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Sensitivity analysis for micro-seismic events 

John C. Bancroft 

ABSTRACT 
Increasing the accuracy of locating microseismic events is an ongoing objective to 

validate the location of insertion areas for CO2

These papers have been combined to be used as a tool to understand the linear algebra 
behind the SVD method. 

 injection or well fracturing.  Various 
methods are available for estimating the location using data collected from the surface or 
in a borehole.  The accuracy of an estimated source location varies with the accuracy of 
the known geometry of the receivers, the velocity of the medium, and in measuring the 
arrival times of an event.  Two papers have previously been presented for evaluating the 
sensitivity of locating a microseismic event: a Monte Carlo method that perturbed the 
geometry and a linear algebra method that used singular value decomposition (SVD). 

INTRODUCTION 
Mote Carlo method 

The Apollonius method is an analytic solution that directly computes a microseismic 
source time and location using the first arrival times at four arbitrarily located receivers 
Bancroft & Du (2007) and Bancroft et al. (2009). 

The traveltime equations for raypaths between a source at (x0, y0, z0) and four 
arbitrarily located receivers at (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4

 

) are: 
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. (1) 

We assume that the receivers used in the analytic solution are part of a larger grid 
system, such as many receivers on the surface or in a well.   

The above estimate will produce results that match the machine accuracy when there 
is no error in the estimate of the arrival times or the locations of the receivers.  Assuming 
that the velocity and location of the receivers are known exactly, we assume there is a 
noise error in the estimated arrival times (jitter) at the receivers.  We then estimate the 
error in the source location for different levels of jitter. 

The first example in Figure 1 shows the Apollonius solution for four receivers 
arbitrarily located near the surface and the source located at a depth that matches the 
spread of the receivers.  A source clock-time was chosen and the clock-times at the 
receivers calculated.  Gausian random jitter was added to the clock-time of the receivers, 
then using only the receiver locations and their clock-times, a source clock-time and its 
location were estimated.  This procedure was repeated one-hundred times with a jitter 
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that had a standard deviation (SD) of 0.1 ms, then the mean and SD of the source location 
estimated.  In Figure 1, the receivers are a green “x”, the source location a blue “+”, and 
the red circles are the 100 estimated locations. 

    

a)    b) 

    

c)    d) 

FIG. 1  Four views of an Apollonius solution with four receivers “x” near the surface, the known 
source “+” and the estimated source locations “o”.  The standard deviation of the noise was 1 ms. 

The above methods required many estimates to establish an estimate of the source 
location.  The following method uses linear algebra to accomplish the same task. 

Linear algebra method using SVD 
The sensitivity of locating a microseismic event can be computed using linear algebra.  

The covariance matrix and singular value decomposition (SVD), are used to produce an 
analytic solution, that is a more sophisticated than the Mote Carlo approach.  The results 
in Figure 2 are a direct computation using this method. 

This is the method used as motivation for developing the notes on linear algebra. 
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FIG. 2  Ellipsoid of the estimated source location using the SVD method.  

 

REVISITING LINEAR ALGEBRA 

Consider the equation of a plane in 3D space of x, y, and z,  

 ax by cz d� � � , (2) 

where a, b, c, and d are the parameters that define the plane.  The values of  d/a, d/b, 
and d/c define the intersection of the plane on the x, y, and z axis.  A plane may also be 
defined using a vector that is normal to the plane and a point on the line that intersects the 
plane. 

One plane is shown in Figure 3a.  Two intersecting planes produce a common line as 
illustrated in (b).  A third plane will intersect that line to give one point

Three equations that define three, non-parallel planes are given below in the system of 
equations (3).  When each equation is considered separately, any two variables of x, y, or 
z can be used to compute the third variable on the plane.  However, as a group of three 
equations we can solve for single values that define the one common point (x, y, z), i.e., 

 as illustrated in 
(c).  Note that the planes cannot be parallel if they are to intersect. 

 
1 1 1 1

2 2 2 2

3 3 3 3
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a x b y c z d
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. (3) 
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a)      b) 

 
FIG. 3  A 3D view of a) one plane, b) the intersection of two planes to give a line, and c) the 

intersection of three planes to give one point. 

