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ABSTRACT

The use of inverse scattering methods in the inversion of seismic data has been on the
rise in exploration geophysics. With specific computational approaches it is possible to
ascertain the material properties of the subsurface using scattered acoustic waves. We seek
to determine multiple rock parameters such as density and bulk modulus from reflected
seismic signals. At this early stage of investigation a basic approach is used based on
straightforward inverse scattering equations. In this case we will examine how multipa-
rameter inverse scattering in a constant 2D background works and what are the results of
inverting synthetically generated data. A simulation was developed for this project in two
parts. The forward modeling stage and the inversion. The forward modeling code is based
upon CREWES MATLAB finite difference routines, this stage takes simple user generated
velocity models and shot patterns and creates a set of synthetic shot profiles which are
convolved with a Ricker source wavelet. The second stage takes these shot profiles and
attempts a deconvolution and inversion to generate an inversion image. The inversion im-
age is then examined for accuracy and various models are used to determine of physically
realistic effects are present as would be seen in real seismic data.

INTRODUCTION

In the field of exploration geophysics, the inversion of seismic data obtained from ex-
pensive seismic survey operations is of paramount importance to various resource based
industries. Specifically in the interpretation and location of petroleum bearing subsurface
formations as well as in general subsurface mapping of other geologic structures for eco-
nomic and scientific purposes.

The knowledge of the physical parameters of subsurface structures is vitally important
in the exploration process, these telltale indicators are the guide to which many other de-
cisions in the economic exploitation chain are made. The proper interpretation of these
indicators yields successful recovery operations, the failure to gain accurate data for these
interpretations can lead to unwanted and wasteful expenditures of time and money.

Inversion methods have been around since the beginning of exploration geophysics but
many algorithms and methods developed in the past have been limited by the computa-
tional resources available at the time. Many are still being developed today which can fully
exploit the use of modern computer technology and thus are becoming the standard instru-
ments in the repertoire of essential tools in exploration geophysics. Other methods which
were detailed in the past were more in the class of intellectual curiosities due to the lim-
ited computational power and lack of efficiency of the facilities available at the time and
were thus forgotten by modern researchers after their publication, some only now being
rediscovered and investigated further.

In this investigation we will perform numerical experiments to determine the properties
and locations of subsurface structures and their physical parameters using inverse scattering

CREWES Research Report — Volume 23 (2011) 1



G.R. Young et al

methods. The primary method is based on the paper by Clayton and Stolt (1981), published
when desktop computing power was 10−6 that of today’s typical machines. This paper
details the algorithms required to properly image and obtain an inversion of seismic data
for two cases, the constant background and the variable background. In our case we will
attempt to examine only the constant background case and only in a 2 dimensional(2D)
seismic geometry.

Inverse scattering methods are still not commonly used in geophysics because of the
complexity of the mathematical methods, and because of the relatively stringent data band-
width requirements.

We detail here one of the algorithms. The two parts to the simulation chain are the for-
ward model and the inversion. The forward model will use standard routines found within
the CREWES Matlab toolkit and is used to generate the synthetic seismic data in the form
of 2D shot profile and various velocity models. The inversion portion and management of
its computational issues is our new contribution.

BASIC SCATTERING THEORY

In the field of forward scattering(Clayton and Stolt (1981)) the Lippmann-Schwinger
equation is crucial for solving acoustic scattering problems, this equation is given by

G = Gr +GrV G, (1)

where V is the scattering potential and G is the Green’s function operator which is the
solution to the linear isotropic acoustic wave equation

LP =

(
ω2

K
+∇ · 1

ρ
∇
)
P = 0, (2)

where

L =

(
ω2

K
+∇ · 1

ρ
∇
)
, (3)

and L for the reference medium is

Lr =

(
ω2

Kr

+∇ · 1
ρr
∇
)
, (4)

so the Green’s function is simply the inverse of this operator.

G = L−1, (5)

and where ρ and K are the density and bulk modulus respectively. G andGr are the Green’s
function perturbation and the Green’s function reference operator (the slowly varying back-
ground about which it is perturbed).

