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ABSTRACT

We present a 1.5D MATLAB implementation of the inverse scattering series internal
multiple prediction algorithm developed by Weglein and collaborators in the 1990s. We
discuss the transformation of the data from the space and time domain to those of wavenum-
ber and pseudo-depth, and the subsequent prediction operation, and illustrate the procedure
with a synthetic example. Our plan forward is to apply with the 1.5D algorithm the meth-
ods developed by Hernandez for the 1D algorithm (in this report), which involve stepping
from synthetic, to laboratory, and finally to land data.

INTRODUCTION

In this paper we review the basic features of the inverse scattering series internal mul-
tiple attenuation algorithm as introduced to the geophysics literature in the 1990s (Araújo
et al., 1994; Weglein et al., 1997, 2003), and demonstrate its application to 1.5D data using
a MATLAB implementation. The purpose is to complement the 1D version of the algo-
rithm studied by Hernandez and Innanen (2012) in a progression from synthetic, physical
modelling and land data environments. The plan forward is to explore the field applica-
tion of the current algorithm using a similarly staged approach. We begin with a review of
the algorithm and its inputs, then describe how these are implemented in MATLAB. We
demonstrate the use of the algorithm on a simple synthetic data set.

REVIEW: INTERNAL MULTIPLES AND THEIR PREDICTION

Transforming the input data to the pseudo-depth domain b1(kg, ks, z)

The procedure for generating the input to the prediction algorithm is much the same
as that by which a constant velocity Stolt migration (Stolt and Benson, 1986) is carried
out. We begin with a data set measured over intervals in lateral source location xs, lateral
receiver location xg, and time t. The data are Fourier transformed over all three of these
coordinates:

d(xg, xs, t)→ D(kg, ks, ω). (1)

and a change of variables is made from ω to kz:

D(kg, ks, ω)→ D(kg, ks, kz), (2)

where kz = qg + qs and

qg =
ω

c0

√
1−

k2
gc

2
0

ω2
, qs =

ω

c0

√
1− k2

sc
2
0

ω2
. (3)

The data are scaled by −i2qs, forming

B1(kg, ks, kz) = (−i2qs)D(kg, ks, kz), (4)
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and B1 is, finally, inverse Fourier transformed over kz, appearing in the wavenumber-
pseudodepth domain as

B1(kg, ks, kz)→ b1(kg, ks, z). (5)

The quantity b1(kg, ks, z) is the input to the prediction algorithm.

Internal multiple prediction in 2D

The prediction algorithm (Weglein et al., 1997) is then

PRED(kg, ks, ω) =

(
1

2π

)2 ∫ ∞
−∞

∫ ∞
−∞

dk1dk2 × Γ(kg, k1, k2, ks|ε), (6)

where

Γ(kg, k1, k2, ks|ε) =

∫ ∞
−∞

dzei(qg+q1)zb1(kg, k1, z)

∫ z−ε

−∞
dz′e−i(q1+q2)z′

b1(k1, k2, z
′)

×
∫ ∞
z′+ε

dz′′ei(q2+qs)z′′
b1(k2, ks, z

′′),

(7)

and the

qX =
ω

c0

√
1− k2

Xc
2
0

ω2
(8)

are vertical wave numbers associated with the various lateral wave numbers and the refer-
ence velocity c0.

Internal multiple prediction in 1D

The multidimensional prediction algorithm reduces to 1D—producing the form stud-
ied by Weglein and Matson (1998) and used by Hernandez and Innanen (2012)—via the
replacement

kg = ks = 0, (9)

in which case we obtain the frequency domain prediction

PRED(ω) =

∫ ∞
−∞

dze
i2 ω

c0
z
b1(z)

∫ z−ε

−∞
dz′e

−i2 ω
c0
z′
b1(z

′)

∫ ∞
z′+ε

dz′′e
i2 ω

c0
z′′
b1(z

′′). (10)

The difference in computational complexity between equations (6) and (10) could be fairly
called enormous. The heart of the prediction is a set of three nested integrals over pseu-
dodepth. The 1D algorithm requires one such set for each output frequency ω. The 2D
algorithm requires many such sets: at each frequency the nested integration is repeated
for every value of the integration variables k1 and k2, over which the results are summed.
Then, this is repeated for every output kg, ks pair.
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Internal multiple prediction in 1.5D

However, if the data have offset but the Earth is nearly layered, a 1.5D version of the
algorithm may be considered, in which

kg = ks, (11)

but they are no longer necessarily equal to nil. Multiplying each instance of b1(k′, k′′, z)
(and PRED) in equation (6) with 2πδ(k′ − k′′), and comparing coefficients of the delta
functions after integration, we obtain the 1.5D algorithm

PRED(kg, ω) =

∫ ∞
−∞

dzeikzzb1(kg, z)

∫ z−ε

−∞
dz′e−ikzz′

b1(kg, z
′)

×
∫ ∞
z′+ε

dz′′eikzz′′
b1(kg, z

′′)

(12)

where kz = 2qg. The computation problem has been dramatically reduced, with the equiv-
alent of a single 1D prediction for every output kg. We implement this version of the
algorithm in MATLAB. We describe the form this implementation takes in the next sec-
tion.

1.5D INTERNAL MULTIPLE PREDICTION IN MATLAB

Input data

We assume the availability of a single split-spread shot record of input data with di-
rect arrivals muted (halt muting at offsets where the direct wave begins to interfere with
reflections). Deconvolution and deghosting are a useful preprocessing step; if the internal
multiples are resolvable in the data without these steps, they may be avoided (we will not
deconvolve our synthetic data later in this paper), though this will lead to a more involved
subtraction problem subsequently. The data are stored in a matrix data in MATLAB of
size [N,M ] = size(data).