We can solve this system of equations using a number of techniques such as: 
� Direct inversion,  
� Gausian elimination, or 
� Iterative methods. 

Direct inversion 
The equations in (3) may be written in linear algebra form 
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2 2 2 2

3 3 3 3
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We assume the G matrix is invertable, and if it is, then we solve for x using 

 -1x = G d . (6) 

We should discuss things like the rank of G, but if the three equations are linearly 
independent, then G will be invertable. 

A great thing about linear algebra is that the number of equations and unknown are not 
limited and can have any reasonable number as long as the number of equations match’s 
the number of unknowns. 

Advanced programming languages such as MATLAB

The inversion of matrices may be computer intensive and 

 take advantage of these simple 
forms of equations to simplify programming. 

alternative methods

Gauss elimination 

 may be 
used to find solutions for x, such as the following iterative methods. 

We may recall our high school or early university math courses in which we used 
scaling and subtraction to eliminate x, leaving two equations with y and z.  We then 
eliminate y from these two equations to get one equation in z; the defined the value of z.  
Working backwards, we then solve to y and finally for x.  We accomplish this process by 
dividing each equation in (3) by the ai

 

 coefficient giving new values for the remaining 
coefficients, i.e., 

1 1 1

2 2 2

3 3 3

x b y c z d

x b y c z d

x b y c z d

� � �

� � �

� � �

� ��

� ��

� ��

. (7) 

Subtracting the second equation from the first, and then the third from the second 
gives two equations, which can be rescaled to eliminate the bi 

 

coefficients giving 

1 1

2 2

ˆˆ

ˆˆ

y c z d

y c z d

� �

� �

��

��
. (8) 

The variable y can now eliminate by another subtraction to give the value for z.  Using 
one equation from (8) we can find the value of y, and from (7) we can get the value of x. 

An important point to remember with the exact solution where we have the same 
number of equations as unknowns is that we can multiply any equation with a scalar.  We 
will see later that we will have to be very careful when scaling equations when using the 
least squares method.  
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Iterative method: Jacobi 
The Jacobi method separates the G matrix into three matrices; the diagonal D, upper 

U, and lower L, as 

 � 

�  �  �  � 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

                                                         

a b c a b c
a b c b c a
a b c c a b

� � � � � � � �
� 	 � 	 � 	 � 	� � � �� 	 � 	 � 	 � 	
� 	 � 	 � 	 � 	
 � 
 � 
 � 
 �

� � �

G

G D U L

. (9) 

Our problem them becomes 
 � ��D + U L x = d , (10) 

or 
 � �� �Dx = d U L x . (11) 

If we assume the x in the right side of equation (11) is an estimated value xi-1, then we 
can compute a new value for xi

 

 on the left side from 

� �1
1i i

�
�� �� �
 �x = D d U L x , (12) 

which is now in an iterative form. 

For stability, a diagonal element in D must be greater than the sum of the remaining 
elements in the associated row or column.  We can improve the stability by adding values 
to the diagonal.  (We may be familiar with adding prewhitening in deconvolution.)  This 
is accomplished with a scale I matrix �I  giving 

 � � � �1
1 �i i�

� � �� � �
 �x = D d U L xI  (13) 

The diagonal matrix �I  can be modified to contain values that vary, depending on the 
data that remain in a particular row or column. 

The Jacobi method uses all the previous values if xi-1 to update all the new values xi.  
It is possible to use the newly computed values of xi to compute the remaining values of 
xi

Iterative method: Gauss-Seidel 

, that is known as the Gauss-Seidel method. 

