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Higher order terms of the asymptotic ray theory series solution 
for the acoustic wave equation in 2, 3 and higher dimensions  

P.F. Daley 

ABSTRACT 
Often referred to, but rarely derived in practice, are the transport equations for higher 

order terms in an Asymptotic Ray Theory (ART) solution method for hyperbolic (wave) 
equations. In most instances in the literature only the first term (zero order) term in the 
asymptotic series is used in the computation of dynamic (amplitude) quantities. Higher 
order terms in the series will be derived here in any number of dimensions, with the 
emphasis on the two and three dimensional cases, and compared with the exact solution. 
The type of medium propagation will be assumed to be an infinite space and the 
hyperbolic equation used will be the simple acoustic wave equation with a constant 

velocity – homogeneous medium. In addition, the summation of the series � �
0

n

n
i�

�
�

�
�  will 

be presented for use in a solution which has been assumed to be high frequency. 

INTRODUCTION 
To keep matters as simple as possible, an acoustic wave type propagating in an infinite 

isotropic homogeneous acoustic medium is assumed. Physically, this media type is 
usually taken to be a fluid. An asymptotic ray series or geometrical optics solution is 
sought that describes the wave propagation in an - spatial dimensionN medium, � �1N 	 . 
No source, initial or boundary conditions required. When compared to the formulation 
required for the exact solution of the scalar wave equation ��������	 	 
��	 �
�
���
�		
1971), the conditions that need to be satisfied to employ an ART solution are minimal in 
comparison. What is required is that appropriate radiation conditions are assumed to 
provide a physically realizable solution. 

A definition of an asymptotic series might be of use here as these series types need not 
be convergent. An asymptotic series or expansion is a formal series of functions having 
the property that truncation of the series after a finite number of terms provides an 
approximation to given function or solution method, as the argument of the function 
tends towards a particular point, usually infinity. A Taylor series fits this definition. 
However, a Taylor series is always assumed to be convergent. 

Exact solutions are not derived here as they may be found in almost any text on the 
subject of wave propagation. They will be written down as required for comparison 
purposes. So as not to introduce unnecessary references into this discussion a minimum 
of these will be cited, which together provide enough information for the pursuit of this 
tutori
�	 ��������	 ����	 
��	 ��������	 �2001), Hron and Kanasewich, (1971) and 
Hildebrand (1962). 
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BASIC THEORY 
The scalar type wave equation, with a constant velocity, 
 , may be written in N  

dimensions, 1N 	  as 

 � � � �2
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,1, 0
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t
t

�
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�

x
x  (1) 

with � �
2

2
2 1,
i

i N
x
�


 � �
�

 being the Laplacian operator in an N  dimensional Cartesian 

space. The geometrical optics, high frequency or Asymptotic Ray Theory (ART) solution 
is defined in the following manner, where it has been implicitly assumed that � �nA x  is 
complex valued for some N – spatial dimension scalar amplitude series as 

 � � � �
� �� �

� �0

exp
, n n

n

i t
t A

i

� �
�

�
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The more general form of the above equation is  

 � � � � � �� �
0

, n n
n

t A f t� �
�

�

� �� xx x  (3) 

for some generalized function � �nf �  which has the properties that � � � �1n nf fd d� �� ��  
and � � 0, : 0nf n n� � � � . The expression used in equation (2) for this function satisfies 
the first property and the second property is imposed, where � �� �0, : 0nA n n� � �x  and 

� �� x  is some phase function related to the travel time of the wavefront through what has 
been assumed to be an isotropic homogeneous acoustic medium. The quantities t , �  and 
x  are time, circular frequency and an dimensionalN �  position vector. 

Substituting equation (2) into (1) yields, apart from the related eikonal equation 
problem, the following, which are used in the determination of the amplitude terms, 

� �nA x  
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. (4) 

A rearrangement of the terms in the individual series results in 
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 (5) 

As equation (5) must hold for any value of the frequency, � , the coefficients of each 
power of �  must vanish. Therefore 

 � �2 2 0 : 0nA n n� 
 �� �
 � � � " � �� �  (6) 

Under the assumption that the zero order term in the asymptotic expansion is not equal to 
zero, then a solution of this problem exists if and only if 

 � �2 2 0� 
 �
 � � . (7) 

