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ABSTRACT

We perform a speed test on an optimized conjugate-gradient based inversion to correct
for surface statics and irregular spatial sampling. An ideally preconditioned scheme is run
repeatedly on synthetic trace gathers of random size, up to215 traces. The runtime and
the number of conjugate gradient iterations required for each trial is recorded. Iteratively
refined polynomial regression is performed on the resultingdata points to estimate the
asymptotic complexity of the algorithm, and the number of conjugate gradient iterations
is compared with the overall runtime to check for consistency. We find that the ideal
preconditioned scheme gives a near optimal runtime ofO(n1.082), which indicates that the
method could feasibly be preconditioned to run on large datasets.

INTRODUCTION

A wave equation inversion for seismic data described by Ferguson (2006) recursively
computes the extrapolated wavefield at depth using nonstationary phase shift operators
(Ferguson and Margrave, 2002), which generalize the phase shift method of Gazdag (1978)
to media where velocity varies laterally. The operator matrix is computed using an as-
sumed velocity model and the wavefield at depth is computed using weighted damped
least squares (Tarantola, 2005). In one inversion, this method corrects common shot and
common receiver gathers for topography and near-surface heterogeneity, and interpolates
missing traces.

The algorithm successfully generalizes phase-shift wave extrapolation to cases of lat-
erally varying medium velocity and irregular trace coverage, but it carries a larger com-
putational cost. Basic implementation of the algorithm requires computation of matrix
representations of the nonstationary phase shift operators. Normal equations must then
be formed by matrix multiplication, and the result invertedto extrapolate the wavefield.
These computations areO(n3) for a 2D shot record ofn traces. For 3D surveys, the cost
is alsoO(n3), but n refers to the total number of traces in the output wavefield, given by
n = ninline × nxline. For large 3D surveys, this is computationally infeasible,as traces can
number in the millions.

Ferguson (2006), Ferguson (2010) and Smith et al. (2009) target stages of the algo-
rithm that carry the largest computational cost, and seek approximations that reduce the
total effort. Ferguson (2006) restricts computation of theforward and adjoint matrices tod
diagonals and sets the remaining entries to zero. This reduces the cost of constructing the
Hessian by matrix multiplication toO(dn2). Ferguson (2010) derives a series expansion to
compute the entire Hessian inO(n2 log n). In both cases, direct matrix methods are used
to invert the resulting matrix, so the complexity of these methods isO(n3). Smith et al.
(2009) inverts the Hessian matrix using conjugate gradients, with complexityO(C(n)n2),
whereC(n) is the number of conjugate gradient iterations required foran acceptable so-
lution, which can be expected to increase withn. Finally, Wilson and Ferguson (2010b)
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implements a conjugate gradient scheme using a programmed function in place of a matrix
to further decrease the runtime of the inversion toO(C(n)vn log n), although convergence
of the conjugate gradient iterations was slow in the lower frequencies. Each method re-
sults in significant runtime reductions, but due to the unknown functionC(n), theoretical
asymptotic runtimes could not be derived.

In this paper, we discuss the process of inversion of the phase shift operator by con-
jugate gradients on normal equations, and conduct a feasibility study to determine if it is
worth pursuing a fast and accurate preconditioned scheme. The goal is to minimize com-
putational complexity and mathematical error so that the result provides a stable platform
for subsequent imaging on large data sets.

THEORY

Ferguson (2006) presents a simultaneous data regularization, elevation statics and da-
tuming method that uses the non-stationary phase shift operators of Gazdag (1978) and
Margrave and Ferguson (1999). Here we summarize the development of these operators
and their applications. We then discuss the runtime of various numerical methods to speed
the application of these operators, which will show us how toevaluate the asymptotic run-
time of the method.

Non-stationary Phase Shift Operators

Given a monochromatic wavefieldϕz = ϕ(x, z, ω) measured at some depthz across
all lateral coordinatesx, the extrapolated wavefield at depthϕz+∆z can be computed using
the Fourier integral operator given by (Ferguson, 2006),

ϕz+∆z = [P∆z] ϕz

=

∫

e2πi∆zkz ϕ̂(kx, z, ω)e−2πixkxdkx, (1)

whereϕ̂(kx, z, ω) is the spatial Fourier transform ofϕ(x, z, ω), given by

ϕ̂(kx, z, ω) =

∫

ϕ(x, z, ω)e2πixkzdx. (2)