Consider equation (7) that is rewritten as an iterative process in the element form 

 
� �
� �
� �

1 1 1 1 1

2 2 2 1

3 3 3

i ii

i

ii

i

i

i

d b y c z

d a c z

z d yb

x

xa

y

x � �

�

� � �

� � �

� � �

. (14) 

The element xi is computed using the previous values of yi-1 and zi-1.  The next line of 
the equation now uses the new value of xi to assist in estimating yi.  The third line uses 
both of the newly estimated values xi and yi to estimate zi

  

. 
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Rewriting equation (14) in the form of 

 
� �
� �
� �

1 1 1 1 1 1

2 2 2 2 1

3 3 3 3

                      

                       

                          

i

i

i

i

i i

ii

i

x

x

x

a d b y c z

a b d cy

a y

z

b c z d

� �

�

� � �

� � �

� � �

, (15) 

we can visualizes the matrix form 
 � � 1i i� �D + L x = d Ux , (16) 

or in the Gauss-Seidel form as 

 � � � �1
1i l

�
� �x = D + L d Ux . (17) 

Now the lower matrix L is part of the inverted matrix and improves the rate of 
convergence over the Jacobi method.  Stability becomes an issue, and the latter values of 
xi may converge faster than the initial values.  Reordering or randomizing the elements of 
x may be of value.   

Another problem with these iterative methods is that the higher frequencies converge 
faster than the lower frequencies and may produce a low frequency instability.  This 
problem may be addressed by a Multigrid method.   

Comment 
The main reason for me repeating this basic information is to emphasize that we scale 

and add or subtracts the initial equation to get our solution.  I can multiply the first 
equation by 10,000 and it will not affect the solution.  We simply scale the other 
equations accordingly and keep iterating towards the solution.  We will now take a big 
leap into least squares solutions where scaling becomes very important.  Usually there are 
a large number of equations, samples, or observations, more than our unknowns and we 
cannot arbitrarily scale an equation without affecting the solution.   

If all samples or observations were correct, then we could choose the number of 
equations that equals the unknowns.  But our equations are not exact and we now assume 
there is some error or noise, and that there may be some dependence between them.   

A SIMPLE LEAST SQUARES PROBLEM 
Our model consists of a 2D linear event, taken from a process, where the horizontal 

component x is defined, and we take readings or make observations of the vertical 
component y.  The equation of the noise free measurements is the conventional equation 
of a straight line 

 y mx c� � , (18) 

where m is the slope of the line and c a constant that is the intersection point on the y axis 
(where x = 0).  The components m and c are defined by the process but are not known to 
us, and it is our objective to estimate them. 
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The actual measurements are contaminated with noise, which can be a result of 
measurement error or a limitation of the equipment.  Assume experience has told us 
(prior knowledge) that the errors of our measurements or noise have a Gausian 
distribution, and that we know the standard deviation 

iy� .  This error distribution could 
be defined by the measuring apparatus, or estimated for example by having 100 people 
measure a temperature at exactly the same time (x5

Figure 4 shows a plot of our model in which we take measurements at specific values 
of x at 0, 2, 4, 6, 8, and 10, or x

).   

i

   

 for i = 1 to I =6.  The true linear process is defined by the 
gray line.  Blue lines at each x location define the probability in the z direction of the 
estimated locations of the y values.  Two standard deviations of 0.9 and 0.3 are 
illustrated.  Black x’s are examples of observed values of y, which do fall in the range 
illustrated by the distributions.  The following examples may have different noise values 
that may vary with each figure.  

a)      b) 

FIG. 4  Linear model (gray) showing the SD’s of a) 0.9 and b) 0.3.  

We will initially assume that the distributions will have the same SD’s for each set of 
measurements.  We will then introduce a set of measurements where the SD may vary. 

 

USING THE ESTIMATED DATA 
Our set of measurements contain six observed values for yi, with each observation 

containing a random error ei
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 controlled by the SD.  Figure 5 contains a 2D plot of the 
data, where, once again, the defined line is gray and the observations are black x’s. 
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FIG. 5  Display of six observations yi at six values of xi

 If we assume estimated values for the slope as 

. 

m̂ and constant ĉ , then these six 
observations may be written as linear equations 
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. (19) 

We write these equations in matrix form 

 Gp = y , (20) 

where G is a matrix that relates the geometry of the equations, p a vector that containing 
the unknown parameters m and c, and y the observed values of yi

 

, i.e.,   
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We are now in the realm of least squares (LS) solutions as we have more observations 
than unknowns, and the normal LS equation is  

 T TG Gp = G y
,
 (22) 

and the standard solution p for m and c becomes 

 � �-1T Tp = G G G y
.
 (23) 

The result of the LS solution is shown as the red line in Figure 6.  Notice that at this point 
there is no mention of the observation noise (

iy� ) terms in the LS solution.   

