Complexity of phase shift inversion
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ABSTRACT

We perform a speed test on an optimized conjugate-gradaseichinversion to correct
for surface statics and irregular spatial sampling. Anligigaeconditioned scheme is run
repeatedly on synthetic trace gathers of random size, @’ttraces. The runtime and
the number of conjugate gradient iterations required fahedgal is recorded. lIteratively
refined polynomial regression is performed on the resultlata points to estimate the
asymptotic complexity of the algorithm, and the number afjagate gradient iterations
is compared with the overall runtime to check for consisgené/e find that the ideal
preconditioned scheme gives a near optimal runtim@ @f-°%?), which indicates that the
method could feasibly be preconditioned to run on large sets

INTRODUCTION

A wave equation inversion for seismic data described by =g (2006) recursively
computes the extrapolated wavefield at depth using noostaii phase shift operators
(Ferguson and Margrave, 2002), which generalize the plndgiserethod of Gazdag (1978)
to media where velocity varies laterally. The operator irar computed using an as-
sumed velocity model and the wavefield at depth is computethuseighted damped
least squares (Tarantola, 2005). In one inversion, thik©atetorrects common shot and
common receiver gathers for topography and near-surfaeedgeneity, and interpolates
missing traces.

The algorithm successfully generalizes phase-shift watragolation to cases of lat-
erally varying medium velocity and irregular trace covexagut it carries a larger com-
putational cost. Basic implementation of the algorithmuisgs computation of matrix
representations of the nonstationary phase shift oparatdormal equations must then
be formed by matrix multiplication, and the result invertedextrapolate the wavefield.
These computations at@(n?*) for a 2D shot record ofi traces. For 3D surveys, the cost
is alsoO(n?), butn refers to the total number of traces in the output wavefiglgrgby
N = Niine X Naine- FOr large 3D surveys, this is computationally infeasibketraces can
number in the millions.

Ferguson (2006), Ferguson (2010) and Smith et al. (200§¢tatages of the algo-
rithm that carry the largest computational cost, and se@koximations that reduce the
total effort. Ferguson (2006) restricts computation offthrevard and adjoint matrices t0
diagonals and sets the remaining entries to zero. This esdihe cost of constructing the
Hessian by matrix multiplication t&(dn?). Ferguson (2010) derives a series expansion to
compute the entire Hessian @(n? logn). In both cases, direct matrix methods are used
to invert the resulting matrix, so the complexity of thesetmoes isO(n?). Smith et al.
(2009) inverts the Hessian matrix using conjugate gradjemth complexityO(C'(n)n?),
whereC(n) is the number of conjugate gradient iterations requirecafoacceptable so-
lution, which can be expected to increase withFinally, Wilson and Ferguson (2010b)
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implements a conjugate gradient scheme using a programumetidn in place of a matrix
to further decrease the runtime of the inversio®{@'(n)vn log n), although convergence
of the conjugate gradient iterations was slow in the loweqfiencies. Each method re-
sults in significant runtime reductions, but due to the umkméunctionC'(n), theoretical
asymptotic runtimes could not be derived.

In this paper, we discuss the process of inversion of theghklst operator by con-
jugate gradients on normal equations, and conduct a fésgiudy to determine if it is
worth pursuing a fast and accurate preconditioned scheime gdal is to minimize com-
putational complexity and mathematical error so that tiseltgrovides a stable platform
for subsequent imaging on large data sets.

THEORY

Ferguson (2006) presents a simultaneous data regulanzaiievation statics and da-
tuming method that uses the non-stationary phase shifatpsrof Gazdag (1978) and
Margrave and Ferguson (1999). Here we summarize the dewelupof these operators
and their applications. We then discuss the runtime of uarrmumerical methods to speed
the application of these operators, which will show us hoemaluate the asymptotic run-
time of the method.