This has is only a very brief overview of the essential basis of scattering theory, a
more through examination requires a detailed understanding of Partial Differential Equa-
tion methods such as Transform methods see Constanada (2010), plus the use of Green’s
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function operator methods see Duffy (2001). For a through mathematical approach to mul-
tidimensional inversion the book by Bleistein et al. (2001) is recommended. The appli-
cation of Green’s theorem to many types of problems in geophysics can be found in the
review paper by Ramirez et al. (2009). A very through review of inverse scattering theory
and it’s application in seismic exploration can be found in Weglein et al (2003).

SCIENTIFIC GOALS AND CODE DEVELOPMENT

This project is in an early stage of implementation and therefore not all code design
decisions will be the most optimal.

The code for this modeling/simulation is divided into two parts. The first is the for-
ward modeling code, used to generate the 2D synthetic shot profiles, given a user created
velocity model plus a source/receiver configuration. This is done via a centered finite dif-
ferencing scheme and based on finite difference routines already coded in the CREWES
Matlab toolkit. The second portion of the simulation is comprised of inversion code.

PART 1: THE FORWARD MODEL

The creation of the synthetic shot gathers used the finite difference approach rather then
any other methods such as raytracing, although the 2D FD method is computationally more
expensive, it is also very accurate to an arbitrary order. In this case we have a choice of
either using a second or fourth order Laplacian in computing at each mode of the model
grid.

Creation of an initial velocity model

The initial velocity model is created using a gui based tool calledAFD_V ELCREATE
created for the CREWES Matlab toolkit. This tool allows the creation of 2D velocity mod-
els based upon arbitrary polygonal shapes, the initial model is then properly gridded to the
spacing specified by the user. This model is then saved to a file for later input into the finite
differencing section of the code.

CREWES Finite Difference Routines

The velocity model is created twice in this instance, the first is the background velocity
model consisting only of the velocity found on the first layer below the surface. This
velocity model is then used to generate the synthetic shot profile as if only the surface
layer existed and so only the direct wave is present. In the second stage another shot
profile is created with the full velocity model as input, the resulting shot profile includes
all primary and multiple reflections. The CREWES toolkit routine used in this stage is
AFD_SHOTREC which generates arbitrary 2D shot records given an initial velocity
model and an initial snapshot time to start with, usually an time zero snapshot with any
initial conditions included.
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Wavelet convolution

For some realism a Ricker wavelet can be created by the user and convolved with the
shot profiles to create a final more realistic shot profile which is artificially band limited.
The user can select the primary frequency and duration of the Ricker wavelet. If no Ricker
wavelet is used the profile generated will be that seen if an delta function impulse is used
(ie all possible frequencies are included) Yilmaz (2001).

Generation of a background and model shotpoint gather

The above routine of generating a background snapshot,Gr and a full snapshot, G then
convolving with a wavelet is repeated at each receiver point along the desired seismic line
with the desired receiver spacing. So each receiver will then have two snapshots associated
with it a background consisting of only the direct wave plus another snapshot containing
the direct wave, primary reflections and multiple reflections.

THE INVERSION

The inversion method used in this simulation is taken from Clayton and Stolt (1981)

The Inversion Algorithm for a Constant Background

We will follow the inversion algorithm outlined in Clayton and Stolt (1981) and use
their notation as well. The Born approximation of the Lippmann-Schwinger equation is
given by the series expansion of the implicit equation

G = (I −GrV )−1Gr, (6)

which related the Green’s operator G in the actual medium and the reference operator Gr

and which can be expanded as a series called the Born-Neumann series see Morse and
Feshbach (1953) .

G = Gr

∞∑
i=0

(V Gr)
i. (7)

We approximate the total wavefield truncating the expansion. The direct wave in the wave-
field is the zeroth order term, Gr and the primary reflections are approximated by the first
order term GrV G.
So for the direct wave and the primary reflections we will have

G = Gr +GrV G. (8)

Subtraction of the Direct Wave from the Gathers

The observed wavefield D is defined as D = (G−Gr)S(ω), and so

D = (G−Gr)S(ω) = (GrV G)S(ω). (9)
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Consequently in order to do a proper inversion of the wavefield, the direct wave Gr

first needs to be subtracted from the seismic profiles. This is done for the current testing
purposed by directly subtracting the two wavefields G and Gr.

