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ABSTRACT

This tutorial endeavours to lay out the basic scheme using the adjoint state method for
setting up the basic equations for inversion of acoustic, elastic or electromagnetic data.
The basic scheme is simple and relies on three basic ingredients consisting of a forward
modelling package, the definition of a misfit norm and a gradient descent method. The
adjoint state method will be presented in its continuous and discrete forms. The continuous
adjoint state method will be developed for the full elastic equations in the time domain,
while the discrete adjoint state method will be developed in the frequency domain.

INTRODUCTION

There is an abundance of inversion schemes archived in the literature of many different
fields including exploration geophysics, aerodynamics, weather prediction and financial
derivatives. These fields are so diverse, and yet, there is a common thread running through
the methods applied to map acquired data to model parameters. At the core of all these
inversion schemes is the application of the adjoint state method.

In this tutorial, we will briefly describe the adjoint state method and then in detail
present its application in both the discrete and continuous settings. The continuous adjoint
state method will be presented through the examination of the application by Liu and Tromp
(Liu and Tromp, 2006) and the continuous discrete adjoint state method will be developed
through the analysis of the classic paper of Pratt (Pratt, 1999). An excellent review by
Plessix (Plessix, 2006) of the adjoint state method is presented in a more abstract setting.
As we shall see in what follows, though the idea is elementary in concept, is is not simple
and the devil is in the details.

Adjoint State Method

The adjoint state method has a very long history dating back really to the work of
Lagrange (1760), who first presented the famous Lagrange identity to define the adjoint
operator. We will see this identity in a more general form in the next section, when we
discuss the continuous application. Curiously, successive theoretical developments in this
area of application (adjoint methods, calculus of variations, and functional analysis) were
also pioneered by French and Russian mathematicians, both pure and applied. We are all
familiar with the Fréchet derivative (Maurice René Fréchet,1 878-1973) but how many of
us know about Gâteaux (René Gâteaux,1889-1914), Jacques-Louis Lions (Jacques-Louis
Lions, 1928-2001) or Gury Ivanovich Marchuk (1925-). These mathematicians have had
significant impact on the development of the adjoint state method.
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While we are familiar, for example of the excellent work on inversion by the late Albert
Tarantola, whose first paper in Geophysics can be viewed as the launch of formal inversion
theory in exploration geophysics (Tarantola, 1984), the mathematical development post La-
grange, has a longer history. It was Marchuk (Marchuk, 1962) who developed the adjoint
state technique in nuclear reactor design, which focused on obtaining the parameters for
the critical regime of reactor operation. Further theoretical work was done by Lions (Li-
ons, 1971) who laid the foundation for the introduction of optimal control methodology to
systems governed by partial differential equations. We intuit, then, that the term adjoint
state method originates from optimal control.

In optimal control, we begin with a description of the physical system via a coupled set,
in general, of partial differential equations with associated boundary and initial conditions.
The variables in this system comprise the state of the system. In addition to these state
variables, there are parameters or control variables that are used to drive the system. For
example, in seismology we view the state variables as the vector of displacements and the
control variables as the material properties (elastic constants and density) and the source
properties.

With the system now presented in this general setting, we need to define a performance
measure under the application of the particular set of control variables. In exploration
seismology, we usually employ the integrated squared error as the system performance
measure, with the error defined as the difference between the measurements obtained and
the simulation of those measurements. Lions found a clever way to find the best control
variables such that the performance measure would be maximized, or in the case of an error
measure, minimized. He introduced Lagrange multipliers as a means of incorporating the
state equations that describe the evolution of the state variables in time. The Lagrange
multipliers that he introduced are called the adjoint state variables and we shall see exactly
how they function to give us very well-known results from prestack migration.

CONTINUOUS ADJOINT STATE METHOD – ANALYSIS FOR THE FULL
ELASTODYNAMIC EQUATIONS IN THE TIME DOMAIN

In this section, we will present a detailed analysis of the adjoint state method for the
elastodynamic system with the state variables denoted as the vector displacements, s(x, t),
and the control variables: the density, ρ, the elastic constant tensor, c, and the the source,
f . We will follow explicitly the development of Liu and Tromp (Liu and Tromp, 2006)
We will, for the most part, use exactly the same notation and equation order, and argument
development, but we will fill in some missing steps and hopefully give some intuition
regarding the final results. We wish to make it abundantly clear that what follows is their
original work and we are simply filling in some pieces that not everyone may have in their
mathematical handbag.