Non-stationary Phase Shift Operators

Given a monochromatic wavefield, = ¢(z, z,w) measured at some depthacross
all lateral coordinates, the extrapolated wavefield at depth, ». can be computed using
the Fourier integral operator given by (Ferguson, 2006),

Petrz = [PAZ] Pz

— / e27riAzkz @(k:m z, w)e—27ri:pkz dkm, (1)

whereg(k,, z,w) is the spatial Fourier transform ¢f(z, z, w), given by

ks, 2,0) = / (i, 2, w0)eT e @

The vertical wavenumbeét, must be chosen to satisfy the dispersion relation (Ferguson
and Margrave, 2002)

Rri=(2) ©

whereuv is the velocity of the medium. We can choose the sigh.ofo that the operator
propagates the wavefield in the directionf in the wavelike region, wherg’| < [, |,
and attenuates energy in the evanescent region, where |k,|. These conditions are
satisfied in Ferguson (2010), whekeis given by,

kZZRe{ <%)2—k§}+isgn(Az)Im{ (%)2—1@} (4)
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When . is a discretely sampled wavefield, such as would be measnradeismic
experiment, we can think of Equation 1 as taking the Fourgmdform of the data, fol-
lowed by pointwise multiplication by an appropriate samglof the functionv(Az, k,) =
e?™iAzk: known as thesymbol, and then the inverse Fourier transform of the result. Each
of these operations can be encoded in a matrix.

PrtAz = [IFT] [O‘AzHFT]S@za (5)
where[aa.] is a diagonal matrix, with the sampling of the symbol on thegdinal.

To accommodate velocity variation in depth, the medium gdeid into a series of
horizontal slabs of constant velocity (Gazdag, 1978). Towrier integral operator is used
to propagate the wavefield through each slab, and contiofiitysplacement is assumed
to move the wavefield between adjacent slabs. For lateracipglvariation, it suffices
to allow v in Equation 4 to vary withe. This complicates the computation of Equation
1, however, as the symbol must then be recalculated for eatgublocation, and the
subsequentinverse Fourier transform cannot be calcujatielly. Margrave and Ferguson
(1999) accommodate lateral velocity variation using a $eoostant velocity windows.
The window function is defined for a given reference velocityy

)1 ifu(r)=v
(e) = {0 if v(z) #v’ ©)
and Equation 5 becomes
pera: = I [QIFT) o] [FT]ep. (7)

veV

Statics and Trace Regularization

Ferguson (2006) presents an application of this phasebeirator to correct for to-
pography and near-surface heterogeneity, and for irreg¢palee spacing. Seismic data are
modelled as a recursive upward phase shift of the data ah dieiowed by the addition
of random noise and setting a selection of the traces to sermtlel irregular surface cov-
erage. Due to the trace decimation the data can not be repabke shifted back down, so
the problem is solved using weighted damped least squaresk@) 1989).

[P* A WeP_n. + Wi 0oins = PP A, Wep,. (8)

Here P_,. is an upward application of the phase shift operator (Equaf, P* ., is the
adjoint of P_A ., W, models irregular trace coverad#,,, is a smoothing operator, ands

a user parameter that controls the amount of smoothing (Be€t889). These equations
can be solved for the unknown wavefietd, . given the known wavefielg.. SincelV,

is not invertible, the smoothing operatidr,, can be used to constrain the system to give
preference to solutions that satisfy some user-definedmofismoothness. Note thét,,
acts as a stabilizing factor in Equation 8, which can foreditiear system to have a unique
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solution (Margrave, 2009). The mattia. = [P* o, W.P_a. + cW,,] is often referred to
as the Hessian matrix.

As presented, this algorithm is computationally expensseeoptimization strategies
must be considered. Ferguson (2006), and Ferguson (20p@rexifferent approxima-
tions to speed computation of the Hessian matrix, and Sniitl. €2009) describes an
implementation of this algorithm that uses Conjugate Gxaidi to speed inversion. These
authors demonstrate the utility of this algorithm in redansting missing traces and ac-
counting for near-surface velocity effects, and they repecreased runtime as a result
of their specific design features. An asymptotic complelityction is not constructed in
these works. Such a function might be helpful in determirtimg optimum design and
runtime of the method.

Preconditioned Conjugate Gradients

Many techniques exist to solve linear systems, and the é¢ssiwving the normal equa-
tions (Equation 8) will vary depending on the inversion nogtlised. Matrix methods such
as Gaussian elimination and LU factorization are widelydusee to their versatility and
ease of use, but require the matrix form of the operator tonberied and generally carry
the largest computation cost (Burden and Faires, 2001).rnv8peed is desired, iterative
methods such as conjugate gradients can be used to compaperaximate solution with
fewer computations.