Deconvolution and Subtraction of the Wavelet

Before the inversion can be done the source wavelet must be subtracted or deconvolved
from the transformed wavefield as illustrated below, a small stability factor ε has been
added to the algorithm to prevent any singularities from occurring during this operation.

D′(km, kh, kz) =
−1
ρr

D(km, kh, ω)

S(ω) + ε
, (10)

Direct Inversion

The first step in the inversion is to Fourier transform the wavefield from source xg
and receiver xs coordinates to source-receiver wavenumbers kg, ks, we will drop the prime
notation of the deconvolved wavefield for convenience.

D(kg, ks, ω) =
1

2π

∫
dxg

∫
dxse

−ikgxgD(xg, xs, ω)e
iksxs , (11)

=

∫
dx′
∫

dz′G+
r (kg, 0|x′, z′;ω)V (x′, z′;ω)G+

r (x
′, z′|ks, 0|;ω)S(ω), (12)

Where G+
r (kg, 0|x′, z′;ω) and G+

r (x
′, z′|ks, 0|;ω) are Green’s operators and have the

form given by

G+
r (kg, 0|x′, z′;ω) =

iρr√
2π

e−i(kgx
′−qg |z′|)

2qg
, (13)

G+
r (x

′, z′|ks, 0|;ω) =
iρr√
2π

ei(ksx
′+qs|z′|)

2qs
, (14)

and

qg =
ω

νr

√
1−

ν2rk
2
g

ω2
, (15)

qs =
ω

νr

√
1− ν2rk

2
s

ω2
, (16)
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So placing the Green’s operators into the integral equation we get

D(kg, ks, ω) =
−ρ2r
2π

∫
dx′
∫

dz′
e−i(kgx

′−qg |z′|)

2qg
V (x′, z′;ω)

ei(ksx
′+qs|z′|)

2qs
S(ω), (17)

Here V is the scattering potential or the structure we are trying to image, this potential
is given by the difference of the two wave operators L and Lr

V =

(
ω2

K
− ω2

Kr

)
+∇ ·

(
1

ρ
− 1

ρr

)
∇, (18)

Replacing K and ρ by dimensionless media operators as follows

L = ω2a1
K

+∇ · a2
ρ
∇, (19)

where a1, a2 are

a1 =

(
Kr

K
− 1

)
, a2 =

(
ρr
ρ
− 1

)
, (20)

Now evaluating the equation relating the data to the scattering potential using V above

D(kg, ks, ω) =
−ρ2r
2π

∫
dx′
∫

dz′
e−i(kgx

′−qg |z′|)

2qg

[(
ω2

K
− ω2

Kr

)
+∇ ·

(
1

ρ
− 1

ρr

)
∇
]
ei(ksx

′+qs|z′|)

2qs
S(ω),

(21)

and and substituting in a1 and a2 then integration by parts we get

D(kg, ks, ω) =
−ρ2r
2π

∫
dx′
∫

dz′
e−i[(kg−ks)x

′−(qg+gs)z′)]

4qgqs
×[

ω2

ν2r
a1(x

′, z′) + (qgqs − kgks)a2(x′, z′)
]
S(ω),

(22)

Note the absolute value signs around z′ are dropped if we assume a1(x, z) and a2(x, z)
are zero for z < 0.

The above equation is of the same form as a double Fourier transform in the x′ and z′

variables if we do some rearranging

D(kg, ks, ω) =
−ρ2rS(ω)
2π4qgqs

∫
e−i(kg−ks)x

′
∫
ei(qg+gs)z

′×[
ω2

ν2r
a1(x

′, z′) + (qgqs − kgks)a2(x′, z′)
]
dz′ dx′,

(23)
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the result of the evaluation yields

D(kg, ks, ω) =
−ρ2rS(ω)
4qgqs

[
ω2

ν2r
a1(kg − ks,−qg − qs)

+ (qgqs − kgks)a2(kg − ks,−qg − qs)
]
,

(24)

Change of Coordinates to ω, qg, qs space

In order to solve for a1 and a2 we will need to change to midpoint/offset coordinates
from the source/receiver system.