The vertical wavenumberkz must be chosen to satisfy the dispersion relation (Ferguson
and Margrave, 2002)

k2
x + k2

z =
(ω

v

)2

, (3)

wherev is the velocity of the medium. We can choose the sign ofkz so that the operator
propagates the wavefield in the direction of∆z in the wavelike region, where|ω

v
| ≤ |kx|,

and attenuates energy in the evanescent region, where|ω
v
| > |kx|. These conditions are

satisfied in Ferguson (2010), wherekz is given by,

kz = Re
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. (4)
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Whenϕz is a discretely sampled wavefield, such as would be measured in a seismic
experiment, we can think of Equation 1 as taking the Fourier transform of the data, fol-
lowed by pointwise multiplication by an appropriate sampling of the functionα(∆z, kz) =
e2πi∆zkz , known as thesymbol, and then the inverse Fourier transform of the result. Each
of these operations can be encoded in a matrix.

ϕz+∆z = [IFT ][α∆z][FT ]ϕz, (5)

where[α∆z] is a diagonal matrix, with the sampling of the symbol on the diagonal.

To accommodate velocity variation in depth, the medium is divided into a series of
horizontal slabs of constant velocity (Gazdag, 1978). The Fourier integral operator is used
to propagate the wavefield through each slab, and continuityof displacement is assumed
to move the wavefield between adjacent slabs. For lateral velocity variation, it suffices
to allow v in Equation 4 to vary withx. This complicates the computation of Equation
1, however, as the symbol must then be recalculated for each output location, and the
subsequent inverse Fourier transform cannot be calculatedquickly. Margrave and Ferguson
(1999) accommodate lateral velocity variation using a set of constant velocity windows.
The window function is defined for a given reference velocityv by

Ωv(x) =

{

1 if v(x) = v

0 if v(x) 6= v
, (6)

and Equation 5 becomes

ϕz+∆z =
∑

v∈V

[Ωv][IFT ][α∆z,v][FT ]ϕz. (7)

Statics and Trace Regularization

Ferguson (2006) presents an application of this phase-shift operator to correct for to-
pography and near-surface heterogeneity, and for irregular trace spacing. Seismic data are
modelled as a recursive upward phase shift of the data at depth, followed by the addition
of random noise and setting a selection of the traces to zero to model irregular surface cov-
erage. Due to the trace decimation the data can not be reliably phase shifted back down, so
the problem is solved using weighted damped least squares (Menke, 1989).

[

P ∗

−∆zWeP−∆z + εWm

]

ϕz+∆z = P ∗

−∆zWeϕz. (8)

HereP−∆z is an upward application of the phase shift operator (Equation 7),P ∗

−∆z is the
adjoint ofP−∆z, We models irregular trace coverage,Wm is a smoothing operator, andε is
a user parameter that controls the amount of smoothing (Menke, 1989). These equations
can be solved for the unknown wavefieldϕz+∆z given the known wavefieldϕz. SinceWe

is not invertible, the smoothing operatorWm can be used to constrain the system to give
preference to solutions that satisfy some user-defined notion of smoothness. Note thatWm

acts as a stabilizing factor in Equation 8, which can force the linear system to have a unique
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solution (Margrave, 2009). The matrixH∆z =
[

P ∗

−∆zWeP−∆z + εWm

]

is often referred to
as the Hessian matrix.

As presented, this algorithm is computationally expensive, so optimization strategies
must be considered. Ferguson (2006), and Ferguson (2010) explore different approxima-
tions to speed computation of the Hessian matrix, and Smith et al. (2009) describes an
implementation of this algorithm that uses Conjugate Gradients to speed inversion. These
authors demonstrate the utility of this algorithm in reconstructing missing traces and ac-
counting for near-surface velocity effects, and they report decreased runtime as a result
of their specific design features. An asymptotic complexityfunction is not constructed in
these works. Such a function might be helpful in determiningthe optimum design and
runtime of the method.

Preconditioned Conjugate Gradients

Many techniques exist to solve linear systems, and the cost of solving the normal equa-
tions (Equation 8) will vary depending on the inversion method used. Matrix methods such
as Gaussian elimination and LU factorization are widely used due to their versatility and
ease of use, but require the matrix form of the operator to be inverted and generally carry
the largest computation cost (Burden and Faires, 2001). When speed is desired, iterative
methods such as conjugate gradients can be used to compute anapproximate solution with
fewer computations.