 

FIG. 6  Least squares solution to six observations. 

We can assume any value for the error terms say a �  of 0.1 or 10 in equation (23) and 
we would still get the same answer.  That is because our LS solution had assumed the 
noise distributions for each observation were all equal

We will now consider the case when the error distribution can be different for each 
observation.  Figure 7 shows five observations with a 

, as our original model had 
assumed.   

iy�  of 0.9, while the fifth 
observation has a 

5y� of 0.09.  The distributions are now plotted at the observed point, as 
that is all we know.  The LS solution is indifferent to the accuracy of the 5th
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 observation 
as it treats all observations equally, as evident by the LS solution.   
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FIG. 7  Data example when the 5th

SCALING THE EQUATIONS AND THE COVARIANCE MATRIX 

 observation is more accurate than the remaining observations.  
The red line indicates the LS solution is indifferent to the more accurate observation. 

We are aware of a more accurate observation, so let us try an experiment where we 
scale an equation to improve its weight when estimating a solution.  If we now assume 
the fifth equation is more accurate, what would happen if we arbitrarily scaled the 
equation by a large value L, 
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. (24) 

We may be tempted to try to find a new point � �5 5,x y� ��� ��  to replace the original value 

� �5 5,x y by some sort of scaling, but that does not work.  The only satisfactory hint at an 
explanation for the weight is to assume equation 5 is repeated L times, 
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. (25) 

If we repeated y5 L times, the new G matrix will become very long, and it transpose GT

 

 
very wide, i.e., 

1

1

1

55 5 5 5

5

1

1 2 3 4 6

1

5

5

1
1
1

1
11 1 1 1 1

... 1

1
...

  and  
1 1

1
1

1 1 1

1

x
x
x
x

x x x x xx x x x

x

x
x

x
x

� �
� 	
� 	
� 	
� 	
� 	
� 	� �

� � � 	� 	
� 	
 �
� 	
� 	
� 	
� 	
� 	
� 	
 �

TG G . (26) 

The GT

 

G matrix becomes a small 2x2 matrix 

a b
c d
� �

� � 	

 �

TG G  (27) 

The coefficients of the GT

 

G matrix will be biased by the repeated values and the left side 
of the normal equation becomes 

TG Gp
.
 (28) 

The right side of the normal equation becomes 
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55 5 5 5

1

2

3

5

5

4

1 2 3

6

5

4 6...
 

1 1 1 1 1
...

1 1 1 1 1
yx x x x
y

y
y
y
y

x x x x x e
f

y

y
y

� �
� 	
� 	
� 	
� 	
� 	
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� �� 	� 	 � 	
� 	
 � 
 �
� 	
� 	
� 	
� 	
� 	
� 	
 �

TG y . (29) 

where the elements e and f will be significantly modified by the number of repeated 
elements.  However that is not the case as we should use something like a weight vector 
w = [1, 1, 1, 1, L, 1]’ to scale the amplitudes, i.e., 

 wGp = wy  (30) 

which becomes 

 

1 1

2

5 5

2

3 3

4 4

6 6

1
1
1

   and  =
1

1

x y
x y
x y
x y

x y
Lx L Ly

� � � �
� 	 � 	
� 	 � 	
� 	 � 	

� � 	 � 	
� 	 � 	
� 	 � 	
� 	 � 	
� 	 � 	
 � 
 �

wGp wy . (31) 

Scaling within the LS solution is different from scaling within the exact solution 
where scaling has no effect on the solution.  Now scaling does have a significant effect 
and allows us to improve our solution by using information or prior knowledge about the 
process in the way the observations we collected. 

Equations (30) and (31) assumed some form of a dot multiplication with the vector w.  
The linear algebra approach is to multiply each side of the forward equation by a square 
matrix W that contains the inverse of i�  or 1/ i�  on the diagonal.  This matrix contains 
zeros, except on the diagonal where the elements are the inverse of the SD   or i ii� � .  
This matrix will scale each equation by the inverse of the SD, and has the effect of 
making the error distribution to be the same for each equation, which is ideal for the LS 
method.   
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 �

W . (32) 

The normal equation for the LS solution becomes 

 � � � �T TWG WGp = WG Wy , (33) 

or 

 T T T TG W WGp = G W Wy . (34) 

Since W and WT are diagonal matrices, the product WTW is also diagonal with the 
elements of W squared.  The inverse of WTW is also a diagonal matrix with elements of 

WT � �-1TW WW inverted.  The diagonal elements of , which we will call Cy

 

, are the 
variances or square of the SD. 