We have the following definitions the midpoint wavenumber km = kg − ks,
the half offset wavenumber kh = kg + ks
which in the space domain x,z correspond to

xm =
xg + xs

2
(25)

and
xh =

xg − xs
2

(26)

and a new independent variable

kz = −qg − qs = −
ω

νr

√
1−

ν2rk
2
g

ω2
− ω

νr

√
1− ν2rk

2
s

ω2
, (27)

Solving for ω, qg and qs we have the expressions

ω(km, kh, kz) = −
νrkz
2

√
(1 +

k2m
k2z

)(1 +
k2h
k2z

), (28)

qg(km, kh, kz) = −
kz
2
(1− kmkh

k2z
), (29)

qs(km, kh, kz) = −
kz
2
(1 +

kmkh
k2z

, (30)

Now that we have expressions for ω, qg, qs the the Direct Fourier transform computed
in these coordinates and data can be transformed back after the inversion.

Writing the equation for the wavefield using these new variables substituted according
to the definitions above we get

D(km, kz, kh) =
−ρ2rS(ω)
4qgqs

[
ω2

ν2r
a1(km, kz) + (qgqs − kgks)a2(km, kz)

]
, (31)
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When transformation variables are substituted in and simplified we obtain the system
of equations which need to be inverted.

D(km, kz, kh) = −ρr
[ 2∑
i=1

Ai(km, kh, kz)ai(km, kz)

]
S(ω), (32)

where

A1 = (km, kh, kz) =
1

4

(k2z + k2h)(k
2
z + k2m)

k4z − k2mk2h
, (33)

and

A2 = (km, kh, kz) =
1

4

(k2z − k2h)(k2z + k2m)

k4z − k2mk2h
, (34)

After the deconvolution stage we are left with

D′(km, kz, kh) =

[ 2∑
i=1

Ai(km, kh, kz)ai(km, kz)

]
, (35)

of which we need to determine the ai(km, kz) through perhaps a least squares method.

Issues in the practical implementation of the inversion algorithm

The deconvolved shot records are now ready for the inversion stage. The basic routine
is as follows

1. First loop over a set of grid points in km, kz space with kh set to a fixed value, usually
zero.

2. Outer loop ranging over kz: For each kz from kz : Start to kz : End

3. Inner loop ranging over km: For each km from km : Start to km : End

4. transform the data into (km, kz) via the transformation equations for (ω, qg, qs) given
in equations 28, 29 and 30

We need to calculate the Fourier kernels at each grid point

kernel ω = exp(−2πi ∗ ω(km, kh, kz) ∗ t), (36)

kernel kg = exp(−2πi ∗ kg(km, kh, kz) ∗ xgcenter), (37)

kernel ks = exp(−2πi ∗ ks(km, kh, kz) ∗ xscenter), (38)

for each source point in the line we multiply(Fourier transform) that particular shot-
gather by the Fourier kernel as follows:

8 CREWES Research Report — Volume 23 (2011)



Multiparameter inverse scattering

Compute the Fourier transforms over (t, xg, xs) which is a series of multiplications in the
wavenumber domain, we will need to perform three Fourier transforms in all.
Ranging over the line of sources: For each shotgather in the line from the start to the end
of the line, transform first over ω then secondly over kg.

D(kg, ks, ω) = kernel kg ×
[
D(xg, xs, t|shotpoint(i))T × (kernel ω)T

]
, (39)

then compute the final kz vector for a fixed kz over a range of km.

D(kz) = D(kg, ks, ω)× (kernel ks)T , (40)

In summary we compute,

D′(kz(km, kh)) =

[
kernel kg ×

(
D(xg, xs, t; shotpoint(i))T × (kernel ω)T

)]
∗ (kernel ks)T ,

(41)

or

D′(kz(km, kh)) =

[
(e−2πi∗kg(km,kh,kz)×xgctr)×D(xg, xs, t; shotprofile(i))T

∗ (e−2πi∗ω(km,kh,kz)∗t)T
]
× (e−2πi∗ks(km,kh,kz)xsctr)T ,

(42)

This creates an array of kz values which form a column vector with the number of
elements equal to km points, these series of column vectors represent varying kz values so
combining all the columns into a matrix will create the an image of kz by km elements, we
then take the 2D FFT of this [kz, km] array to obtain the proper inversion image in x and z
space.

