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ABSTRACT 
Fractures influence the permeability pathways and mechanical properties associated 

with a rock mass and therefore, are a crucial aspect in the characterization of the 
subsurface. In this study we develop an azimuthal AVO inversion algorithm using a 
simulated annealing optimization technique. The parameterization of the problem is in 
terms of an isotropic background with the inclusion of fractures through an addition of 
excess compliances to the medium. Preliminary inversion results demonstrate a 
reasonable estimate of the model parameters in addition to an excellent match between 
the data and synthetic data. Associated errors in the estimated model parameters are 
attributed to variable sensitivities of the model parameters to the objective function. 
Future work will attempt to address these issues through different parameterizations of 
the problem and additional constraints in the objective function.  

INTRODUCTION 
Characterization of azimuthally anisotropic media has been the subject of considerable 

interest in recent years, where the observed anisotropy could indicate the presence of 
oriented fractures in the subsurface. Fractures influence the permeability pathways and 
alter the mechanical properties of the rock mass, where they weaken or perhaps even 
strengthen its structure in prescribed directions. In addition, anisotropic materials result in 
differential stresses upon loading and result in deviations from the regional stress field. 
Knowledge of anisotropic parameters is therefore crucial in the characterization of the 
subsurface.  

In this study, we develop an azimuthal AVO inversion algorithm to estimate 
subsurface anisotropic parameters from reflection seismic measurements. The approach is 
similar to that of Downton and Roure (2010) where a fracture model is used for the 
parameterization of the problem. Beginning with a set of initial model parameters, a 
synthetic dataset is generated using a forward modeling scheme and the system is 
subsequently optimized to obtain a solution that minimizes a defined objective function.  

FORWARD MODEL 
The objective of an inverse problem is to obtain a set of model parameters (elastic 

properties) that reproduce the associated observations or data (seismic measurements) 
that correspond to some physical process (reflection from an interface). The forward 
problem is represented by 

 dGm �  (1) 

where G represents the forward operator, m is the set of model parameters and d is the 
data.  
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In the formulation of the forward problem, we assume an Earth model consisting of 
transversely isotropic (TI) layers, where the transverse isotropy is due to the presence of 
an aligned fracture system as shown in Figure 1.  

 

FIG. 1.  TI medium with a symmetry axis that coincides with the x1

Beginning with an isotropic background medium defined by the Lamé parameters, ��and 
� and density, we use the linear slip deformation model of Schoenberg and Sayers (1995) 
to insert fractures through the addition of a normal, Z

 axis. 

N and tangential, ZT fracture 
compliance to the isotropic fourth rank elastic compliance tensor. Subsequently, the 
inverse is calculated to obtain the effective elastic stiffness tensor for a medium 
containing fractures. In addition, a coordinate rotation about the x3

A TI medium is represented by nine non-vanishing elastic stiffness parameters when 
its symmetry axis coincides with one of the coordinate axes. When this is not the case, 
additional parameters appear in the elastic stiffness tensor and the medium cannot be 
regarded as a TI medium in the given coordinate system. Therefore, in calculating the 
reflection coefficients, simpler formulations such as that of Rüger (1998) for a TI media 
with a horizontal axis of symmetry (HTI) is insufficient. Here we use the formulation of 
�������	
 ���
 
�����	
 �������
 �����
 ��������
 ���
 
-wave reflection coefficients for 
weak contrast interfaces separating two weakly but arbitrarily anisotropic media. The 
derivation was based on a perturbative analysis, therefore requires the definition of a 
background P- and S-wave velocity. Here, the background P- and S-wave velocities were 
chosen to be the vertical P-wave velocity and the vertical S-wave velocity with a 
polarization in the x

 axis can be performed 
using Bond (1943) transformations to represent various fracture azimuths. The 
parameterization of the problem is therefore in terms of �, �, density, normal and 
tangential fracture compliance and fracture azimuth. 

2-x3 plane. The P-wave reflection coefficient is then given by 
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where Aij represent the density normalized elastic stiffness parameters in Voigt notation 
with i and j running from 1 to 6, � and � are the background P- and S-wave velocities 
respectively, Z=�� is the acoustic impedance, G=��2

w

 is the shear modulus, � is the 
density, � is the average angle of incidence and � is the measurement azimuth. The bar 
represents an averaging of the values (i.e. =½[w2+w1]) and � represents a difference 
of the values (i.e. �w= w2-w1

SIMULATED ANNEALING 

) above and below the reflecting interface. Upon calculation 
of the reflection coefficients, the synthetic seismograms are generated by convolving the 
reflectivity series with a wavelet.  