� �

2
11

2
22

2
33

2
44

2
55

2
66

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

�
�

�
�

�
�

� �
� 	
� 	
� 	

� � 	
� 	
� 	
� 	
� 	
 �

-1T
yC = W W . (35) 

This Cy matrix may be referred to as the variance matrix, the covariance matrix, or even 
the variance-covariance matrix.  I will use the term covariance matrix that will allow us 
to add non-diagonal terms that will include some form of a dependence between 
observations.  Assume our observations require different people to make a measurement 
to eliminate some kind of bias, but somehow two measurements are made by the same 
person.  There is a possibility that the error of those two measurements are related or 
biased and we would measure that as a covariance.  If the same person took the 4th and 6th 
reading, the covariance matrix would become  
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-1T
yC = W W , (36) 

where the off diagonal elements 6 4� �  and 4 6� �  establish the covariance relationship.  
The normal equation can now be written with the covariance matrix as  

 T -1 T -1G C Gp = G C y . (37) 

The covariance matrix is very important to us as we can now use statistical 
information about our measurement system to obtain even more accurate results.   

The covariance matrix has assumed our noise is Gaussian.  If the noise is not Gaussian 
then other weighting matrices can be used. 

Let’s return to out example where the 5th

 

 observation was made with a more accurate 
method that had a SD that was 10 times smaller than the other observations, (maybe a 
digital thermometer was used rather than a glass thermometer).  Using this additional 
information in our least squares solution, we get the following result in Figure 8, where 
the weighted least squared solution (WLS) (cyan) is closer to the defined line than the 
original LS solution (red).  Note that the WLS line passes very close to the accurate fifth 
observation. 

FIG. 8  The WLS solution (cyan) includes the weighting matrix and is a closer match to the true 
solution (gray line) than the LS solution (red). 
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Data from the previous example 
The following data was produced from the run that produced Figure 7.  The data 

defines the points and their SD’s, the covariance matrix, and the solutions for the LS and 
WLS solutions.  Note the improvement in m and c of the WLS solution. 

Start least squares example.   
****************************.   
  Point  X    Y   Sdv     Noise2  y2  
  1      0    2   0.900   0.989   2.989 
  2      2    4   0.900  -0.250   3.750 
  3      4    6   0.900   0.631   6.631 
  4      6    8   0.900  -1.847   6.153 
  5      8   10   0.090  -0.032   9.968 
  6     10   12   0.900  -0.741  11.259 
 
Covariance matrix2  
    1.2346         0         0         0         0         0 
         0    1.2346         0         0         0         0 
         0         0    1.2346         0         0         0 
         0         0         0    1.2346         0         0 
         0         0         0         0  123.4568         0 
         0         0         0         0         0    1.2346 
 
Least-squares solution of m and c for each method   
      Defined   LS solution    WLS solution  
 m =  1        0.8504         0.9382  
 c =  2        2.5397         2.4422  
 

 

SIMPLIFYING THE LS PROBLEM 
We do have a complicated system of matrices and vectors  

 T T T TG W WGp = G W Wy . (38) 

that can be simplified to 

 Mp = z . (39) 

where  

 , and  T T T TM = G W WG z = G W Wy . (40) 

M is now a square matrix, with a side dimension equal to the parameter vector.  It is 
called the Normal Matrix. The square matrix allows special operations such as finding 
eigenvalues and eigenvectors, along with singular value decomposition (SDV). 

Before we proceed with our goal of estimating the sensitivity of micro seismic data, 
we need two more tools to work with.  The first is eigenvalues and eigenvectors that are 
standard in most linear algebra courses.  The second is singular value decomposition 
(SVD) that is possibly the most important development in linear algebra. 
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REVIEW OF EIGENVECTORS AND EIGENVALUES 
Consider a matrix M that is multiplied by a vector v to get a new vector p.   