We need to keep in mind in this case we are performing direct Fourier transforms or
DFTs from point to point on a grid, we chose a fixed range [kz, km] grid and computed
the coordinate transforms via equations 28,29,30 into (ω, qg, qs) space. But the equations
which do the mapping are not linear at all, so the spacing between each given (kz, km) node
does not map to a regularly spaced (ω, qg, qs) grid but a highly non linear one.

Because of this fact, choosing to do a DFT is computationally slower than doing a fast
Fourier transform(FFT) from one grid to another, the advantage is that we are much more
accurate as we don’t need to interpolate points in (ω, qg, qs) space to create a regularly
spaced grid there, the disadvantage is the sacrifice in speed the FFT brings to the problem.
Note we do use a fast inverse Fourier transform(IFT) compute the inversion image from
the kz, km grid to x,z space since both are regularly spaced one-to-one grids.

SYNTHETIC EXAMPLES

We have chosen to test our inversion process using three cases. A four layer model with
constant horizontal velocities in each layer but different from layer to layer. A "shallow"
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body containing low velocity material intruding into a 4 layer model background which
contains a concave top surface and a convex bottom surface. Finally, a case where again
there is an intrusion into a background four layer model but this time the body has a strongly
concave upper surface and a convex lower surface containing higher velocity material than
the surroundings.

For these experiments we have fixed the model parameters at a x line length of 2500m
and a depth of 1000m (corresponding to a time of approximately 0.8 sec), we then choose
a source/receiver spacing of 10m and a sampling time of 4ms. For the forward differencing
calculations the time step is 0.5ms between frames and a computation grid of 10m in the x
direction and 5m in the z direction. A bandlimited source wavelet was also added which in
this case is a Ricker wavelet with a user specifiable frequency and duration, we used 30Hz
and 0.1 seconds.

For each case the initial velocity map used as input into the CREWES forward differ-
encing routines displayed, followed by a snapshot at one particular source point comprising
the gather of the receivers for that source point. A deconvolution was then done on all the
shot profiles and a single one is displayed, usually at the same source point, the displayed
image is also missing the direct wave as this was subtracted prior to the deconvolution.

The computation of the kz, km grid needed to sample enough of the k-space grid to
give the proper resolution and details. Initially we found that sampling only the points in
quadrant 1 (+kz,+km) produced inversions which were incomplete, only reflectors with
a positive slope were imaged and the structures with a negative spatial slope were absent.
When we sampled k-space quadrant 4 (+kz,−km → 0) plus quadrant one (+kz, 0→ +km)
we were able to obtain a complete and structurally correct inversion. The inversion was then
computed and two more images were produced, an image in kz, km space prior to the IFT
and then the final inversion image with the IFT performed on the kz, km grid.

The shotpoint images were scaled using mean value and not max value scaling to bring
out the details of each of the models and results. Max value scaling produced images with
a bright spot at the top, where the wave amplitudes from the shot is the greatest and the rest
of the image was too faint to clearly see the details due to geometric spreading.

Four layer horizontal model

This physically simple model demonstrates the power and accuracy of the inversion
routine, in figure 3 and figure 4 we get the expected responses from the forward differencing
model. Hyperbolic features corresponding to the model reflectors and in the deconvolved
case as in all cases we’ve subtracted the direct wave. We do get some high frequency
"wakes" following each of the hyperbolic returns plus reflections from the sides of the
aperture. Note the z axis is labeled in time, this is because of the output of the particular
CREWES plotting routine used and in which there wasn’t time to change over to a depth
labeled axis.

In Figure 5 we can see a very simple one dimensional column, this is because there is
only the horizontal reflectors which are flat and so no variance in relative angle the source
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and no "slope" their a straight vertical column is expected. Figure 6 shows the resulting
inversion, again we have some wakes and aperture artifacts on the sides. But we do get
the expected number of layers with reflector 1 at the model depth expected. The difference
is in the depth of the second and subsequent layers. Reflector 2 and 3 are shallower then
expected because there is a difference in layer velocities which are not accounted for in the
inversion algorithm below the first reflector. This is due to the number of terms in the Born
approximation that we take. This effect will be apparent across all the models we choose
to use.