This equation is the known as the eikonal equation which is related to the Hamiltonian of 
the system (Courant and Hilbert, 1962) from which the solution for the propagation of 
rays or characteristics may be determined. It is along the rays that the energy is carried 
from one point to another related point in the medium. The second conditional equation, 
which may be obtained from (5) and the subsequent statement, is  

 � �22 2
0 0 12 0A A A� � � 
 �� �� �� �
 �
 � 
 � 
 � �� � � �� �

. (8) 

As equations (5) and (7) must be valid for all values of n, equation (8) reduces to the 
transport equation most often encountered in the literature 

 2
0 02 0A A� �� �
 �
 � 
 �� �  (9) 

The final term from equation (5) is 

 � �22 2 2
2 1 12 0, 2n n n nA A A A n� � � 
 �

� � �
� �� �� �
 � 
 �
 � 
 � 
 � � 	� � � �� �

 (10) 

This is a recursive transport equation with each term in the series dependent on the 
previous term in the infinite series. However, as the eikonal equation, equation (7), is 
valid for all n, equation (10) becomes 

 2 2
2 1 12 0, 2n n nA A A n� �� � �� �
 � 
 �
 � 
 � 	� �  (11) 

It follows from (11) that the transport equation for the second (first order) term, 1A , is 
given by 

 � � 2 2
1 1 02 A A A� �
 �
 � 
 � 
  (12) 

and the 2A  term by  
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 � � 2 2
2 2 12 A A A� �
 �
 � 
 � 
  (13) 

The equation for the solution of the second (first order) term in the asymptotic series is 
the most general for the higher order terms in the asymptotic series and it is used to 
obtain the terms in the asymptotic series, nA , 1n 	 . 

WAVE EQUATION IN TWO DIMENSIONS 

For 2N � , the two-dimensional scalar wave equation in the � �,x z  Cartesian plane, 
using angular invariant polar (radial) coordinates allows the resultant amplitude 
determination problem to be formulated in terms of the single independent variable 

� �1/22 2R x z� �  or more generally, assuming a source location at � �0 0,x z  rather than at 

� �0,0 , � � � �� �1/ 22 2
0 0R x x z z� � � � . Using this dependent variable the following solution 

for the zero order transport equation, equation (9), results1

 

 

� � � �0 0
1,
R

A x z A R� �  (14) 

The second term in the asymptotic equation for � �1A R  is the solution of the following 

equation, which is dependent on � �0A R , and is obtained as 

 2 2
1 1 02A A A� �
 � 
 �
 � 
  (15) 

with the quantity on the RHS  of (15) being given as 

 2
0 5/ 2

1 1 1
4

A R
R R R RR

# $� � # $
 � �% &% &� � ' (' (
 (16) 

and 1A  becoming the solution of 

 1 1
5/ 22 8

dA A
dR R R
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     (2 Dimensional Polar Coordinates). 
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This may be rewritten after introducing an integration factor2

 

 as   

� �1/ 2
1 28

d R A
dR R



�  (18) 

which has the solution 

 1
1A

RR

# $� �% &

' (
. (19) 

The third or second order term in the asymptotic series may then be determined in the 
following manner 

 � � 2 2
2 2 12 A A A� �
 �
 � 
 � 
 . (20) 

With the relations 

 2 1 1R R
R R R R R
� �� � �


 
 

� � �# $� 
 � � 
 � �% &� � �' (

R
R

uu ., (21) 

it follows that 

 1 1
1 13/ 2 5/ 2

3
8 16

A AA A
R R R R

 
� � �

� 
 � �
� �Ru  (22) 

resulting in  

 2
1 7 2

9
32

A
R




 � . (23) 

Using equation (11) results in the following, after determining an integrating factor, 

 � �
2

1/ 2
2 3

9 .
64

d R A
dR R



�  (24) 

Continuing with the solution method yields 

 
2

2 2 5 2

9
2!8

A
R



� � . (25) 

Thus, the first three terms in the ART solution for the amplitude term, which is a series in 
terms of � � ni� � , � �0,1,n � � , for the two-dimensional scalar wave equation is of the 
form 

                                                 
2 Integration factor: exp

2F
dRI R

R
# $� �% &
' ()  
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� �

� �22

1 9, 1 with
8 2!8

i t

ART
eR t C k

ikRR ikR

� � ��



�� �� �� � # $* +, � � �� � % &
' (* +� �� �� �

�  (26) 