For ease of notation, denote byH the Hessian operator on the left-hand side of Equation
8, andb the transformed wavefield vector on the right-hand side. Theproblem can then be
written as a linear system given by,

Hx = b, (9)

where we wish to compute the unknown vectorx. For a thorough discussion of the various
computational options, see Wilson and Ferguson (2010a). For our purposes it suffices to
note that, given ann × n matrixH which represents the Hessian operator, computingHx

for a given vectorx requiresO(n2) operations, whereas computing the same output using
a preprogrammed function that uses the fast Fourier transform can be accomplished in
O(vn log (n)) operations, which is a significant speedup for large values of n.

Given the matrix form ofH and the data vectorb, we could solve for the unknown
vectorx by Gaussian elimination, at a cost ofO(n3). This is infeasible for large values
of n, which are likely to be encountered in large 3D surveys. In this case, we can turn to
conjugate gradients to reduce this cost, provided the system is positive definite (or semi-
definite) and symmetric, as is the case when working with normal equations.

To solve a linear system by conjugate gradients we choose an initial valuex0, and
compute the residual vectorr0 = b − Hx0. The cost of this step is dominated by the
cost of applying the operatorH to x0. This residual vector defines a search direction that
we use to refine our guess. Subsequent iterations are similar, except the search directions
are adjusted to take advantage of the positive definite structure of the operatorH. Given
perfect arithmetic, this method is guaranteed to produce anexact solution to the system
after n iterations (Hestenes and Stiefel, 1952), and an acceptableapproximation can be
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attained using machine arithmetic in fewer iterations if the matrix is well conditioned. In
this case, we should be able to solve the matrix form of the system inO(C(n)n2), and the
functional form inO(C(n)vn log (n)), whereC(n) is the number of conjugate gradient
iterations required. This is a significant cost decrease when n is very large.

Note that we expectC(n) to increase withn, although the wayC(n) changes withn is
not obvious. We expect thatC(n) < n, and Burden and Faires (2001) states that for a well
conditioned system,C(n) ≈ √

n. Thus we are left to try to measureC(n) for small values
of n, and use polynomial regression to estimate its behaviour for larger values.

If the system is particularly sensitive to rounding errors,this method might not find
a solution to the system quickly, and may fail to find an acceptable approximation at all.
We call such a system “ill conditioned.” In fact, Wilson and Ferguson (2009) and Wilson
and Ferguson (2010a) implement this algorithm with no preconditioning, and note that the
algorithm tends to converge quickly in the high frequencies, where no evanescent filter is
applied, and very slowly or not at all in the lower frequencies. Such a system must first be
preconditioned. For a complete discussion on preconditioning, see Wilson and Ferguson
(2010a). For our purposes, it suffices to imagine the “ideally” conditioned operator, with all
evanescent filter effects removed. This operator can be run through the inversion method,
and the filter can be applied to the result to get the desired output. This operator is obtained
by factoring the filter portion of the operator out of the symbol α,

α∆z = exp (2πi∆zkz)

= exp (2πi∆zRe{kz} − |∆z|Im{kz}) (10)

= exp (2πi∆zRe{kz}) exp (−|∆z|Im{kz}).
= αP

∆zα
F
∆z.

In other words, we can factor the symbol matrix into two diagonal matrices. One performs
the phase shift, and one applies the filter. After an approximation and some algebra, we
attain a modified set of normal equations given by,

P̄ ∗

−∆zWeϕz =
[

P̄ ∗

−∆zWeP̄−∆z + ε(F−1)∗WmF−1
]

Fϕz+∆z, (11)

whereP̄−∆z is justP−∆z but with[α∆z] replaced by[αP
∆z], andF is the filter portion defined

by,
F = [αF

∆z][FT ] (12)

The inversion can be run on the new well conditioned system torecoverFϕz+∆z, and the
result can be multiplied byF−1 to recover the extrapolated wavefield. Using this precon-
ditioning scheme, the system can be feasibly solved for larger values ofn, so we can run
the inversion for several sizes of input and try to recover the complexity function. Once
we have these functions, it will be simple to estimate the runtime of the algorithm for any
more practical preconditioners we might encounter.