The Shallow low velocity model

The shallow, low velocity model was created to see if the inversion properly placed the
deep reflectors when encountering a low velocity layer. In this case we have a biconvex
lens As can be seen from Figures 8 and 9 there is a lot of detail in the lower parts of the
shot profile. This is complicated by the high frequency wakes generated by the structures
so it’s very difficult to tell what is a true reflector and what is noise.

In Figure 10 we can see how the signal is distributed in k-space, there is a broad area
of signal in a cone with some possible aliasing. Finally in Figure 11 the inversion image
looks fairly realistic, compared to the velocity model the upper and lower reflectors have
the correct shape and form. Again the lower convex part of the intrusion is not located in
exactly the correct depths due to the velocity difference not being accommodated by the
inversion algorithm. Note the deformation of the lowest reflector layer at z=850m depth in
the model and how it distorts from a horizontal reflector in the model into a concave shape,
due to the distortion in travel times introduced by the low velocity found in the intrusion.

The Anticline velocity model

The Anticline velocity model shown in figure 12 also has a low velocity center but
has a concave upper surface and a convex lower surface which should create significant
distortion. The sides of the upper surface have a greater slope towards the ends while the
lower surface has a fairly consistent and shallow angle.

Unlike the shallow biconvex lens model the anticline model seems to have less noise
and a cleaner profile as seen in figures 13, the Ricker convolved data and the deconvolved
shotgather in figure 14, figure 15 seems to have a cleaner look as well with less apparent
spread in the signal. Of course the inversion image in figure 16 shows that the structure was
reproduced fairly accurately, the steeper side of the upper surface seem to drop in amplitude
as a result of the large angles with respect to the placement of the source and only shows
up weakly in the plot. Even a clear velocity push down is see at the lower convex surface
on the body where the apparently horizontal layer looks distorted and the lower velocity
through the intrusion produced a longer travel time.

CONCLUSION

Inverse scattering techniques provide direct means of determining multidimensional
variations in multiple acoustic or elastic parameters. Clayton and Stolt (1981) presented
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one of the earliest, with clarity, and a facility for extension to more complex models, that
makes it a foundation for any ultimate modern application. We have completed early code
development and synthetic testing, restricting ourselves to scalar acoustic problems. We
have confirmed that correct depths and structures are recovered.

Even with the relatively straightforward algorithm for a constant background, we are
able to image the models to a fairly high degree of accuracy. Of course our simulations have
not taken into account real world effects such as multiples and anisotropic and anelastic me-
dia which are variable background effects. We verify that the amplitudes of the reflections
found in these results are true amplitudes. Also material parameters such as bulk modulus,
variable density be built into the models to test the accuracy of the inversions in producing
the correct, physically realistic answers.

Much more remains to be done in regards to further numerical investigations of multi-
parameter inverse scattering and the inversion algorithms predicted by this approach.
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FIG. 1: Background velocity model

FIG. 2: 4 Layer flat velocity model

CREWES Research Report — Volume 23 (2011) 13



G.R. Young et al

FIG. 3: 4 Layer flat velocity model, synthetic data with 30 Hz ricker wavelet, x=1195m

FIG. 4: 4 Layer flat velocity model, deconvolved synthetic data, x=1195m
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FIG. 7: Shallow dip velocity model

FIG. 8: Shallow dip velocity model, synthetic data with 30 Hz ricker wavelet,x=1195m
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Multiparameter inverse scattering

FIG. 9: Shallow dip velocity model deconvolved synthetic data ,x=1195m
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FIG. 10: Shallow dip velocity model,kz kh plot

CREWES Research Report — Volume 23 (2011) 17



G.R. Young et al

Inversion Image
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FIG. 11: Shallow dip velocity model, inversion result

FIG. 12: Anticline velocity model
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Multiparameter inverse scattering

FIG. 13: Anticline synthetic shot profile with 30 Hz ricker wavelet, x=1195m

FIG. 14: Anticline deconvolved synthetic shot profile, x=1195m
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FIG. 15: Anticline velocity model, kz kh Plot
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FIG. 16: Anticline velocity model, inversion result
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