 Mv = p . (41) 

The matrix M maps the vector v to become a new vector p.  In 3D space, a vector may be 
defined from the origin to a point.  M then moves that point to somewhere else.  M can 
also move all points to new locations by rotation or scaling. 

Matrix scaling 
Suppose we have data (x, t) that we want to stretch in the t direction, but leave the 

other axis the same.  This may not be to exciting, but I did need this approach to scale the 
coordinates of a circle to many different ellipse for a dip moveout (DMO) algorithm.  The 
points on a unit circle were defined by various angles � , using cosx ��  and sinz �� .  
The 2D scaling matrix for one ellipse was 

 
1 0
0 2
� �

� � 	

 �

M , (42) 

where the t parameters were all scaled by 2.  Consider Figure 9 where three points on a 
unit circle (1, 0), (0.7, 0.7), and (1, 0) which are mapped to three points on an ellipse. 
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� � � � � �
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 � 
 � 
 �
Mv = = p . (43) 

 

FIG. 9  Three points on a circle are mapped to three points on an ellipse. 
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Rotational matrix 
We might remember a rotational matrix  

 
cos sin
sin cos

� �
� �

�� �
� � 	

 �

M , (44) 

where a point can be mapped into a new value on a rotated axis, rotated counterclockwise 
by angle an � .   

An example of rotation is displayed in Figure 10 where an ellipse is rotated 60 degrees 
counter clockwise.  The black lines map the movement of points from the original blue 
ellipse to the red ellipse. 

 

FIG. 10  Rotation of a blue ellipse counter clock-wise 60 degrees to the red ellipse. 

 

Scaling with shear is illustrated in Figure 11 that used the matrix 

 
2 1
0 0.5
� �

� � 	

 �

M . (45) 
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FIG. 11  Matrix scaling with shear. 

Figure 11 has some nice properties.  Consider two lines that scale the data by 
extending points away from the origin as indicated in the icon below.   

 

These green vectors are very special vectors and are unique for M.  The operation of M 
on the green vectors Mv is the same as scaling the green vectors � v.  These vectors v are 
called eigenvectors �.  The change in magnitude of the eigenvectors  is called the 
eigenvalue.  These vectors will have even more importance when we consider the least 
squares solution that has an M matrix that is symmetric, derived from GT

Eigenvectors and eigenvalues 

G.  In this case, 
the eigenvectors will be orthogonal, and have real eigenvalues. 

We can write equations for the eigenvectors x, and the eigenvalues � , as 

 ��Mx x , (46) 

where we see that the matrix operation only scales this special vector by � . 
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We find x and �  by first finding the eigenvalues �  using. 

 � � 0� �� � � �Mx x M I x . (47) 

where I is the identity matrix.  Now consider 

 � � � �1 0� ��� � � �M I M I x x . (48) 

The only case where this is possible is when the matrix ��M I  is not invertible, and that 
means the determinant is zero,  

 � �det 0�� �M I . (49) 

For a 2D system,  

 � � � �� �11 21
11 22 21 21

21 22

det 0
m m

m m m m
m m

�
� � �

�
�� �

� � � � � � �� 	�
 �
M I , (50) 

giving the quadratic equation  

 2 0a b c� �� � � , (51) 

that can be solved for one or two values of � , that can be real and complex. 

The eigenvectors can be found using the eigenvalues equation 

 11 21

21 22

m m x x
m m y y

�
� � � � � �

�� 	 � 	 � 	

 � 
 �
 �

. (52) 

or 

 
� �
� �

11 12

21 22

0

0

m x m y

m x m y

�

�

� � �

� � �
. (53) 

Notice that in both these equations, the eigenvectors pass through the origin, or  

 y mx� . (54) 

We have shown the solutions for a 2D case: for a 3D system, the characteristic 
equation will be of third order, and an nD system will have an nth order characteristic 
equation.  There are exact solutions up to a 5th

Some properties of eigenvalues and eigenvectors: 

 order equation, but then iterative methods 
are required to solve the higher order equations for the eigenvalues.  