Regression

To estimate the complexity function, we require a model of the growth of the system.
We expect that the number of iterations required is less thann, and Burden and Faires
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(2001) asserts that a well conditioned scheme should converge in approximately
√

n itera-
tions, so it is reasonable to assume that the iterations function is of the form,

C(n) = knβ, (13)

wherek > 0 and0 ≤ β ≤ 1. So, given a vector of problem sizes~n and a corresponding
vector of the iterations function~C(~n), we assume thatCi ≈ kn

β
i . Taking the logarithm of

both sides gives us
log (Ci) ≈ log(k) + β log ni. (14)

We can recoverlog (k) andβ by computing the least squares solution of the resulting linear
system,

log ~C =
[

~1 log ~n
]

[

log(k)
β

]

. (15)

Likewise we assume the total runtime function is given byt(n) = mnγ , wherem > 0 and
0 ≤ γ ≤ 3, and proceed in the same manner.

This regression solves for the line of best fit betweenlog(n) andlog(C) (or log (t)), so
we can expect the error to be roughly uniformly distributed with respect to the logarithm
of the data if the relationship is indeed linear. However, when we return the linear system
to its original polynomial state, the resulting error will be exponentially greater for larger
values ofn. We can accommodate this by multiplying the system on the right by a weight
matrix that assigns higher weight to the larger values ofn, resulting in values ofβ andk

(or γ andm) will more closely model those larger data values than the unweighted system,
but this may also worsen the damaging effects of large outliers.

Data Analysis

For this experiment, we choose a randomn between1 and215. A synthetic gather ofn
traces is forward modelled through a random blocky velocitymodel withlog2 (n) reference
velocities. Random noise at a level of−40db is added and30% of the traces are set to zero
to model irregular trace spacing. The inversion is run on the“ideally preconditioned”
operator (Equation 11) running on the resulting noisy decimated data. After running, the
algorithm returns the number of traces used, the number of conjugate gradient iterations
required, the total runtime of the inversion, and the residual error after the inversion. This
algorithm is run on a random sample of trace sizes, and the results analysed for trends.

A polynomial regression is performed on the data to generatean initial best fit curve.
Weights are declared as the difference between the best fit curve values and the true values,
and the weighted regression is then performed on the original data. The results are given
in Figure 1.

The average number of CG iterations per frequency is given inFigure 1(a). For this
ideal preconditioned scheme, the number of iterations doesnot seem to grow appreciably
with the size of the problem. The blue line indicates the bestfit curve, which has constant
k = 11.96 and exponentβ = 0.0158. The total runtime is given in Figure 1(b), with the
best fit line in blue. The best fit curve has constantm = 0.00931 and exponentγ = 1.082.
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This data would indicate that the inversion isO(n1.082), and that the CG iterations function
C(n) is O(n0.0158), which far exceeds our expectation ofO(

√
n). This is roughly consis-

tent with the theory that the complexity of the inversion isO(C(n)vnlog(n)), although we
would expect this estimate to change if we were to compute theruntime function for larger
values ofn, as our regression does not take into account thelog (n) term.

It is promising to note thatC(n) increases so slowly, as it results in a huge decrease
in runtime for the inversion. In fact, if a non-ideal preconditioner were to be found that
increases the convergence to the target level of

√
n without sacrificing accuracy, we could

expect a total runtime in the neighborhood ofO(vn1.5log(n)), which is a huge speedup
over previously derived methods.

Extrapolating this function to larger values ofn, we could estimate that running this
inversion on1, 000, 000 traces would take approximately eight hours. That is eight hours
per depth step per trace gather. This sounds grim until we note that the constantm can be
viewed as a measure of the user’s computer architecture and program design. This algo-
rithm runs independently on each frequency, so it parallelizes trivially, and we could split
the work of this experiment between up to122 nodes - one node per frequency imaged -
effectively dividingm by 122. Using a pre-compiled programming language and enter-
prise level computing power could shrinkm even more, until a call of this function runs in
minutes or seconds.

CONCLUSION

Regression analysis on our observed data indicates that theasymptotic runtime of our
ideal preconditioned scheme is approximatelyO(n1.082). Ideal preconditioning results in
an iterations functionC(n) that is almost constant time, so complexity is dominated by
cost of applying the forward operator, which is itself very fast. This suggests that if a pre-
conditioner were to be found that improves convergence of the conjugate gradient scheme
to the target ofO(

√
n) without sacrificing accuracy, the resulting algorithm could quickly

and accurately interpolate seismic traces for subsequent imaging in an everywhere varying
velocity medium.
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FIG. 1. (a) The number of CG iterations vs the number of traces. (b) The total runtime of the
inversion vs the number of traces. Regression estimates that the iterations function is given by
C(n) = 11.96n0.0158, and the runtime function is given by t(n) = 0.00931n1.082
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