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ABSTRACT

We write down linearized anelastic AVO approximations appropriate for problems in-
volving both elastic and anelastic incidence media. Variations in the anelastic properties of
the Earth across the reflecting boundary are expressed in terms of reflectivity- and relative
change-type quantities. RPP, RPS and RSS coefficients are each investigated. There is a
wide range of degrees of accuracy produced by this set of formulas and no obvious pattern.
We conclude it is best to have all of the forms “on hand” to fit anelastic AVO situations as
they arise.

INTRODUCTION

In recent years there has been an increase in reports of anelastic, as opposed to elastic,
seismic AVO behaviour (Chapman et al., 2006; Odebeatu et al., 2006; Quintal et al., 2009;
Lines et al., 2012). Since seismic Q is an indicator of fluid content, there is little doubt
that extra geophysical and geological information is contained in such signatures. Innanen
(2011) has suggested that given this trend, the production of interpretable mathematical
forms for anelastic AVO (or AVF, as the case may be), akin to the Aki-Richards and related
elastic approximations (e.g., Castagna and Backus, 1993; Foster et al., 2010), is a research
priority. In that work anelastic P-P and P-S forms proper to elastic incidence media and
anelastic target media were derived. Here we extend that work to include P-P, P-S, and
S-S approximations proper to both elastic and anelastic incidence media, and express those
approximations both in terms of relative changes of anelastic properties across the reflecting
boundary, and reflectivity quantities. We focus exclusively on forward modelling, and
linearized forms, whereas Innanen (2011) derived linear and nonlinear formulas for both
modelling and inversion.

The formulation for anelastic incidence media is similar to that by which the “elastic
incidence” problems discussed above have been generated. The main difference lies in
changes to the standard quantities of AVO theory arising from complex incidence medium
propagation constants. This complexity extends to all plane-wave AVO quantities we nor-
mally discuss: incidence and transmitted angles, VP/VS ratios, etc. Since AVO is still
measured over real variables (x, t, kx, ω etc.), we have to come to some decisions about
how to parametrize the problem: how to map between the complex variables by which the
wave interacts with the Earth (in our mathematical models) and the real variables associ-
ated with the experiment. Here we arrange all AVO formulas such that the angles on the
left hand sides are real, and chosen as if the incidence media were elastic, whereas the an-
gles on the right hand sides are complex and expressive of the anelastic wave propagation
model. The two sets of angles map straightforwardly from one to the other.

There are five basic components of this paper. The first part, which appears after the
introduction, is a summary of the theory by which linearized anelastic AVO approximations
are derived, along with six formulas, the “core” AVO formulas for RPP, RPS and RSS given
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Symbol Meaning
VP0 , VP1 P-wave velocities in incidence and target media
VS0 , VS1 S-wave velocities in incidence and target media
ρ0, ρ1 Densities in incidence and target media
QP0 , QP1 P-wave quality factors in incidence and target media
QS0 , QS1 S-wave quality in incidence and target media
ω Temporal angular frequency
kx Lateral wavenumber
FP (ω), FS(ω) P- and S-wave attenuation/dispersion coefficients
kP0 , kP1 P-wave propagation constants
kS0 , kS1 S-wave propagation constants
RA

PP, RA
PS, RA

SP, RA
SS Displacement reflection strengths, anelastic incidence media

RE
PP, RE

PS, RE
SP, RE

SS Displacement reflection strengths, elastic incidence media
REE

PP , REE
PS , REE

SP , REE
SS Displacement reflection strengths, elastic incidence/target media

A, B, C, D, E, F Anelastic parameter ratios
γA Anelastic VP/VS ratio
aV P , aV S , aρ Elastic perturbations across reflecting boundary
aQP , aQS Anelastic perturbations across reflecting boundary
θ, φ Elastic angles of incidence for P-, S-waves
θA, φA Anelastic angles of incidence for P-, S-waves
Γi, Γi Functions of angle in the Zoeppritz equations
∆VP/VP , ∆VS/VS , ∆ρ/ρ Elastic relative change/reflectivity quantities
∆QP/QP , ∆QS/QS Anelastic relative change/reflectivity quantities

Table 1. Table of symbols.

first anelastic and then elastic incidence media. In the second through fifth components of
the paper, we re-write the core formulas four times, for each combination of two forms of
the relative change in properties, and elastic vs. anelastic incidence media. We illustrate
each formula with a numerical example, and summarize the relative accuracy of each in
our conclusions.

Symbols used in this paper

In this paper a range of symbols are used repeatedly. To keep these quantities in order,
in Table 1 we list the main symbols and their significance.