1. � � 1 2 3det ...i n� � � � �� ��M . 

2. if M is symmetric or Hermitian, � �*  or   ij jim m� �TM M , a result of M = 
GTG, all eigenvalues are real. 
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3. the eigenvector of a symmetric matrix are orthogonal

4. if M is diagonal, upper triangular or lower triangular, the Eigenvalues are the 
diagonal entries of M. 

, (only for distinct 
eigenvalues). 

5. if M in Unitary, � �-1 TM = M , the magnitude of all eigenvalues equal 1, 1� �  

6. if M is a rotational matrix, the eigenvalues will be complex. 
7. if M can be written as -1M = Q��  were Q contains the eigenvectors, then �  

is a diagonal matrix with the eigenvalues on the diagonal (more in this later).  

The following examples ion Figure 12 are copied from the website below and 
illustrate various matrix operations on vectors in 2D space. 

 

FIG. 12  Examples from:   http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors 

I have described the use of eigenvalues and eigenvectors using simple vectors.  The 
dimensions of M can be very large, and their use extends well beyond this simplifying 
explanation as expressed in the following quote: 

“…the concept of direction loses its ordinary meaning, …These ideas often are extended 
to more general situations, where scalars are elements of any field, vectors are elements 
of any vector space, and linear transformations may or may not be represented by matrix 
multiplication. For example, instead of real numbers, scalars may be complex numbers; 
instead of arrows, vectors may be functions or frequencies; instead of matrix 
multiplication, linear transformations may be operators such as the derivative from 
calculus. These are only a few of countless examples where eigenvectors and eigenvalues 
are important.” 

Taken from:  http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors  
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INTRODUCING THE SVD METHOD 
The singular value decomposition (SVD) method was used to estimate 3D hypocenter 

location and origin time of a microseismic event.  Given the variance of observed first-
break arrival time, a 3D error distribution of the hypocenter location is calculated.  It is 
shown that uncertainty in the vertical direction is much larger than the in horizontal 
directions. 

First-break arrival time can be used to estimate location of a microseismic event and 
its origin time. Figure 13 shows the geometry of ray paths from source to surface 
receivers, constant RMS velocity is assumed for simplification. 

 

FIG. 13  Illustration of ray paths from source to receivers.  

S(x, y, z, t) is a microseismic event with origin clock-time t and location (x, y, z).   
Ri(xi, yi, zi, ti) is a surface receiver at (xi, yi, zi) with observed first-break arrival time ti

Given the first-break arrival times t

.  
A constant RMS velocity is assumed. 

1, t2, t3, t4, …, tm at receivers R1, R2, R3, R4, …, 
Rm, the location and origin time of a microseismic event can be estimated (Bancroft and 
Du, 2006).  Suppose that all receivers start to record data at arbitrary clock-time t0, 
receiver Ri (xi, yi, zi) recorded first-break arrival time at ti

 

. The travel time from 
hypocenter to receivers satisfy 

� �22 2 2 2
0 ( ) ( ) ( )i i i iv t t x x y y z z� � � � � � �  (55) 

In order to change above quadratic equations into a linear parameter estimation 
problem, we apply the above equation in receiver Ri-1

 

,  

� �22 2 2 2
1 0 1 1 1( ) ( ) ( )i i i iv t t x x y y z z� � � �� � � � � � �  (56) 

Subtract equations with i = 2 from i=1 to get: 
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� � � � � � � �2

1 1 1 1 0

2 2 2 2 2 2 2 2 2
1 1 1 1

2 2 2  2

( ) ( )
i i i i i i i i

i i i i i i i i

x x x y y x z z z v t t t

v t t x y z x y z
� � � �

� � � �

� � � � � � �

� � � � � � � �
 (57) 

If we continue this process and write the results in matrix form, we get 

 

2
2 1 2 1 2 1 2 1

2
3 2 3 2 3 2 3 2

2
4 3 4 3 4 3 4 3

1 1 1 1

2( )     2( )    2( )    2 ( )

2( )     2( )    2( )    2 ( )