For ease of notation, denote Bythe Hessian operator on the left-hand side of Equation
8, andb the transformed wavefield vector on the right-hand side. grbblem can then be
written as a linear system given by,
Hzx =0, 9)

where we wish to compute the unknown vectoFor a thorough discussion of the various
computational options, see Wilson and Ferguson (2010a)oopurposes it suffices to
note that, given an x n matrix H which represents the Hessian operator, computing

for a given vector requiresO(n?) operations, whereas computing the same output using
a preprogrammed function that uses the fast Fourier tramst@n be accomplished in
O(vnlog (n)) operations, which is a significant speedup for large valfies o

Given the matrix form ofH and the data vectdr, we could solve for the unknown
vectorz by Gaussian elimination, at a cost ©fn?). This is infeasible for large values
of n, which are likely to be encountered in large 3D surveys. ia tlhase, we can turn to
conjugate gradients to reduce this cost, provided the syseositive definite (or semi-
definite) and symmetric, as is the case when working with mbequations.

To solve a linear system by conjugate gradients we chooseital value zy, and
compute the residual vectey = b — Hzy. The cost of this step is dominated by the
cost of applying the operatdi to zy. This residual vector defines a search direction that
we use to refine our guess. Subsequent iterations are simitapt the search directions
are adjusted to take advantage of the positive definitetstieiof the operatof!. Given
perfect arithmetic, this method is guaranteed to producexat solution to the system
after n iterations (Hestenes and Stiefel, 1952), and an accepégipeximation can be
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attained using machine arithmetic in fewer iterations & thatrix is well conditioned. In
this case, we should be able to solve the matrix form of theegytn O(C'(n)n?), and the
functional form inO(C(n)vnlog (n)), whereC'(n) is the number of conjugate gradient
iterations required. This is a significant cost decreasenwhis very large.

Note that we expect'(n) to increase withn, although the way’(n) changes with is
not obvious. We expect thét(n) < n, and Burden and Faires (2001) states that for a well
conditioned systen(;(n) = y/n. Thus we are left to try to measufgn) for small values
of n, and use polynomial regression to estimate its behaviauafger values.

If the system is particularly sensitive to rounding errdtss method might not find
a solution to the system quickly, and may fail to find an acalelgt approximation at all.
We call such a system “ill conditioned.” In fact, Wilson andrguson (2009) and Wilson
and Ferguson (2010a) implement this algorithm with no padd@ning, and note that the
algorithm tends to converge quickly in the high frequencidsere no evanescent filter is
applied, and very slowly or not at all in the lower frequesci8uch a system must first be
preconditioned. For a complete discussion on precondiitgyrsee Wilson and Ferguson
(2010a). For our purposes, it suffices to imagine the “igéathnditioned operator, with all
evanescent filter effects removed. This operator can behnoigh the inversion method,
and the filter can be applied to the result to get the desirgaliouThis operator is obtained
by factoring the filter portion of the operator out of the syohb,

apn, = exp (2miAzk,)
= exp (2miAzRe{k.} — |Az|Im{k.}) (10)
= exp (2miAzRe{k.}) exp (—|Az|Im{k.}).
P F
QAN

In other words, we can factor the symbol matrix into two dia@anatrices. One performs
the phase shift, and one applies the filter. After an appraton and some algebra, we
attain a modified set of normal equations given by,

PraWep, = [P A WP p.+ e(FTYY Wi F 7 Foin., (11)

whereP_, . isjustP_A. butwith[a, ] replaced byak ], andF is the filter portion defined

by,
F =[x [FT] (12)

The inversion can be run on the new well conditioned systeradoverF'¢. . A., and the
result can be multiplied by"~! to recover the extrapolated wavefield. Using this precon-
ditioning scheme, the system can be feasibly solved foetavglues ofn, so we can run
the inversion for several sizes of input and try to recoverdbmplexity function. Once
we have these functions, it will be simple to estimate theinue of the algorithm for any
more practical preconditioners we might encounter.