Parameters for the numerical examples in this paper

To illustrate the numerical character of these formulas, we choose a set of representa-
tive elastic and/or anelastic incidence and target medium properties, and compare the exact
reflection coefficients with (1) our linear-approximate forms, and (2) the reflection coeffi-
cients in the elastic limit, i.e., as if inelasticity had been ignored. The latter will therefore
measure the importance to AVO of correctly including anelasticity when it appears. In ev-
ery numerical case we will calculate an AVO curve at a fixed frequency of ω = 2π rad
×10Hz, using reference frequencies of ωP = 2π rad ×120Hz, and ωS = 2πrad × 60Hz.
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Anelastic AVO approximations continued

Figure VP0 VS0 ρ0 QP0 QS0 VP1 VS1 ρ1 QP1 QS1

number (m/s) (m/s) (gm/cc) (m/s) (m/s) (gm/cc)

3 2000 1500 2.0 20 15 2500 1600 2.25 10 5
4 2000 1500 2.0 20 15 2500 1600 2.25 15 10
5 2000 1500 2.0 20 15 2500 1700 2.25 10 5
6 2000 1500 2.0 20 15 2500 1600 2.25 10 5
7 2000 1500 2.0 20 15 2500 1600 2.25 15 10
8 2000 1500 2.0 30 25 2500 1700 2.25 15 10
9 2000 1500 2.0 ∞ ∞ 2300 1600 2.25 10 5

10 2000 1500 2.0 ∞ ∞ 2500 1600 2.5 10 5
11 2000 1500 2.0 ∞ ∞ 2200 1550 2.25 10 5
12 2000 1500 2.0 ∞ ∞ 2500 1600 2.5 10 5
13 2000 1500 2.0 ∞ ∞ 2500 1600 2.5 10 5
14 2000 1500 2.0 ∞ ∞ 2500 1600 2.5 10 5

Table 2. Table of elastic/anelastic parameters used in numerical examples. In the left column are
the Figure numbers wherein AVO curves are plotted. In the columns to the right are the anelastic
medium properties used in those AVO curve calculations.

Our goal is to maintain a more or less constant anelastic model throughout, to aid us in
making qualitative comparisons, but we occasionally vary parameters as a reassurance that
the model does not involve “special” parameters for which the formulas act in a desirable
way. The elastic and/or anelastic parameters used in all the forthcoming examples, along
with the relevant figure numbers, are listed in Table 2.

ANELASTIC ZOEPPRITZ EQUATIONS AND LINEARIZED SOLUTIONS

We will treat the anelastic AVO problem in two distinct cases. In case one the incidence
medium is elastic (Figure 1a); in case two the incidence medium is anelastic (Figure 1b).
We will treat them in reverse order, since once the anelastic incidence medium case is
developed the elastic incidence medium case follows with only a few slight changes.

RPP

RPS

RSP

RSS

S!

P
! VP0 , VS0 , ⇢0

VP1 , VS1 , ⇢1, QP1 , QS1

RPP

RPS

RSP

RSS

S!

P
!

VP1 , VS1 , ⇢1, QP1 , QS1

VP0 , VS0 , ⇢0, QP0 , QS0

(a) (b)

✓ ✓

� �

FIG. 1. Anelastic AVO configurations: (a) elastic incidence medium; (b) anelastic incidence
medium.
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Anelastic incidence medium

We consider an incidence medium in with anelastic parameters VP0 , VS0 , ρ0, QP0 and
QS0 , and a target medium with anelastic parameters VP1 , VS1 , ρ1, QP1 and QS1 . The attenu-
ation model is chosen following Aki and Richards (2002), such that the plane P-waves and
S-waves have propagation constants

kP0 =
ω

VP0

[
1 +Q−1

P0
FP (ω)

]
, kS0 =

ω

VS0

[
1 +Q−1

S0
FS(ω)

]
,

kP1 =
ω

VP1

[
1 +Q−1

P1
FP (ω)

]
, kS1 =

ω

VS1

[
1 +Q−1

S1
FS(ω)

]
,

(1)

where

FP (ω) =
i

2
− 1

π
log

(
ω

ωP

)
,

FS(ω) =
i

2
− 1

π
log

(
ω

ωS

)
,

(2)

and ωP and ωS are reference frequencies. If a plane P-wave is incident at the complex angle
θ, or a plane S-wave is incident at the complex angle φ, and X = sin θ and Y = sinφ,
the Zoeppritz equations in matrix form (expressed similarly to the elastic case as by, e.g.,
Innanen, 2012) are