The quantity, C , is some integration constant to be determined or specified. If compared 
with the asymptotic expansion of the exact solution for this problem, which is 
� � � �(2)

0, , i tx z t e H�� -�  for large kR- �  [or equivalently � � � �(1)
0, , i tx z t e H�� -�� ] 

depending on which sign of the Fourier time transform is taken in the exact solution. The 
asymptotic expansion for large argument values is given by  

 � � � � � � � �

� �
2 4

0 22

2 1 9, 1 .
8 2!8

i t ii t i
ex R t e H kR e e

kR ikR ikR
� ��� .�

.
�

� �� �� , � � �� �
� �� �

�  (27) 

It becomes clear that the time harmonic asymptotic solution series in equation (26) is, 
apart a the factor, / 42 ik e .. � , equivalent to the Hankel function of type � �2  and order 
zero.  

The second term in equation (27) is not the exact expression for the near field term but 
is as reasonable approximation. It is of equivalent merit in this capacity as the first term is 
for the far field term, and it follows from a derivation of reasonable rigor. It may also be 
seen that this solution displays an oscillatory but damped behaviour.  

THREE DIMENSIONAL CASE 
The transport equation (zero order) in the three dimensional case is as in the 2D  case 

 2
0 02 0A A� �
 � 
 �
 �  (28) 

For 3N � , the three-dimensional scalar wave equation in � �, ,x y z  space, (in spherical 

coordinates) in terms of the independent variable � �1/22 2 2R x y z� � �  or more 

generally, � � � � � �� �1/ 22 2 2
0 0 0R x x y y z z� � � � � � ), has the following solution for the zero 

order transport equation (equation (14))3

                                                 

3 
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   (Polar Coordinates) 
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 � � � �0 0
1, ,
R

A x y z A R� �  (29) 

The second term in the asymptotic equation for � �1A R  is the solution of the following 

equation, which is dependent on � �0A R , and is obtained from 

 2 2
1 1 02A A A� �
 � 
 �
 � 
  (30) 

where � �0A x  is known. In the 3D  case, the quantity on the RHS  of (30) is given by 

 2 2
0

1 1 0A R
R R R R

� # � $# $
 � �% &% &� � ' (' (
. (31) 

The following sequence of operations 

 

� �

1
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1 1

1

2 2 0

0

1 0
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�

� �
�

�
� �
�

�
�

�

 (32) 

results in 

 
1 1

constantconstantRA A
R

� / �
 (33) 

The constant is arbitrary, so as previously it is chosen equal to 1. In a similar manner, 
2 1A R� . 

Thus as a result of the above equations all terms in the asymptotic series, 0n 	 , are of 
the form 

 
� �
1

n nA
R i�

�  (34) 

so that the asymptotic series defined in equation (2), for this 3D  case, apart from some 
multiplicative integration constant, is 

 � �
� �0

1,
ikR

i t
n

n

eR t e
R i

��
�

� �

�

� �
� * +

� �
�  (35) 

The exact (time harmonic) solution for the 3D wave equation for the geometry used here 
is given by Cerveny and Ravindra (1971) as 
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 � � 0 1 � � � �exp
,

i t ikR
R t kR R R

ikR
�

� � 
 ��
�

� � �� �� �  (36) 

and from this, the ART  solution is 

 � �
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� �0

exp 1, n
n

Ri t
R t

R i

� �
�

�

�

�
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For these two solution method to have the same basic form, it is required that the series, 

� �0

1 1n
n i�

�

�

� �
/* +

* +� �
� , in the high frequency approximation. This series summation is 

discussed in Appendix A. It may be observed that the 3D  solution displays a much 
different behaviour than the 2D  case, as there is no oscillatory motion. 

N DIMENSIONAL CASE 
The transport equation (zero order) in the N �dimensional case is as in the 2D  and 

3D  cases  

 � �0 02 0, 1,
i i i ix x x xA A i N� �� � � � � �  (38) 

The solution for the N-dimensional scalar wave equation in the ix  hyperspace is in 

terms of the independent variable
1/ 2
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# $� % &
' (
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� �
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20
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i i
i

R x x
�

# $� �% &
' (
� . Defining � �ix�  in terms of R and the constant velocity 
  has 

� �i
Rx�



�   

In N �dimensions, the operator 2
i ix x � �� 
� �  is the equivalent of that in 3-dimensional 

polar coordinates having the form, 1
1

1 N
N R

R R R
�

�

� �# $
% &� �' (

. Starting with the expression for 

� �ix�  in N �dimensions and applying the N �dimensional Laplacian the following 
results 
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Using this relationship, it may be seen through a sequence of steps that 
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which is consistent with what was derived for N=2 and 3. To obtain the first order term, 
2