2( )     2( )    2( )    2 ( )
...
2( )     2( )    2( )    2(m m m m m m m m

x x y y z z v t t
x x y y z z v t t
x x y y z z v t t

x x y y z z t t� � � �

� � � � �

� � � � �

� � � � �

� � � � �

1

2

3

0
m)

d
x

d
y

d
z
t

d

� �
� � � 	
� 	 � 	
� 	 � 	�
� 	 � 	
� 	 � 	

 �

� �
� 	
� 	
� 	
� 	
� 	
� 	
� � �	� 



	
�

, (58) 

where  

 � � � �2 2 2 2 2 2 2 2 2
1 1 1 1i i i i i i i i id v t t x y z x y z� � � �� � � � � � � �  (59) 

For convenience we denote the coefficient matrix at the left-side as G, the parameter 
vector to be estimated as m, and known data at the right-side as d, 

 Gm = d . (60) 

To solve this linear regression problem the singular value decomposition (SVD) 
method (Aster et al., 2005) is used in this paper.  First, G is factored into 

 TG = USV  (61) 

where U is an m by m orthogonal matrix with columns that are unit basis vectors, S is an 
m by 4 diagonal matrix with nonnegative diagonal elements called singular values, V is a 
4 by 4 orthogonal matrix with columns that are basis vectors and T

If only the first p singular values are nonzero, then we can partition S as 

 means transpose. 

 
� �
� 	

 �

pS   0
S =

 0   0
, (62) 

then the solution to m will be 

 -1 T
p p pm = V S U d , (63) 

where Vp and Up

Assume that measurement errors of t

 mean the first p columns of V and U. 

i

i�
 are independent and normally distributed, 

standard deviations  can be incorporated into the solution by weighting G and d,  
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1 2

1 1 1( , , , )
m

diag
� � �

�wG = G , (64) 

 
1 2

1 1 1( , , , )w
m

diag
� � �

� �d d . (65) 

If the standard deviation for all ti

 

 are identical, then the covariance C for the estimated 
parameter vector m can be calculated by 

2�� -2 T
p p pC V S V . (66) 

The covariance matrix C can be used to estimate 95% confidence intervals for 
individual parameters which is given by 

 1/21.96 ( )diag� Cm , (67) 

If we consider combinations of multi-parameters, the confidence region is a 3D 
ellipsoid.  This ellipsoid can be calculated by diagonalizing the inverse of the covariance, 
C-1

 

, 

-1 TC = P�� , (68) 

where �  is a diagonal matrix of positive eigenvalues, and the columns of P are 
orthonormal eigenvectors.  The ith

 

 semimajor error ellipsoid axis direction is defined by 
P, i.e., its length l is determined by 

, / i il � � �
.
 (69) 

Example 
We use 10 surface receivers and constant RMS velocity v=3000m/s to estimate the 

location of a microseismic event and its error distribution.  First-break arrival times were 
perturbed with a Gaussian distribution of zero mean and standard deviation of 10ms and 
3ms respectively.  The 10ms uncertainty is considered an upper bound when observing 
first-break arrival times (Eisner et al., 2009).  

Figure 14 and Figure 15 are 2D views of error distributions with 2 ms and 10 ms 
standard deviations respectively.  It shows that the uncertainty in the vertical direction is 
much larger than in the horizontal directions.  For example, when the deviation is 10ms, 
the error in z direction is about 60 meters which is larger than the 8 meters of the x 
direction. 
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FIG. 14  2D view of error distribution of source with std=2ms.  

 

FIG. 15  2D view of error distribution of source with std=10ms.  
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Figure 16 is a 3D view of the error distribution of a source with a standard deviation 
equal to 2 ms and 10 ms respectively. 

    
a)      b) 

FIG. 16  3D view of the error distribution of a source a) with std=2ms and b) with std=10ms. 

CONCLUSION 
Two methods for estimating the sensitivity of a microseismic event were presented.  

The intent is to use these examples to illustrate the linear algebra of the second method 
with visual examples.  The linear algebra processes of model building, scaling, 
covariance matrix, least squares (LS), singular value decomposition (SVD), and 
sensitivity were presented. 

Given first-break arrival time at each receiver, the SVD method can be used to 
estimate a microseismic event and its origin time.  If the standard deviations are known, 
the error distribution of the source can be estimated. 
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