P




RA
PP

RA
PS

TAPP
TAPS


 = bP , and S




RA
SS

RA
SP

TASS
TASP


 = bS, (3)

where

P =




−X −ΓB(X) CX ΓD(X)
Γ1(X) −BX ΓC(X) −DX

2B2XΓ1(X) BΓB(X) 2AD2XΓC(X) ADΓD(X)
−ΓB(X) 2B2XΓB(X) 2ACΓD(X) −2AD2XΓD(X)


 , (4)

S =




Y −ΓB−1(Y ) FY −ΓE(Y )
−Γ1(Y ) −B−1Y ΓF (Y ) EY
−2Y Γ1(Y ) B−1Γ1(Y ) 2AF 2Y ΓF (Y ) −AEΓF (Y )

Γ1(Y ) 2Y ΓB−1(Y ) AFΓF (Y ) 2AF 2Y ΓE(Y )


 , (5)

and

bP =




X
Γ1(X)

2B2XΓ1(X)
ΓB(X)


 , and bS =




Y
Γ1(Y )

2Y Γ1(Y )
Γ1(Y )


 , (6)

and where we have used the ratios

A =
ρ1

ρ0

, B =
VS0

VP0

[1 +Q−1
P0
FP (ω)]

[1 +Q−1
S0
FS(ω)]

, C =
VP1

VP0

[1 +Q−1
P0
FP (ω)]

[1 +Q−1
P1
FP (ω)]

(7)

4 CREWES Research Report — Volume 24 (2012)



Anelastic AVO approximations continued

and

F =
VS1

VS0

[1 +Q−1
S0
FS(ω)]

[1 +Q−1
S1
FS(ω)]

, D = BF, E = B−1C (8)

and the functions

Γj(Z) =
√

1− j2Z2,

Γj(Z) = 1− 2j2Z2.
(9)

By forming auxiliary matrices PP , PS and SS , SP by replacing the first and second
columns of P and S with the right hand vectors bP and bS respectively, we may form
exact solutions

RA
PP =

detPP

detP
, RA

PS =
detPS

detP
, RA

SS =
detSS
detS

, RA
SP =

detSP
detS

. (10)

For reference, we will call the equivalent elastic reflection coefficients (i.e., obtained by
setting Q−1

P0
and Q−1

S0
= 0) by the names REE

PP , REE
PS , REE

SP , and REE
SS . We next define

perturbations

aV P = 1−
(
VP0

VP1

)2

, aV S = 1−
(
VS0

VS1

)2

, aρ = 1− ρ0

ρ1

,

aQP = 1− QP0

QP1

, and aQS = 1− QS0

QS1

.

(11)

For small values of these perturbations and for small angles, we may make the following
replacements within the exact equations above:

Γj(Z) ≈ 1− 1

2
j2Z2,

C ≈ 1 +
1

2
aV P +Q−1

P0
FP (ω)aQP

F ≈ 1 +
1

2
aV S +Q−1

S0
FS(ω)aQS.

(12)

We substitute equations (7)–(8) with the alterations in equation (12) into the matrices P
and S, form the auxiliary matrices, and calculate the determinants. Assembling terms in
detPP that are (a) linear in the perturbations and (b) up to second order in sin θ or sinφ

into detP(1)
P , and the terms in detP that are (a) zeroth order in the perturbations and (b) up

to second order in sin θ or sinφ into detP(0), we form linear approximations

RA
PP ≈

detP(1)
P

detP(0)
, RA

PS ≈
detP(1)

S

detP(0)
, RA

SS ≈
detS(1)

S

detS(0)
, (13)

neglecting RSP. The superscript A refers to the anelasticity of the incidence medium.

To write these approximations out explicitly we need first to come to grips with the
complexity of the P- and S-wave angles of incidence θ and φ. We will proceed as follows.
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In Figure 2 the plane wave geometry connecting propagation constants (which appear as
the hypotenuses of the right triangles) to the incidence angles and horizontal wavenumbers
are illustrated. In Figures 2a-b the anelastic case is considered. Evidently

sin θA =
VP0kx
ω

[
1 +Q−1

P0
FP (ω)

]−1

sinφA =
VS0kx
ω

[
1 +Q−1

S0
FS(ω)

]−1
(14)

holds. In the elastic limit, as illustrated in Figures 2c-d, we have rather that

sin θ =
VP0kx
ω

sinφ =
VS0kx
ω

;

(15)

combining equations (14) and (15) we can map between (θA, φA) and (θ, φ) straightfor-
wardly via

sin θA = sin θ
[
1 +Q−1

P0
FP (ω)

]−1

sinφA = sinφ
[
1 +Q−1

S0
FS(ω)

]−1
.

