacts due to this careless
handling of the model and data spaces can be seen in both spaces. Figures 6b and 6c show
the data and adjoint model spaces of shot-profile migration with zero-padding. The artifacts
due to the sharp edge of model and space are now less apparent.

Figure 7a shows a synthetic model of a geological fault-like structure. Figures 7b and
7c show the data and adjoint model spaces using the forward and adjoint operators, re-
spectively. The source in this example is located at (xs, zs) = (500, 0). It is clear that the
migration has a cone of aperture on which the imaging is carried out with high resolution.
As the location of the scatterers get further from the shot, the resolution of final adjoint
model deteriorates. This example has been carried out using only a single shot but one can
have several shots (as it is the case with seismic surveys) and the contribution from various
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FIG. 5. Modeling and migration of two scatterers without zero-padding of the spatial axis. a)
Scattering Model. b) Forward model-led data. c) Adjoint model.
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FIG. 6. Modeling and migration of two scatterers with zero-padding of the spatial axis. a) Scattering
Model. b) Forward modeled data. c) Adjoint model.
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FIG. 7. Modeling and migration of a fault-like structure. a) Scattering Model. b) Forward modeled
data. c) Adjoint model.

shots can be summed up to make final adjoint model.

Time-lapse migration of difference data

Here, we provide a simple least-squares shot-profile migration example for difference
data of a synthetic time-lapse survey. Figures 8a and 8b show the velocity models used
for the base and monitor surveys, respectively. The model consists of two layers with
velocities 1500 and 2500 m/s for the top and bottom layers, respectively. In the base survey
the boundary is located at the depth equal to 200 m while in the monitor survey it has been
relocated to the depth of 300 m. We applied the forward modeling using finite difference
method to create the data associated with the base (Figure 9a) and monitor (Figure 9b)
surveys. The sources is located at (xs, z, s) = (0, 50) for both base and monitor surveys.
Also, the receivers are located at the depth equal to 50 m. Figure 9c shows the wavelet used
for producing the synthetic data.

Figure 10a shows the difference between the modeled data for base and monitor sur-
veys. Figure 10b shows the result of least-square shot-profile migration applied on the
difference data. The derived adjoint model has the reflecting boundaries at right depth.
However, the resolution is reduced at horizontal locations fur from the horizontal location
of the source. Utilizing more shots acquired on the surface can resolve the reflectors with
high accuracy in the adjoint model.

DISCUSSION AND FUTURE WORKS

It is a main concern that the computational costs of time-lapse survey migration can be
very expensive. In fact, the process of joint migration of time-lapse surveys will require
individual migration and de-migration of each surveys plus intermittent steps needed for
spatial and temporal regularizations. Therefore, it is desirable to design a fast and efficient
imaging technique that only focus on specific targets of interest. A new signal processing
tool called cross-wavelet transform (Grinsted et al., 2004) which is used to highlight the
similarities as well as the differences between two specific data sets can be considered as a
proper candidate for this task. This transform can also be replaced by the Fast Generalized
Fourier Transform (FGFT) (Naghizadeh and Innanen, 2010) in order to account for spatial
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FIG. 8. a) Velocity model for base survey. b) Velocity model for monitor survey.
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FIG. 9. Finite difference modeled data for the base (a) and monitor (b) surveys. c) Wavelet used
for making the synthetic data.
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FIG. 10. a) The difference section between the base and monitor surveys. b) Migrated data using
the least-squares shot-profile migration.

and temporal non-stationarity of the time-lapse seismic data.

The geometry of various time-lapse surveys often differs for base and monitor surveys.
This can turn into a big problem since the main purpose of time-lapse surveys is to de-
tect the differences only caused by the changes in the parameters of subsurface rather than
acquisition mismatches. Therefore, it might be necessary to use robust interpolation meth-
ods to synthesize one of the surveys with the same geometry of another survey. There are
several robust and efficient seismic data interpolation methods which can be used for this
purpose (Naghizadeh and Sacchi, 2007, 2009, 2010).

CONCLUSIONS

Least-squares shot-profile migration is used for imaging the difference data between
the base and monitor surveys in time-lapse studies. The algorithm contains forward (de-
migration) and adjoint (migration) operators which allows the usage of conjugate gradi-
ent method. The proposed method can be used for both data differences as well as joint
inversion of multiple surveys. Proper spatial and temporal regularization terms such as
smoothness or sparseness constraints can be incorporated into the algorithm to obtain a
robust solution. The algorithm has a high computational costs which can be mitigated by
designing a fast and efficient imaging tool. One can utilize new transform domains such
as FGFT to ease the plane-wave assumption of migration tools to obtain a fast migration
algorithm.
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