Making the pseudo-depth domain input b1(kg, z)

Step 1: 2D FFT

Beginning with our input data, we follow the set of procedures described in equations
(1)–(5). First, we Fourier transform the data: the 2D FFT algorithm internal to MATLAB
maps the data from a regular (xg, t) grid to a regular (kg, ω) grid.

Step 2: choosing a regular kz vector

We define a regular output grid on (kg, kz). The output wavenumber variable kz is
conjugate to pseudo depth z = c0t/2. Hence, we can choose an optimum grid for the
vector {kz0 , kz1 , ..., kzN

} by starting with our input t vector:

t = dt ∗ ((1 : N)− 1); (13)
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with dt the sampling interval. We can thereafter map to pseudo-depth

z = 0.5 ∗ c0 ∗ t, (14)

where c0 is the reference medium P-wave velocity (for internal multiple prediction any
plausible value “reasonably” close to the velocity nearby the sources and receivers can be
used), by determining the associated dz = z(2)− z(1), and then defining

kz = −N/2 : N/2− 1;

kz = kz/(N ∗ dz);
(15)

as the regularly-sampled output depth wavenumber.

Resampling

The data are available on a regular (kg, ω) grid after the 2D FFT. Because the relation-
ship between (kg, ω) and (kg, kz) is nonlinear, a direct change of variables from this regular
grid would lead to a data set on an irregular (kg, kz) grid. To get around this, we compute a
regular desired (kg, kz) grid (with kz chosen as described above), determine the irregular ω
values needed to accommodate it, and perform a linear interpolation of the data onto these
irregularly spaced values.
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FIG. 1. Layered two interface model used to generate synthetic data and test the 1.5D internal
multiple prediction algorithm.

Predicting internal multiples

The 1.5D prediction comprises three nested loops. (Vectorizing one or more of these,
which would lead to considerable computational savings, is a matter of ongoing study.) Ta-
ble 1 outlines the basic form in pseudocode. The loops are over lateral wavenumber kx (ii),
temporal frequency w (jj), and depth z (kk). In all three cases the integration beginning
and ending points (i.e., kxB, kxE, wB, wE, zB, and zE) can sometimes be reduced to
speed up computation. For instance, the inner integral is searching for even combinations
in pseudodepth: hence, if no contributing events fall outside a given interval, zB and zE
can be adjusted to reflect this. Also, the evanescent boundary and the bandlimited nature
of the original data will provide limits for kx and ω, allowing kxB, kxE, wB, wE to be
adjusted.
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For ii = kxB : kxE
F = kx(ii)2c20./w.

2

qg = (w/c0). ∗ sqrt(1− F )
For jj = wB : wE
A1 = i ∗ 2 ∗ qg(jj) ∗ z;
A2 = −i ∗ 2 ∗ qg(jj) ∗ z;
I1 = b1(:, ii). ∗ exp(A1);
I2 = b1(:, ii). ∗ exp(A2);

For kk = zB : zE
S = sum(I1(kk + ε : zE));
P = P + I2(kk) ∗ S2;
End

P = P ∗ dz;
End

End

Table 1. Prediction algorithm in pseudocode.
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FIG. 2. Synthetic data calculated using the synthetic model in Figure 1. The CREWES code
afd_shotrec.m was used to create the data. (a) Primary zero offset travel times are indicated in red.
(b) Multiple zero offset travel times are indicated in yellow.

SYNTHETIC EXAMPLE

Input data

In Figure 1 we illustrate a simple two interface model which we will use to test the
internal multiple predictions. In Figures 2a-b a single shot record of data is illustrated. The
data are created using the CREWES acoustic finite difference function afd_shotrec.m, with
all four boundaries set as “absorbing” to suppress the creation of free-surface multiples.

In Figure 2a we pay particular attention to the two primaries, whose zero offset travel
imes are indicated in yellow. In Figure 2b we pay attention rather to the two internal
multiples that (while dim) are visible in the data. The zero offset travel times of these
events are indicated in red. Our objective is to use the primaries as subevents to predict
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these two multiples at all offsets.

Making b1(kg, z)

In Figure 3 we illustrate the construction of the core input to the prediction algorithm,
b1(kg, z). Note it is constructed for positive kg values only—later through conjugate sym-
metry the negative wavenumbers are filled. Although difficult to interpret, at low kg the
arrival times of the two primaries are visible.
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FIG. 3. The algorithm input b1(kg, z) is generated using the input data and the single reference
velocity c0.

Predicting internal multiples

We finally input the constructed b1 matrix into the prediction algorithm. The results,
after a 2D inverse Fourier transform, are displayed in Figure 4. In Figure 4a the prediction
is displayed to match with a clipped version of the input data in 4b. The zero offset travel
times and moveout patterns of the internal multiples are captured in the prediction. A range
of artifacts and edge effects are visible also, which are matters of ongoing consideration.
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FIG. 4. The output of the 1.5D internal multiple prediction. (a) The prediction, in which two multiples
are predicted. (b) The original data with both primaries and internal multiples.
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CONCLUSIONS

We implement a 1.5D version of the inverse scattering series internal multiple algorithm
developed by Weglein and collaborators in the 1990s in MATLAB. Our plan forward is to
apply with the 1.5D algorithm the methods developed by Hernandez for the 1D algorithm
(this report), which involve stepping from synthetic, to laboratory, and finally to land data.

Areas that require further study include examining the use of tapering for aperture ef-
fects, moving from a linear to a sinc interpolation scheme during the construction of b1,
and a survey of the response of the algorithm to missing traces and irregular data.
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