First, as described earlier, we begin with the performance measure, which is the usual
least squares wave-form misfit:
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χ =
1

2

∑
r

∫ T

0

‖s(xr, t)− d(xr, t)‖2dt (1)

This misfit is the sum over all receivers of the energy difference between the predicted
displacements, s(xr, t), and the recorded data, d(xr, t).

We now need our description of the state via the partial differential equations, the state
and control variables and initial and boundary conditions, and source description:

State equations and state variables:
The state equation is the elastodynamic equation given by

ρ∂2
t s−∇ ·T− f = 0, (2)

with ρ the density distribution, f the source function, and T the stress tensor. The
stress tensor is given by Hooke’s Law, which is written in compressed form as

T = c : ∇s. (3)

Equation (3) is a compact form of writing the index representation of the stress tensor,
which is normally given in component form by

Tij = cijkl
∂sk

∂xl

. (4)

The colon notation in (3) represents a sum over the two dummy indices, k and l, in
(4) and makes for a compact representation.

Boundary and initial conditions:
The boundary conditions correspond to the vanishing of the traction vector on the
earth’s surface, which will be denoted by ∂Ω. Thus,

n̂ ·T = 0 on ∂Ω. (5)

Implicit, of course, in the foregoing is that often we have to impose artificial absorb-
ing boundary conditions on our computational domain, as we do not often have the
complete surface of the earth in our computation. In addition, we must impose the
initial conditions for our displacement

s(x, t = 0) = 0

∂ts(x, t = 0) = 0. (6)

Source Description
The source in general is a very complex function but will be modelled in space as a
point vector dipole pre-multiplied by the moment tensor M,(contracted over one in-
dex), which represents radiation from the source, and post-multiplied by the source-
time function, S(t):

f = −M · ∇δ (x− xsource) S(t) (7)

The point vector dipole is simply the gradient of the location of the source.
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With all now in place, the key point is to write down a modified misfit function, which
we will continue to denote as χ. To the misfit function in (1), we add zero in a special
way. We take the elastic equation (2) and multiply it by a Lagrange multiplier and add it
to the misfit. This is the key point in the whole paper and the development of the adjoint
method. We note first of all, that the mapping that takes displacements to forces via the
elastic equation, is one that maps the vector space in which the displacement lies, to its
dual space [Since an appropriate scalar product of force and displacement is a scalar, the
energy]. Thus the Lagrange multiplier, λ, which in this case is really a Lagrange field that
depends on spatial and temporal co-ordinates, must be a displacement variable. In fact, the
time-reverse Lagrange field is exactly the adjoint field. This result will be demonstrated at
the end of this section.

The rest of the analysis is very algebraic, so we will highlight the main points, without
going into every detail. The augmented misfit can now be explicitly written as

χ =
1

2

∑
r

∫ T

0

‖s(xr, t)− d(xr, t)‖2dt−
∫ T

0

∫

Ω

λ · [ρ∂2
t s−∇ ·T− f

]
d3xdt. (8)

The next step is to take the variation or differential of (8) with respect to functions that
can be varied. This includes all state variables and control variables. To write everything
in terms of double integrals, we include the delta function to turn on the misfit at the re-
ceiver locations x = xr. We use the common notation for variation as the delta operator,
which takes differentials in function space and obeys the usual product and chain rules for
derivatives. The variation operator δ commutes with integration if everything is nice and
smooth from a physical perspective. These results have been formally proven in the func-
tional analysis community and we will accept them as given here. Taking the variation of
(8) results in

δχ =

∫ T

0

∫

Ω

∑
r

[s(xr, t)− d(xr, t)] δ(x− xr) · δs d3xdt

−
∫ T

0

∫

Ω

λ ·
[
δρ∂2

t s− ∇ · (δc : ∇s) − δf
]
d3xdt

−
∫ T

0

∫

Ω

λ ·
[
ρ∂2

t δs− ∇ · (c : ∇δs)
]
d3xdt, (9)

where we have dropped the explicit dependency of the displacement field, the Lagrangian
field and control variables on the spatial co-ordinates and time. Note that the variation of
the Lagrangian field vanishes, since its coefficient simply yields the equation of state (2).
Now if we were at a minimum of the augmented misfit, then of course δχ would equal zero.
This is not the case, so we must proceed further. We will want to push all derivatives from
the displacement field, s(x, t), and its variation, δs(x, t), onto λ(x, t). How do we do this?