0A
  is required and given by  
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For 4N �  and 5N �  equation (41) becomes 
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4
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Continuing with the solution method used for the 2 and 3N �  cases has 

 2 2
1 1 02A A A� �
 � 
 �
 � 
  (44) 

or in the equivalent of an N  dimensional polar coordinate system 

 � � � �� �
� �

1
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Introducing an integrating factor into (45) results in  

 � � � � � �1 2
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the solution of which is 
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The second order term is determined in a manner similar to that for the first order term. 
First evaluate 2

1A
  

 � �� �
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2
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Proceeding requires the solution of 

 2 2
2 2 12A A A� �
 � 
 �
 � 
 , (50) 

which again after the integrating factor implementation becomes  
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Solving the above equation yields 
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Combining the terms in the asymptotic series has, apart from some integration constant  
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Inspection can indicate the next terms in the series. For 3N � one term is present while 
for 5N � , two terms. For 3N � , this is consistent with that derived earlier and given in 
equation (35). 

 � �
� �� �

,
i t ReR t
ikR

� �

�
�

�  (54) 

Comparison of (35) and (54) results in a difference of importance. The expression given 

in equation (54) does not require that the series 
� �0

1
n

n i�

�

�
�  be summed. For a higher 

dimensional solution � �5N �  

 � �
� �� �

2

1, 1
i t ReR t

R ikR

� �

�
�

� �� �* +� �
 (55) 

If N  is even the solution is as in the case of the 2N �  problem an infinite series 
displaying a damped oscillation for all values of N . 
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Compressional wave displacement, � �,R tu , is often defined in terms of this type of 
potential as 

 � � � �, ,R t R t�� 
u . (56) 

This relation may be applied to (54) and (55) to obtain displacements. 

CONCLUSIONS 
It has been shown that the asymptotic solutions for the 2 and 3 dimensional scalar 

wave equations in an infinite isotropic homogeneous medium are what one would assume 
to be when compared with the exact solutions for the same problem. The asymptotic 
solutions are obtained using the inhomogeneous wave equation with no source conditions 
required to be specified which is not the case when the exact solution is sought. This 
fairly loose manner of setting out the problem allows for many options in the solution 
method when more complex medium types are considered. This includes the introduction 
of interfaces across which the velocity may be discontinuous and the possibility of an 
arbitrary inhomogeneous specification of the velocity field. These added complexities 
cannot be solved using a Sommerfeld type integral method employed in obtaining the 
exact solution in an infinite halfspace of a similar type. 
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APPENDIX: SERIES SUMMATION 

Assume a series expression of the form, with 1i � � , where n  is such that n /� , 

 
� �0

1n

n n
n

S
i��

�� . (A.1) 

Expanding the above into individual terms to obtain 

 
� � � � � � � � � � � � � �1 2 3 4 5
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1 1 1 11
n

n n n
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i i iS
i i� � � � � � ��

� � � � � � � �� �  (A.2) 

Separate the expanded series into real and imaginary parts 
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 � � � �R I
n n nS S iS� �  (A.3) 

yielding 
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and 
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Multiple both sides of (A.4) by 2
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which after rearrangement becomes 
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Adding this formulae to (A.4) results in 

 � � � �

� �
2 2

2 22

11 1 .
1

R R
n nS S � �

� ��
# $� � / � ,% & �' (

 (A.8) 

so that in the high frequency limit, 1� � , it may be seen that (A.8) has the limit 
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Now consider the imaginary part of the series (A.2), which may be written as 
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Multiply both sides of equation (A.10) by 21 �  to obtain 
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Adding this result and equation (A.5) produces 
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 (A.12) 

or after some rearrangement  
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Again assuming that 1� � , equation (A.13) may be written as 

 � � 0 10 .I
nS �/ /�  (A.15) 

Thus the high frequency limit of the series (A.1) as � /�  is simply 

 1.nS �  (A.16)  

It should be mentioned that if the condition 1� �  is imposed, the series summation is 
independent of the number of terms in the series, i.e., independent of n , but is valid for 
any value n , 1n 	 . 