(16)

The most convenient parametrization of the AVO curves will be to use θ and φ, which are
real-valued and closely related to experimental variables, as output variables (i.e., on the
left-hand side of the AVO formulas), and to use θA and φA, which are complex and closely
related to anelastic wave propagation variables, as input variables (i.e., on the right-hand
side of the AVO formulas).

We use equation (16) to map from the real output variables θ and ω to the complex
input angles θA and φA to express the linearizations. We may also, at this point in the
derivation, decide to replace the right-hand side angles θA and φA, which are formally the
angles of incidence, with the average of the incidence angles and transmission angles (as
first empirically suggested by Shuey, 1985). The decision to do this, or not do it, in practice
will be based on the type of information we feel is available. The results to follow in this
paper can be explored with or without this replacement; we will examine them with the
replacement, i.e., using average angles.

The core approximations for an anelastic incidence medium are, then,

RA
PP(θ, ω) ≈1

4
(1 + tan2 θA)aV P +

1

2

[
1− 4

(
1

γA

)2

sin2 θA

]
aρ

− 2

(
1

γA

)2

sin2 θAaV S +
1

2
Q−1
P0
FP (ω)

(
1 + tan2 θA

)
aQP

− 4

(
1

γA

)2

Q−1
S0
FS(ω) sin2 θAaQS,

(17)
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FIG. 2. Parametrizing reflection strengths when angles are complex. (a)–(b) Plane wave geometry
for anelastic incidence media. (c)–(d) Plane wave geometry for elastic incidence media.

for P-P reflection strengths (using the common replacement sin θA ≈ tan θA for the P-wave
velocity term),

RA
PS(θ, ω) ≈−

(
1

γA

)
sin θAaV S −

[(
1

γA

)
+

1

2

]
sin θAaρ

− 2

(
1

γA

)
Q−1
S0
FS(ω) sin θAaQS,

(18)

for converted wave (P-S) reflection strengths, and

RA
SS(φ, ω) ≈− 1

4

(
1− 7 sin2 φA

)
aV S −

1

2

(
1− 4 sin2 φA

)
aρ

− 1

2
Q−1
S0
FS(ω)

(
1− 7 sin2 φA

)
aQS,

(19)

for S-S reflection strengths, where

γA = B−1 =
VP0

VS0

[1 +Q−1
S0
FS(ω)]

[1 +Q−1
P0
FP (ω)]

(20)

is the anelastic extension of the VP/VS ratio.

Elastic incidence medium

To produce the counterpart AVO approximations appropriate for an elastic (i.e., non-
attenuating) incidence medium, we repeat the derivation above with some slight changes.
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First, we define the quality factor perturbations differently:

aQP = Q−1
P1
, aQS = Q−1

S0
. (21)

Second, we re-define B, C and F to be consistent with infinite QP and QS in the incidence
medium:

B =
VS0

VP0

,

C =
VP1

VP0

[1 +Q−1
P1
FP (ω)]−1

≈ 1 +
1

2
aV P − FP (ω)aQP ,

F =
VS1

VS0

[1 +Q−1
S1
FS(ω)]−1

≈ 1 +
1

2
aV S − FS(ω)aQS.

(22)

Substituting these forms into the Zoeppritz equations above, and expanding the determi-
nants in exactly the same way, we produce the alternative forms

RE
PP(θ, ω) ≈1

4
(1 + tan2 θ)aV P +

1

2

[
1− 4

(
VS0

VP0

)2

sin2 θ

]
aρ − 2

(
VS0

VP0

)2

sin2 θaV S

− 1

2
FP (ω)

(
1 + tan2 θ

)
aQP + 4

(
VS0

VP0

)2

FS(ω) sin2 θaQS,

(23)

for P-P reflection strengths,

RE
PS(θ, ω) ≈ −VS0

VP0

sin θaV S −
(
VS0

VP0

+
1

2

)
sin θaρ + 2

VS0

VP0

FS(ω) sin θaQS, (24)

for converted wave (P-S) reflection strengths, and

RE
SS(φ, ω) ≈− 1

4

(
1− 7 sin2 φ

)
aV S −

1

2

(
1− 4 sin2 φ

)
aρ

+
1

2
FS(ω)

(
1− 7 sin2 φ

)
aQS,

(25)

for S-S reflection strengths. The angles θ and φ are now real in precritical regimes, and
the left-hand side angles and the right-hand side angles are, as in the purely elastic AVO
approximations, real. Also, the reciprocal VP/VS ratio has reverted to its standard elastic
form in the coefficients. We emphasize that the apparent similarity of these expressions to
the anelastic incidence medium approximations above is partly illusory, as the perturbations
are defined differently.
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Anelastic AVO approximations continued

ANELASTIC AVO IN TERMS OF ∆QP/QP AND ∆QS/QS

Starting with the core results of the previous section, we will now express each anelastic
AVO approximations in two distinct ways, in terms of relative changes, and in terms of
reflectivities. In elastic AVO the difference between these two quantities is minimal, since
the relative changes in elastic properties are proportional to their corresponding elastic
reflectivities. Not so in the anelastic case, because of the presence of dispersion.