Due to the non-linearity of the forward model as outlined above, an iterative scheme is 
required to perform the inversion where an initial model is updated iteratively to obtain 
an optimal solution. Here we use the simulated annealing algorithm which models a 
physical process in which a solid is slowly cooled until it reaches a state that minimizes 
its internal energy. The original Metropolis algorithm (Metropolis et al., 1953) that 
describes the simulated annealing process involves a random walk in the model or 
solution space. At each step, an energy, which is defined as an error or objective function 
is calculate for the randomly selected solution. The acceptance criterion is then defined 
by a change in energy, �E < 0. However, if �E > 0, a new solution is accepted with a 
probability exp(-�E/T), where T is the temperature of the system. T is slowly lowered 
throughout the execution of the algorithm and the system eventually reaches a state of 
equilibrium or the final solution. The optimal solution is therefore achieved through the 
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minimization of the objective function. Simulated annealing is in the class of global 
optimization algorithms that attempt to locate the global minimum of a given function. 
However, convergence is only guaranteed for a high initial temperature and very slow 
cooling, which requires enormous compute times. Therefore, the annealing schedule 
becomes a crucial aspect of the inversion process. 

Here we use an alternative implementation of the algorithm as presented by Rothman 
(1986), which computes the probability of acceptance before a solution is selected. For a 
given model parameter, the energy is computed for every value within an allowable 
search range while keeping all other parameters constant. Subsequently, the Gibbs 
probability density function is calculated using  

 
� �

�
�

j
ij

ij
ij TmE

TmE
mP

)/)(exp(
)/)(exp(

)( , (4) 

where the subscript i represents the model parameters and the subscript j represents the 
range of values the model parameter, mi can take. A sample is then drawn from the 
distribution and retained as the new solution for mi

In this study, we use a two term energy or objective function defined by 

. This procedure is repeated for all 
model parameters and represents one iteration. The algorithm then takes the system 
through subsequent iterations where T is lowered according to a defined annealing 
schedule.  

 � � � �� �� ����
k i

initial
iik

i
ii mmwdGmmE 2)(2 1)( , (5) 

where wk is a weight applied to the kth elastic property and mi
(initial) represents the initial 

model used. The first term represents an L2

PRELIMINARY RESULTS 

 norm of the data residuals and the second 
term controls the deviation from the initial model.  

The data used in the inversion was generated using the forward model as discussed 
above. A two layered Earth model was created where the top layer is isotropic and the 
bottom layer has a set of vertical fractures. An initial temperature, T0 was chosen to be 
0.05 with an annealing schedule defined by Tn=T0*0.6n, where n represents the iteration 
number. The initial testing was performed using 20 iterations. Figure 2 shows the Gibbs 
probability density functions for the model parameters of the top layer after 5, 10 and 15 
iterations. Note that the width of the distribution narrows as the temperature decreases 
with each iteration, converging to a final solution. However, the rate at which the 
distributions narrow are different for the various model parameters, where �, � and 
density converge at a much faster rate than the normal and tangential fracture 
compliances and fracture azimuth. Future work will attempt to normalize the 
convergence rate of each model parameter to optimize the compute time.  
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FIG. 2. Gibbs probability density functions for the model parameters of the top layer after a) 5 
iterations, b) 10 iterations and c) 15 iterations.  

Figure 3 shows the data, synthetic data and the residuals associated with the inversion. 
The synthetic data demonstrates an excellent match to the data, suggesting that the 
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inversion algorithm is capable of performing the intended task of minimizing the data 
residuals.  

 

 

 

FIG. 3. Azimuthal angle gathers representing the a) data, b) synthetic data and c) residuals 
associated with the inversion. Each panel represents a single azimuth of 30, 60, 90, 120 and 150 
degrees from left to right.  
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Figure 4 shows the inversion results along with the true model and the initial model 
used. The preliminary results demonstrate a reasonable estimate of the model parameters 
where the errors are different amongst the various parameters. Since the residuals are 
small as shown in Figure 3, the errors are attributed to the parameterization of the 
problem where the sensitivity of the model parameters to the objective function is 
variable. Future work will explore different parameterizations and additional constraints 
in the objective function to optimize the inversion results.  

 

FIG. 4. Results showing the true model (blue), initial model (red) and inverted model (green). 

CONCLUSIONS 
An azimuthal AVO inversion was performed using a simulated annealing technique. 

The preliminary results demonstrate a reasonable estimate of the model parameters in 
addition to an excellent match between the data and synthetic data. The associated errors 
are then attributed to the parameterization of the problem where the sensitivity to the 
objective function of each model parameter varies. Future work will explore alternative 
parameterizations and constraints in the objective function to optimize the inversion.  
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