Regression

To estimate the complexity function, we require a model efghowth of the system.
We expect that the number of iterations required is less thaend Burden and Faires
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(2001) asserts that a well conditioned scheme should cgeverapproximately/n itera-
tions, so it is reasonable to assume that the iterationgiumis of the form,

C(n) = kn”, (13)

wherek > 0 and0 < § < 1. So, given a vector of problem siz€sand a corresponding
vector of the iterations functio@'(i7), we assume thaf; ~ kn?. Taking the logarithm of
both sides gives us

log (C;) ~ log(k) + Blog n;. (14)

We can recovelog (k) and/s by computing the least squares solution of the resultireglin
system,

logC = [T logi] {logﬂ(k‘)} . (15)
Likewise we assume the total runtime function is givert@) = mn”, wherem > 0 and
0 <~ < 3, and proceed in the same manner.

This regression solves for the line of best fit betweesin) andlog(C') (orlog (t)), so
we can expect the error to be roughly uniformly distributathwespect to the logarithm
of the data if the relationship is indeed linear. Howeverewkwve return the linear system
to its original polynomial state, the resulting error wi# lexponentially greater for larger
values ofn. We can accommodate this by multiplying the system on thH by a weight
matrix that assigns higher weight to the larger values,aksulting in values off andk
(or v andm) will more closely model those larger data values than thveaighted system,
but this may also worsen the damaging effects of large astlie

Data Analysis

For this experiment, we choose a randoretweenl and2'. A synthetic gather of.
traces is forward modelled through a random blocky velatibgel withlog, (n) reference
velocities. Random noise at a level-efi0db is added an80% of the traces are set to zero
to model irregular trace spacing. The inversion is run on*“tdeally preconditioned”
operator (Equation 11) running on the resulting noisy deted data. After running, the
algorithm returns the number of traces used, the numbermjfigate gradient iterations
required, the total runtime of the inversion, and the reali@uror after the inversion. This
algorithm is run on a random sample of trace sizes, and thdtsemalysed for trends.

A polynomial regression is performed on the data to genenataitial best fit curve.
Weights are declared as the difference between the bestfé galues and the true values,
and the weighted regression is then performed on the otigata. The results are given
in Figure 1.

The average number of CG iterations per frequency is givdfigare 1(a). For this
ideal preconditioned scheme, the number of iterations doeseem to grow appreciably
with the size of the problem. The blue line indicates the bestirve, which has constant
k = 11.96 and exponent = 0.0158. The total runtime is given in Figure 1(b), with the
best fit line in blue. The best fit curve has constant 0.00931 and exponent = 1.082.
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This data would indicate that the inversior$n'-%%?), and that the CG iterations function
C(n) is O(n®01%®), which far exceeds our expectation@f/n). This is roughly consis-
tent with the theory that the complexity of the inversio&” (n)vnlog(n)), although we
would expect this estimate to change if we were to computeuthiégme function for larger
values ofn, as our regression does not take into accounidfén) term.

It is promising to note thaf’(n) increases so slowly, as it results in a huge decrease
in runtime for the inversion. In fact, if a non-ideal precdimaher were to be found that
increases the convergence to the target levglofwithout sacrificing accuracy, we could
expect a total runtime in the neighborhood®@fvn'-°log(n)), which is a huge speedup
over previously derived methods.

Extrapolating this function to larger values of we could estimate that running this
inversion onl, 000, 000 traces would take approximately eight hours. That is eigliré
per depth step per trace gather. This sounds grim until we that the constant. can be
viewed as a measure of the user's computer architecture raggaon design. This algo-
rithm runs independently on each frequency, so it paradslirivially, and we could split
the work of this experiment between up 122 nodes - one node per frequency imaged -
effectively dividingm by 122. Using a pre-compiled programming language and enter-
prise level computing power could shrinkeven more, until a call of this function runs in
minutes or seconds.

CONCLUSION

Regression analysis on our observed data indicates thasymeptotic runtime of our
ideal preconditioned scheme is approximat@lgn'*%?). Ideal preconditioning results in
an iterations functiorC'(n) that is almost constant time, so complexity is dominated by
cost of applying the forward operator, which is itself veagtf This suggests that if a pre-
conditioner were to be found that improves convergenceettnjugate gradient scheme
to the target of)(/n) without sacrificing accuracy, the resulting algorithm abguickly
and accurately interpolate seismic traces for subseqoeging in an everywhere varying
velocity medium.
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FIG. 1. (a) The number of CG iterations vs the number of traces. (b) The total runtime of the
inversion vs the number of traces. Regression estimates that the iterations function is given by
C(n) = 11.96n°°%% and the runtime function is given by ¢(n) = 0.00931n!082
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