So far our results have been expressed in terms of five dimensionless perturbations.
Three are elastic: aV P , aV S , and aρ. The relative changes in P-wave velocity, S-wave
velocity, and density are typically defined as

∆VP
VP

= 2

(
VP1 − VP0

VP1 + VP0

)

∆VS
VS

= 2

(
VS1 − VS0

VS1 + VS0

)

∆ρ

ρ
= 2

(
ρ1 − ρ0

ρ1 + ρ0

)
(26)

Given the definitions in equation (11), then, for small contrasts

∆VP
VP
≈ 1

2
aV P

∆VS
VS
≈ 1

2
aV S

∆ρ

ρ
≈ aρ.

(27)

Hence to alter the approximations in the previous section to expressions in terms of the
more familiar elastic relative changes, we simply substitute for aV P , aV S , and aρ using
equation (27). For the two anelastic perturbations aQP and aQS things are not as straight-
forward: the forms depend on the type of incidence medium, and, as we have mentioned,
on whether expression in terms of reflectivity or relative change is desired.

Anelastic incidence medium

Relative change

For anelastic AVO formulas in terms of relative change of VP , VS , ρ, and QP and QS

across a boundary, the quantities ∆QP/QP and ∆QS/QS are defined in the same way as
their elastic counterparts:

∆QP

QP

= 2
QP1 −QP0

QP1 +QP0

∆QS

QS

= 2
QS1 −QS0

QS1 +QS0

,

(28)
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in which case, using the definitions in equation (11), we may replace the perturbations in
equations (17)–(19) with

∆QP

QP

≈ aQP

∆QS

QS

≈ aQS,

(29)

assuming |aQP |2 ≈ |aQS|2 ≈ 0. Equations (17)–(19) become

RA
PP(θ, ω) ≈1

2
(1 + tan2 θA)

∆VP
VP

+
1

2

[
1− 4

(
1

γA

)2

sin2 θA

]
∆ρ

ρ

− 4

(
1

γA

)2

sin2 θA
∆VS
VS

+
1

2
Q−1
P0
FP (ω)

(
1 + tan2 θA

) ∆QP

QP

− 4

(
1

γA

)2

Q−1
S0
FS(ω) sin2 θA

∆QS

QS

,

(30)

for P-P reflection strengths,

RA
PS(θ, ω) ≈ −2

(
1

γA

)
sin θA

∆VS
VS
−
[(

1

γA

)
+

1

2

]
sin θA

∆ρ

ρ

− 2

(
1

γA

)
Q−1
S0
FS(ω) sin θA

∆QS

QS

,

(31)

for converted wave (P-S) reflection strengths, and

RA
SS(φ, ω) ≈− 1

2

(
1− 7 sin2 φA

) ∆VS
VS
− 1

2

(
1− 4 sin2 φA

) ∆ρ

ρ

− 1

2
Q−1
S0
FS(ω)

(
1− 7 sin2 φA

) ∆QS

QS

,

(32)

for S-S reflection strengths. In Figures 3–5 the approximations in equations (30)–(32) are
illustrated numerically. In Figure 3a the RA

PP approximation of equation (30) in blue is
plotted against the exact reflection coefficient in black. To illustrate the relative importance
of including anelasticity at all (i.e., QP and QS), in Figure 3b the exact anelastic reflection
coefficient (in black) is plotted against the exact reflection coefficient in the elastic limit
(QP , QS →∞) with all other properties kept the same.

In Figure 4a the RA
PS approximation of equation (31) in blue is plotted against the exact

reflection coefficient in black. Again we illustrate the relative importance of including
anelasticity in Figure 4b by plotting the exact anelastic reflection coefficient (in black)
against the exact reflection coefficient in the elastic limit (QP , QS → ∞) with all other
properties kept the same.

