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ABSTRACT 
Networked systems require the consideration of the interactions between component 

parts as well as the parts themselves in understanding the properties of the system. In the 
case of hydraulic fracturing, the process can be regarded as the spread of a fractured state 
through an initially unfractured network of rock elements. In this study, we implement a 
spreading model in networks to evaluate the dynamics of the hydraulic fracturing process 
in various rock types. The corresponding results regarding the stresses that must be 
overcome, the areal extent and energy release in hydraulic fracturing were in agreement 
with empirical observations.  

INTRODUCTION 
Many macroscopic phenomena manifest as the result of a network of interacting 

agents and often exhibit dynamics that are reciprocal to its network structure. These 
network interactions govern phenomena ranging from collective behavior in schooling 
fish to the spreading of viruses in human networks. In these networked systems, the 
interactions between component parts are just as important as the parts themselves in 
defining the properties of the system (Motter and Albert, 2012). In addition, it is widely 
accepted that macroscopic phenomena do not depend on the microscopic details of the 
process, as in effective field theories that are applicable at some chosen length scale and 
ignores the substructure and degrees of freedom at shorter distances. Therefore, the 
description of seemingly complex phenomena can be greatly reduced in complexity by 
application of the above paradigms. In this study, we apply these concepts to hydraulic 
fracturing to investigate the dynamical process under which hydraulically induced 
fractures propagate in various rock types. These simplifications allow us to discard the 
complex fluid flow and fracture mechanics in modeling the dynamic response of 
hydraulic fracturing (i.e. Lutz, 1991). It should be noted that the simplified approach only 
provides qualitative descriptions and lacks the rigor in understanding the phenomenon at 
a fundamental level. It does however provide an alternative conceptual view of the 
problem.  

Many observations concerning fracture propagation in so called brittle or ductile rocks 
have been well established with the aid of empirical data, where brittleness is often 
associated with higher quartz content and a low Poisson’s ratio. For example, engineering 
data such as the instantaneous shut in pressure (ISIP), which provides an indication for 
the stress that must be overcome for fracture propagation, is found to correlate with the 
Poisson’s ratio (i.e. Maxwell et al., 2011). It is also generally observed that fractures 
propagate further in brittle rocks while propagation is more localized in ductile rocks, as 
suggested by microseismic event locations. In addition, microseismic event densities are 
observed to decrease with increasing brittleness. These observations are illustrated in 
Figure 1 where the ISIP gradients and microseismicity associated with the stimulation of 
a horizontal well are overlaid on a map of the Poisson’s ratio generated from seismic 
inversion.  
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In the following, we implement a simple network spreading model in an attempt to 
model the dynamics of the hydraulic fracturing process and evaluate the corresponding 
fracture propagation response for various rock types.  

 

FIG. 1. ISIP gradients (kPa/m) and microseismicity overlaid on a map of the Poisson’s ratio, 
where hot colors represent lower values. Note the correlation between the ISIP gradients and the 
Poisson’s ratio. In addition, microseismic events extend further in areas of low Poisson’s ratio and 
have a lower event density. (From Maxwell et al., 2011) 

FRACTURE SPREADING MODEL 
To investigate the dynamics of fracture propagation through a network of rock 

elements, we adopt a spreading model proposed by Watts (2002) for the description of 
global cascades on random networks. In the model, a binary decision process with 
externalities is considered. For a given network, each individual in the population, 
represented by a node, must decide between two alternative actions, where their decisions 
are based solely on the actions of other members in the population. Examples of such 
phenomena include everyday experiences such as deciding on which restaurant to visit. 
Because we often have limited information, we rely on the recommendation of others in 
our social network to aid in the decision making process. Further, these phenomena often 
exhibit a threshold nature whereby a specific number of connected nodes in a given state 
can trigger an individual node to alter its state. For example, if one favors Italian cuisine, 
it would require fewer recommendations to visit a certain Italian restaurant. Furthermore, 
large spreading events are occasionally observed where a small number of activated 
nodes trigger a cascade through the network. For the restaurant example, a previously 
undiscovered restaurant could gain popularity very quickly given the right conditions for 
the spread of information through a social network.  
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In the case of hydraulic fracturing, the process can be regarded as the spreading of the 
fractured state in a network of initially unfractured rock elements, where a successful 
hydraulic fracture treatment is defined by a cascade event. For the model specification, 
we consider a population where an individual agent observes the states (0 for unfractured 
or 1 for fractured) of its connected neighbors, where the range of connections is known as 
the degree, and if a certain threshold fraction, defined on the unit interval, is achieved, it 
adopts state 1, else it remains in state 0. To initiate the system, a set of initial seed nodes 
are placed in the network and the process is subsequently iterated through a series of time 
steps. If a cascade is triggered, state 1 spreads throughout the network and if a cascade is 
not triggered, the network remains in its initial state.  

To calculate the threshold, we implement the uniaxial strain condition for loading of 
an elastic solid given by 
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where ν is the Poisson’s ratio and σ1 and σ3 are the maximum and minimum principle 
stress magnitudes respectively. For a given value of σ1, a lower value of σ3 can be 
achieved through lowering the value of ν, and according to the Mohr-Coulombe failure 
criterion (Coulomb, 1773), results in a larger Mohr circle and hence is more easily 
fractured. Since the quantity ν/(1-ν) is defined on the unit interval for all possible values 
of ν between 0 and 0.5, it can readily be used for the threshold condition. Therefore, a 
material with a lower Poisson’s ratio is more easily fractured and thus requires less 
influence to achieve failure.  