We now embark on the big technical step which is the integration by parts of (9). The
integration by parts twice in time is direct and the initial conditions for the displacement
field (6) are used. To integrate the boxed terms in the previous equation, we must use
multi-dimensional integration by parts (an analog of Guass’ Theorem). We need to use the
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following result
∫

Ω

[∇u : T] d3x =

∫

∂Ω

[u · (n̂ ·T)] d2x−
∫

Ω

[u · (∇ ·T)] d3x (10)

three times with u = λ and T = c : ∇δs, u = δs and T = c : ∇λ, and u = λ and T =
δc : ∇δs. Employing the above integrations by parts, the initial conditions (6), and setting
the variation also of the boundary conditions to zero,

n̂ · (δc : ∇s + c : ∇δs) = 0 on ∂Ω, (11)

we finally obtain:

δχ =

∫ T

0

∫

Ω

∑
r

[s(xr, t)− d(xr, t)] δ(x− xr) · δs d3xdt

−
∫ T

0

∫

Ω

(
δρλ · ∂2

t s +∇λ : δc : ∇s− λ · δf) d3xdt

−
∫ T

0

∫

Ω

[
ρ∂2

t λ−∇ · (c : ∇λ)
] · δs d3xdt

−
∫

Ω

[ρ(λ · ∂tδs− ∂tλ · δs)]T d3x

−
∫ T

0

∫

∂Ω

n̂ · (c : ∇λ) · δs d2xdt (12)

We note that δχ must vanish when we find the true model, such that without perturbing the
model, δρ, δc and δf all vanish. For this to happen, we obtain the following equations for
the Lagrangian field,λ:

ρ∂2
t λ−∇ · (c : ∇λ)−

∑
r

[s(xr, t)− d(xr, t)] δ(x− xr) = 0, (13)

with free surface boundary conditions,

n̂ · (c : ∇λ) = 0 on ∂Ω, (14)

and end conditions

λ(x, t = T ) = 0

∂tλ(x, t = T ) = 0. (15)

If the Lagrangian field is chosen to satisfy (13) to (15), then in the presence of perturbations,
the variation of the action (12) becomes

δχ = −
∫ T

0

∫

Ω

(δρλ · ∂2
t s +∇λ : δc : ∇s− λ · δf) d3xdt (16)

We note that the end conditions for the Lagrangian field can be converted to initial condi-
tions by a simple time reversal replacing t by T − t. The new time-reversed field obeys the
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same equations as given by (13) to (15), the variable t replaced by T − t. So end conditions
become initial conditions. This time-reversed Lagrangian field only differs from the initial
state equations as described in (2) to (7) only in the nature of the source term, in which the
adjoint field is driven by the error between the predicted and measured fields. If we define
the adjoint field as the time-reversed Lagrange field, with

sadjoint(x, t) = λ(x, T − t), (17)

it clearly follows that
λ(x, t) = sadjoint(x, T − t). (18)

If we substitute (18) into (12) and keep all the variable dependencies, something quite
remarkable happens. The variation in χ is now given by

δχ = −
∫ T

0

∫

Ω

[
δρ(x)sadjoint(x, T − t) · ∂2

t s(x, t)
]
d3xdt

−
∫ T

0

∫

Ω

[∇sadjoint(x, T − t) : δc(x) : ∇s(x, t)
]

d3xdt

+

∫ T

0

∫

Ω

[
sadjoint(x, T − t) · δf] d3xdt (19)

In its present form, (19) can be used in a gradient descent method to update the material
parameters. This can be seen by interchanging the order of integration and factoring out
the spatial perturbations of the density and elastic tensor. Then we obtain

δχ =

∫

Ω

δρ(x)

[
−

∫ T

0

sadjoint(x, T − t) · ∂2
t s(x, t) dt

]

︸ ︷︷ ︸
Fréchet kernel for density

d3x

+

∫

Ω

δc(x) : :

[
−

∫ T

0

∇sadjoint(x, T − t) ∇s(x, t) dt

]

︸ ︷︷ ︸
Fourth order Fréchet kernel tensor

d3x

+

∫ T

0

∫

Ω

[
sadjoint(x, T − t) · δf] d3xdt. (20)

The Fréchet kernels in (20) can be used directly in a gradient descent method to update
the density and the components of the elastic tensor. Note that to compute these kernels,
we only need access to two fields and therefore, in principle, we only need to solve two
forward problems. In practice we may need to solve a third forward problem if we are
using conjugate gradient descent methods. We will derive a similar expression again in an
entirely different way in the next section.