Finally, in Figure 5a the RA
SS approximation of equation (32) in blue is plotted against

the exact reflection coefficient in black. Again we illustrate the relative importance of
including anelasticity in Figure 5b by plotting the exact anelastic reflection coefficient (in
black) against the exact reflection coefficient in the elastic limit (QP , QS → ∞) with all
other properties kept the same.
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FIG. 3. RPP approximation for anelastic incidence media in terms of the relative change in anelastic
properties across the reflecting boundary. The parameters used are listed in Table 2. (a) Exact
anelastic RPP (black) vs. linear approximation (blue) as per equation (30). (b) Exact anelastic RPP
(black) vs. exact elastic RPP (red) assuming entirely elastic media.
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FIG. 4. RPS approximation for anelastic incidence media in terms of the relative change in anelastic
properties across the reflecting boundary. The parameters used are listed in Table 2. (a) Exact
anelastic RPS (black) vs. linear approximation (blue) as per equation (31). (b) Exact anelastic RPS
(black) vs. exact elastic RPS (red) assuming entirely elastic media.
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FIG. 5. RSS approximation for anelastic incidence media in terms of the relative change in anelastic
properties across the reflecting boundary. The parameters used are listed in Table 2. (a) Exact
anelastic RSS (black) vs. linear approximation (blue) as per equation (32). (b) Exact anelastic RSS
(black) vs. exact elastic RSS (red) assuming entirely elastic media.

Reflectivity

The elastic relative change quantities are proportional to their counterpart elastic reflec-
tivities. For instance, from equation (26) evidently

∆VP
VP

= 2Rp, (33)
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where Rp = REE
PP (θ = 0) is the P-wave reflectivity, for which ρ0 = ρ1 and VS0 = VS1 ,

that is, the normal incidence elastic reflection coefficient when there is no contrast in either
density or S-wave velocity. Elastic AVO approximations can therefore be interpreted, with
little additional manipulation, in terms of reflectivities.

The associated normal incidence QP and QS reflectivities are not as simple to relate to
aQP and aQS , because the dispersion of anelastic media confers a frequency dependence
on even normal-incidence reflection coefficients. In fact true QP and QS reflectivities are

∆QP

QP

= 2× FP (ω)
(
Q−1
P0
−Q−1

P1

)

2 + FP (ω)
(
Q−1
P0
−Q−1

P1

)

∆QS

QS

= −2× FS(ω)
(
Q−1
S0
−Q−1

S1

)

2 + FS(ω)
(
Q−1
S0
−Q−1

S1

) ,
(34)

and they must replace not just aQP and aQS in equations (17)–(19), but all terms which
contribute to frequency-dependent reflectivity, which includes the coefficients Q−1

P0
FP (ω)

and Q−1
S0
FS(ω). We obtain

RA
PP(θ, ω) ≈1

2
(1 + tan2 θA)

∆VP
VP

+
1

2

[
1− 4

(
1

γA

)2

sin2 θA

]
∆ρ

ρ

− 4

(
1

γA

)2

sin2 θA
∆VS
VS

+
1

2
(1 + tan2 θA)

∆QP

QP

+ 4

(
1

γA

)2

sin2 θA
∆QS

QS

,

(35)

for P-P reflection strengths,

RA
PS(θ, ω) ≈ −2

(
1

γA

)
sin θA

∆VS
VS
−
[(

1

γA

)
+

1

2

]
sin θA

∆ρ

ρ
+ 2

(
1

γA

)
sin θA

∆QS

QS

,

(36)

for converted wave (P-S) reflection strengths, and

RA
SS(φ, ω) ≈− 1

2

(
1− 7 sin2 φA

) ∆VS
VS
− 1

2

(
1− 4 sin2 φA

) ∆ρ

ρ

+
1

2

(
1− 7 sin2 φA

) ∆QS

QS

,

(37)

for S-S reflection strengths. In Figures 6–8 the approximations in equations (35)–(37)
are illustrated numerically. In Figure 6a the RA

PP approximation of equation (30) in blue
is plotted against the exact reflection coefficient in black. Again to illustrate the relative
importance of including anelasticity, in Figure 6b the exact anelastic reflection coefficient
(in black) is plotted against the exact reflection coefficient in the elastic limit (QP , QS →
∞) with all other properties kept the same.

In Figure 7a the RA
PS approximation of equation (31) in blue is plotted against the exact

reflection coefficient in black. Again we illustrate the relative importance of including
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FIG. 6. RPP approximation for anelastic incidence media in terms of the reflectivity at the reflecting
boundary. The parameters used are listed in Table 2. (a) Exact anelastic RPP (black) vs. linear
approximation (blue) as per equation (35). (b) Exact anelastic RPP (black) vs. exact elastic RPP
(red) assuming entirely elastic media.

anelasticity in Figure 7b by plotting the exact anelastic reflection coefficient (in black)
against the exact reflection coefficient in the elastic limit (QP , QS → ∞) with all other
properties kept the same.
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FIG. 7. RPS approximation for anelastic incidence media in terms of the reflectivity at the reflecting
boundary. The parameters used are listed in Table 2. (a) Exact anelastic RPS (black) vs. linear
approximation (blue) as per equation (36). (b) Exact anelastic RPS (black) vs. exact elastic RPS
(red) assuming entirely elastic media.