To calculate the degree, we consider how information is transferred in an elastic solid. 
Upon the application of a stress, particle motion is excited through strain waves and 
propagates throughout the medium. Therefore, we associate the transfer of information 
regarding the state of stress through the mechanics of wave propagation. The wave 
equation can then be used to evaluate how energy propagates through an elastic solid and 
provide an indication for the network of connected nodes. In a 3D homogeneous medium, 
the Green’s function for the scalar wave equation is given by  
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where c is the P-wave velocity, t is time, r is the radial distance from the source location 
and δ represents an impulse function. According to equation 2, the rate at which the 
amplitude decays is inversely proportional to r and is scaled by the inverse of the P-wave 
velocity. Therefore, a material with a higher value of c corresponding to the effective 
medium, experiences more amplitude decay at a given radial distance r from the source 
point and results in a more localized connectivity.  

ROCK MODEL 
For the evaluation of the fracture propagation response in different rock types, we 

implement the Hashin-Shtrikman bounds (1963) for a two-phase material consisting of 
quartz and clay with varying mineral fractions. With this approach, we avoid the ill-
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defined concept of brittleness which is not a fundamental property of an elastic solid. 
Figure 2 shows the upper and lower bounds for the P- and S-wave velocities of the two 
phase material calculated using the values in Table 1.  

 

FIG. 2. Hashin-Shtrikman upper (green) and lower (blue) bounds for the a) P- and b) S-wave 
velocities for a two-phase material consisting of quartz and clay.  

Table 1. Density (ρ) and P- (α) and S-wave (β) velocities used for mineral end members (From 
Greenberg and Castagna, 1992). 

Mineral ρ (g/cc) α (km/s) β (km/s) 

Quartz 2.65 6.05 4.09 

Clay 2.66 4.32 2.54 
 
For the case of a pure mineral phase, the upper and lower bounds converge, however, 
when a mixture of the two mineral phases are introduced, the bounds diverge resulting in 
a range of values for the elastic parameters. Therefore, in defining the threshold and 
degree, we sample from a distribution function uniformly distributed between the upper 
and lower Hashin-Shtrikman bounds.  

DYNAMICAL MODELING 
As the dynamics of the hydraulic fracturing problem are not easily amendable to 

analytical treatment, we solve the system numerically and analysis the corresponding 
results. The simulations were performed in 2D and consist of 100 realizations for each set 
of mineral fractions ranging from pure clay to pure quartz. As mentioned above, we 
attribute a successful hydraulic fracture treatment with a cascade event triggered by a 
certain number of initially active nodes. The properties of interest are then the number of 
seed nodes required to trigger a cascade, the areal extent of the cascade and the energy 
output for each set of mineral fractions. Due to the statistical variations as a result of the 
Hashin-Shtrikman bounds, we take the mean value for each property.  
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FIG. 3. Phase diagram illustrating the cascade boundary in blue. The black points indicate the 
response calculated from stresses alone.  

Figure 3 shows the phase diagram illustrating the cascade boundary in the plane 
representing the number of initial seed nodes required to trigger a cascade and the volume 
of quartz, where the number of seed nodes is normalized to its maximum value. This 
boundary is analogous to the ISIP or the stresses that must be overcome to initiate 
fracture propagation. If we consider the stresses alone without the network structure, the 
uniaxial strain condition and equation 1 can be used to provide some insight into how the 
stresses vary for different mineral fractions. To illustrate this, the quantity, ν/(1-ν), 
normalized to its maximum value is plotted against the volume of quartz in Figure 4 as 
points. The stress response alone demonstrates a deviation from the cascade boundary 
evaluated using the spreading model. These differences are attributed to the influence of 
the network structure and the corresponding nonlinearities in the dynamical system.  
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FIG. 4. Normalized stimulated area over 12 time steps. 

Figure 4 shows the normalized mean stimulated area over 12 time steps once a 
cascade is triggered. The response is not a well behaved function of the volume of quartz 
and is attributed to the variability in the elastic parameters for a multi-phase rock 
composition. However, the simulations show that the stimulated area increases with an 
increase in the volume of quartz, which is consistent with the notion that fractures 
propagate further in more brittle rock.  

 

FIG. 5. Spatial distribution of total energy output for a) 70%, b) 40% and c) 10% quartz.  

Figure 5 shows the sum of all activated nodes for each time step, where the function is 
normalized to provide an indication for the spatial distribution of total energy output. 
Since we associate the activation of a node as a fracture creation event, the energy output 
corresponds to the generation of a microseism. Therefore, the distributions can be related 
to the microseismic event density for the different rock types. As the volume of quartz 
decreases, the energy becomes more concentrated around the initial seed nodes, which is 
consistent with the observation that microseismic event densities increase in more ductile 
rock.  
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CONCLUSIONS 
The dynamics of the hydraulic fracturing process were evaluated through a spreading 

model in networked systems for rock types consisting of varying mineral fractions of 
quartz and clay. This was performed to provide an alternative view of the mechanisms 
that underlie the empirical observations documented by various authors concerning the 
fracture propagation response in brittle and ductile rock. The results of the numerical 
simulations were in qualitative agreement with the observations regarding the 
relationship between ISIP and Poisson’s ratio and the microseismic response in various 
rock types.  As the hydraulic fracturing process is a dynamical system consisting of 
numerous interacting rock elements, the interactions between component parts as well as 
the parts themselves must be considered in understanding the properties of the system. 
Using this approach, the hydraulic fracture response can be modeled and anticipated for 
in various rock types given an appropriate rock physics model.  
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