If we look at the Fréchet kernels for both the density and the elastic tensor, we see that
at each point we compute the zero-lag cross-correlation of a filtered forward propagated
field and a filtered time-reversed adjoint field. This is exactly a different form of the Claer-
bout reflection mapping principle of reflectors defined to be the locations at which there is
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the time-coincidence of downgoing and upgoing waves (Claerbout, 1971). What is truly
amazing is that Claerbout expressed the foregoing ideas some 27 years before this analyt-
ical tour-de-force of Liu and Tromp. We shall now re-examine the above in the simpler
context of discrete systems for the adjoint equation, derived directly in the frequency do-
main, with the final result in frequency again an independent verification of the Claerbout
reflection mapping principle.

DISCRETE ADJOINT STATE METHOD – ANALYSIS FOR THE ELASTIC
WAVE EQUATION IN THE FREQUENCY DOMAIN

Pratt (Pratt, 1999) presented, in the frequency domain, a direct way to arrive at an
expression for the gradient of the misfit function. He used again, the least squares error
functional, in the frequency domain, but did not use the Lagrange dual variable approach.
Instead, he directly took the gradient of the misfit, concatenated all the expressions into a
single expression and then correctly extracted the adjoint state variables. We will follow his
development, essentially equation by equation, and when useful, we will cross-reference
the previous section. We will use the same variables described in the previous derivation
of the continuous adjoint state method.

We start with the forward problem, which is now in discrete form and includes all
boundary conditions. It is represented, in the frequency domain, after temporal Fourier
transform of the original partial differential equation, as a linear system of equations given
by

L(ω)s(ω) = f(ω) (21)

The operator L(ω) contains all the information about the linear operator which defines the
original partial differential equation, including all boundary conditions. The state variables,
s(ω), are complex-valued functions of frequency and spatial co-ordinates, which are indi-
cated implicitly by the index of the vector in (21). The state variables will depend on the
material parameters, which will be denoted by the vector p of dimension m. The right-
hand side of (21) represents all sources. For future clarity, we need to define the indices of
the matrices and vectors appearing in (21). The vector s(ω) has l elements and consists of
the discrete values of the displacement vector at all points in the numerical grid. The size
of the matrix L(ω) is l× l. We will define the data residual, δd(ω), the difference between
simulated data, s(ω), and recorded data, d(ω), as a vector, s(ω)− d(ω), on a sub domain
of n receiver positions.

The squared sum of the data residual vector is the norm of the complex data residual
and is defined as

E(p) =
1

2
δd(ω)T δd∗(ω), (22)

with the usual notation of superscript T for transpose and ∗ for complex conjugation. In
(22) the factor of 1/2 is introduced for convenience.

The next step is to compute the gradient of E(p) with respect to p. This is completely
analogous to the computation of the variation of χ in (9) in the analysis of the previous
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section. Thus we have, via the chain rule, that

∇pE(p) =
∂E(p)

∂p
= <eal{Jtδd∗(ω)}. (23)

There is a big difference as to how we arrived at the gradient of E(p) and the variation of
χ. We did not introduce the Lagrange dual formulation, but computed the gradient directly.
The problem is now the calculation of the matrix J. What is this matrix, exactly?

We can see from the (23) that this matrix is the derivative of the displacement vector,
s(ω), at the n receiver locations, with respect to the m-vector p. It is commonly known as
the Fréchet derivative matrix or sensitivity matrix, whose elements are given by

Jij =
∂si

∂pj

i = 1 . . . n and j = 1 . . . m (24)

In practice, we would have to recompute the predicted measurements of the vector dis-
placement m times, a very costly matter in three dimensions, in which we would have to
solve, via LU decomposition, the matrix system of equations (21). We would like to avoid
all these calculations by concatenating all the required operations in the gradient calcula-
tion, regrouping them and arriving at an adjoint formulation analogous to that presented in
(20).

To facilitate this reduction of operations, which in fact will lead us to the adjoint state,
we redefine our matrix JT to be m × l and the vector δd∗(ω) to be l × 1 by padding with
the appropriate number of zeros. The new matrix will be denoted by Ĵ, in which the partial
derivatives are now computed for the entire grid while the augmented data residual vector
will be denoted by δd̂∗(ω). The gradient of E(p) is now given by

∇pE(p) = <eal{Ĵtδd̂∗(ω)}. (25)

Pratt now looks at each column of the matrix Ĵ and explicitly computes this column
vector directly from the forward problem. He then assembles all the columns to create Ĵ.
This new Ĵ is substituted explicitly into (25) and the adjoint state is directly identified. The
math steps are given below:

1. Compute the Columns of Ĵ

(a) We differentiate both sides of (21), assuming that the sources are not dependent on
p and obtain

∂

∂pi

(L(ω)s(ω)) = 0. (26)

which becomes

L(ω)
∂s(ω)

∂pi

= −∂L(ω)

∂pi

s(ω) (27)
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(b) We solve (27) for the elements of Ĵ in terms of virtual sources f
(i)
virt(ω) to obtain

∂s(ω)

∂pi

= −L−1(ω)
∂L(ω)

∂pi

s(ω) = L−1(ω)f
(i)
virt(ω). (28)

2. Assemble the columns of Ĵ and substitute into the gradient expression (25).

(a) We substitute the expression from (28) and assemble the matrix Ĵ to obtain

Ĵ =

[
∂s(ω)

∂p1

∂s(ω)

∂p2

. . .
∂s(ω)

∂pm

]
= L−1(ω)

[
f
(1)
virt(ω)f

(2)
virt(ω) · · · f (m)

virt (ω)
]
. (29)

This can be written in a compact form given by

Ĵ = L−1(ω)F. (30)

(b) We put everything together to obtain a final expression for the gradient. We insert
the compact form of the Fréchet derivative matrix (30) into the expression for the
gradient (25) to arrive at

∇pE(p) = <eal{Ĵtδd̂∗(ω)} = <eal{FT
[
L−1(ω)

]T
δd̂∗(ω)}. (31)

3. Regroup the calculations and interpret the final form for the gradient as Claerbout’s
imaging principle.

(a) In (31) we can define a new variable

v =
[
L−1(ω)

]T
δd̂∗(ω). (32)

The expression for the gradient of the error becomes

∇pE(p) = <eal{FTv}. (33)

(b) We can interpret v as the field obtained by taking the conjugated residual vec-
tor defined at the receivers and applying the inverse of exactly the same forward
modelling operator as used in (21) [The transpose in (32) disappears under the as-
sumption of reciprocity]. Furthermore, we are in effect back-propagating the time-
reversed residuals, since conjugation in frequency is equivalent to time-reversal.
We can also interpret the gradient by explicitly writing out the expression for one
element of the gradient. Thus we have

∂E(p)

∂pm

= <eal{−s(ω)T ∂L(ω)

∂pm

T

v}. (34)

If we neglect the wave-operator in the previous equation, and we consider the first
step of our inversion iteration, we see that we have, as Pratt states on page 891 of
his paper, the equivalent to prestack reverse-time migration. That is, we have at the
reflector, the zero-lag cross-correlation in time. This is simply done by integrat-
ing (34) over all frequencies. The field, v, in frequency, is the exact equivalent of
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the adjoint field presented in the previous section. Clearly the derivation is much
simpler than before. However, we are still left with using the gradient in our com-
putation. Each iteration of our inversion involves solving the forward problem,
solving the adjoint problem and solving a third forward problem for finding the
size of the step-length as we descend down the gradient to achieve a minimum and
our final model. We note again, that by using the adjoint method, we have consid-
erably reduced the computational load by avoiding the solution of many forward
problems for each iteration of our inversion algorithm.

OUTLINE OF BASIC IMPLEMENTATION

In the previous sections, we have presented, in tutorial fashion, the essence of the ad-
joint method, in all its different guises as applied to geophysical inverse problems. What
remains is to program the foregoing algorithms. We now indicate at a high-level how this
is done. We iterate the algorithm presented below until convergence or until the maximum
number of iterations is reached:

• Solve the forward problem to find the residuals and E(p). The forward problem is
in itself not trivial, but can be implemented in either time or frequency and spatially
discretized in many different ways.

• Solve the adjoint problem and in combination with the solution to the forward prob-
lem obtain ∇pE(p) . That, for example in the temporal, continuous case, would
involve calculation of the Fréchet kernels as described in (20). In the discrete fre-
quency adjoint method, we would compute (31).

• Perform a line search to find α (one or more forward modelling steps) if a conjugate
gradient-type method is used.

• Update the model: p(k+1) = p(k) + α∇pE(p)

CONCLUSIONS

In this tutorial paper, we have presented in considerable detail, the continuous adjoint
state method for the elastodynamic equation and showed how to derive the Fréchet kernels
used in a gradient descent method. We followed this by deriving the adjoint state method
for the discretized elastodynamic equations directly in the frequency domain. All the messy
details were included (and hidden!) inside the forward modelling operator. In both cases,
the final result for the gradient of the squared misfit function was related to Claerbout’s
reflector mapping principle.
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