Then, finally, in Figure 8a the RA
SS approximation of equation (32) in blue is plotted

against the exact reflection coefficient in black. Again we illustrate the relative importance
of including anelasticity in Figure 8b by plotting the exact anelastic reflection coefficient
(in black) against the exact reflection coefficient in the elastic limit (QP , QS → ∞) with
all other properties kept the same.

Elastic incidence medium

Relative change

When the incidence medium is elastic, the quality factors are infinite. This has meant
that the perturbations aQP and aQS needed to be redefined in order for linear AVO ap-
proximations to be meaningfully expressed. It also means that posing AVO equations in
terms of relative changes is at best a questionable enterprise. In this paper we choose to
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FIG. 8. RSS approximation for anelastic incidence media in terms of the reflectivity at the reflecting
boundary. The parameters used are listed in Table 2. (a) Exact anelastic RSS (black) vs. linear
approximation (blue) as per equation (37). (b) Exact anelastic RSS (black) vs. exact elastic RSS
(red) assuming entirely elastic media.

view equations (23)–(25) themselves as the most convenient expressions for expressing
anelastic AVO in terms of relative changes.

The numerical behaviour of equation (23), the linear approximation for RPP in terms
of relative change for an elastic incidence medium, is briefly illustrated in Figures 9a-b. In
Figure 9a the red curve is the linear approximant to RPP, plotted against the exact curve in
black. In Figure 9b the same exact curve is plotted against the Aki-Richards approximation
under the assumption of a purely elastic problem. The elastic/anelastic parameters used in
the calculations are included in Table 2.

0 20 40 60
0

0.1

0.2

0.3

0.4

e (deg)

R
e 

R
PP

(a)

 

 
Linear
Exact

0 20 40 60
0

0.1

0.2

0.3

0.4

e (deg)

R
e 

R
PP

(b)

 

 
Elastic
Anelastic

FIG. 9. RPP approximation for elastic incidence media in terms of the relative change in anelastic
parameters across the reflecting boundary. The parameters used are listed in Table 2. (a) Exact
anelastic RPP (black) vs. linear approximation (blue) as per equation (23). (b) Exact anelastic RPP
(black) vs. exact elastic RPP (red) assuming entirely elastic media.

In Figures 10a-b the converted wave linear AVO approximation is similarly studied,
using parameters listed in Table 2. The anelasticRPS approximation which is (qualitatively)
accurate out to 30− 40◦.

Finally in Figures 11a-b we repeat this illustration for the RSS dependence on incident
S-wave angle φ, using the elastic and anelastic parameters listed in Table 2.
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FIG. 10. RPS approximation for elastic incidence media in terms of the relative change in anelastic
parameters across the reflecting boundary. The parameters used are listed in Table 2. (a) Exact
anelastic RPS (black) vs. linear approximation (blue) as per equation (24). (b) Exact anelastic RPS
(black) vs. exact elastic RPS (red) assuming entirely elastic media.
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FIG. 11. RSS approximation for elastic incidence media in terms of the relative change in anelastic
parameters across the reflecting boundary. The parameters used are listed in Table 2. (a) Exact
anelastic RSS (black) vs. linear approximation (blue) as per equation (25). (b) Exact anelastic RSS
(black) vs. exact elastic RSS (red) assuming entirely elastic media.

Reflectivity

It is not difficult to re-write anelastic AVO for elastic incidence media in terms of reflec-
tivities, for contrasts from infinite to finite Q only are seen numerically and in laboratory
studies to cause definite reflections (Lines et al., 2012). The reflectivities are

∆QP

QP

= −2× FP (ω)Q−1
P1

2− FP (ω)Q−1
P1

∆QS

QS

= 2× FS(ω)Q−1
S1

2− FS(ω)Q−1
S1

,

(38)
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and these, when substituted (for all terms which contribute to normal incidence reflection
strengths) into the original forms in equations (23)–(25), provide the formulas

RE
PP(θ, ω) ≈1

2
(1 + tan2 θ)

∆VP
VP

+
1

2

[
1− 4

(
VS0

VP0

)2

sin2 θ

]
∆ρ

ρ

− 4

(
VS0

VP0

)2

sin2 θ
∆VS
VS

+
1

2
(1 + tan2 θ)

∆QP

QP

+ 4

(
VS0

VP0

)2

sin2 θ
∆QS

QS

,

(39)

for P-P reflection strengths,

RE
PS(θ, ω) ≈ −2

VS0

VP0

sin θ
∆VS
VS
−
(
VS0

VP0

+
1

2

)
sin θ

∆ρ

ρ
+ 2

VS0

VP0

sin θ
∆QS

QS

, (40)

for converted wave (P-S) reflection strengths, and

RE
SS(φ, ω) ≈− 1

2

(
1− 7 sin2 φ

) ∆VS
VS
− 1

2

(
1− 4 sin2 φ

) ∆ρ

ρ

+
1

2

(
1− 7 sin2 φ

) ∆QS

QS

,

(41)

for S-S reflection strengths. In Figures 12–14 the approximations in equations (39)–(41)
are illustrated numerically. In Figure 6a the RE

PP approximation of equation (30) in blue
is plotted against the exact reflection coefficient in black. Again to illustrate the relative
importance of including anelasticity, in Figure 6b the exact anelastic reflection coefficient
(in black) is plotted against the exact reflection coefficient in the elastic limit (QP , QS →
∞) with all other properties kept the same.
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FIG. 12. RPP approximation for elastic incidence media in terms of the reflectivity at the reflecting
boundary. The parameters used are listed in Table 2. (a) Exact anelastic RPP (black) vs. linear
approximation (blue) as per equation (39). (b) Exact anelastic RPP (black) vs. exact elastic RPP
(red) assuming entirely elastic media.

In Figure 13a theRE
PS approximation of equation (40) in blue is plotted against the exact

reflection coefficient in black. Again we illustrate the relative importance of including
anelasticity in Figure 13b by plotting the exact anelastic reflection coefficient (in black)
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FIG. 13. RPS approximation for elastic incidence media in terms of the reflectivity at the reflecting
boundary. The parameters used are listed in Table 2. (a) Exact anelastic RPS (black) vs. linear
approximation (blue) as per equation (40). (b) Exact anelastic RPS (black) vs. exact elastic RPS
(red) assuming entirely elastic media.

against the exact reflection coefficient in the elastic limit (QP , QS → ∞) with all other
properties kept the same.

In Figure 14a theRE
SS approximation of equation (41) in blue is plotted against the exact

reflection coefficient in black. Again we illustrate the relative importance of including
anelasticity in Figure 14b by plotting the exact anelastic reflection coefficient (in black)
against the exact reflection coefficient in the elastic limit (QP , QS → ∞) with all other
properties kept the same.
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FIG. 14. RSS approximation for elastic incidence media in terms of the reflectivity at the reflecting
boundary. The parameters used are listed in Table 2. (a) Exact anelastic RSS (black) vs. linear
approximation (blue) as per equation (41). (b) Exact anelastic RSS (black) vs. exact elastic RSS
(red) assuming entirely elastic media.

CONCLUSIONS

We have presented twelve formulas for the approximation of anelastic reflection coef-
ficients: RPP, RPS, and RSS for every combination of anelastic and elastic incidence media,
and relative change- vs. reflectivity-type perturbations. Each has been illustrated for a sin-
gle set of anelastic parameters, and compared against both its exact counterpart and its exact
elastic counterpart. The latter is a rough indication of whether the “trouble” of accounting
approximately for anelasticity in AVO is “worth the effort”. Albeit via (i) examination of a
single example, and (ii) qualitative analysis, we can come to some conclusions about which
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Approximation type Equations RPP RPS RSS

Anelastic incidence, relative change 30–32 ∼ × X
Anelastic incidence, reflectivity 35–37 X × ∼
Elastic incidence, relative change 23–25 X X X
Elastic incidence, reflectivity 39–41 X X X

Table 3. Relative accuracy of linearized anelastic reflection coefficient approximations. Symbols:
X: anelastic linear approximation is more accurate than an exact elastic calculation; × anelastic
linear approximation is less accurate than an exact elastic calculation; ∼ difference is not visually
obvious.

approximations are worth our time.

In Table 3, the formulas are evaluated with a X, a ∼, or a ×, depending on whether
a visual comparison of the elastic reflection coefficient (what you would get if you ig-
nored anelasticity in your AVO modeling) and the anelastic approximation revealed that
the anelastic formula added value, made no difference, or was worse, respectively.

The two instances in which the judgment was “worse” (which were both for the con-
verted wave reflection coefficient), are traceable to the linearity of the approximations, and
not specifically to the inclusion of QP and QS . Nevertheless, the anelastic converted wave
approximation was seen to add value only for the case of an elastic incidence medium, and
thus merits some care in application. In most cases, there is clear uptick in accuracy in the
anelastic approximations: even in the two cases in which the judgment was ∼, the trends
if not the magnitudes of the approximations tended to be an improvement over the elastic
limit.
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