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ABSTRACT

Physical model data have been used for many years to simulate exploration targets,
as in the example of a fractured medium. Yet, physical modeling is challenging for at
least two reasons; (1) the initial characterization of the medium is difficult, and (2) the
large highly-directional transducers used as sources and receivers cause distortions. We
present a straightforward method to characterize a physical model, composed of phenolic
material, by employing the highly accurate group velocity measurements in estimating the
orthorhombic stiffness coefficients of the medium. The large physical model transducers
effect is discussed in another paper in this year’s report. We measured the qP, qSV , and
qSH wave mode group velocities from direct-arrival traveltimes on physically modeled 3C
transmission gathers. An approximate orthorhombic group velocity expression is used to
estimate the off-diagonal stiffness coefficients. We show that estimates of the stiffness
coefficients are consistent with measured velocity data. Theoretically predicted group ve-
locities from the estimated stiffness coefficients are very close to the measured velocities.
The stiffness coefficients values suggest that the experimental physical layer approximates
a weakly anisotropic HTI layer. Hence our model simulates a vertically fractured trans-
versely isotropic layer for physical modeling of fractured reservoir characterization, and
for testing new anisotropic seismic data processing algorithms.

INTRODUCTION

Physical seismic modeling, an alternative to numerical modeling, provides valuable in-
sights into wave propagation phenomena, and is a helpful tool in testing seismic processing
algorithms. In physical modeling the seismic wave propagation and recordings are per-
formed on small, laboratory-size geological models. Physical modeling has gained interest
in studying fractured anisotropic media, as the real wave propagation is obtained without
employing a non-ideal mathematical formulation (e.g., acoustic or elastic), or the compu-
tational challenges (e.g., grid dispersion) of numerical methods.

A principal requirement in physical modeling is the initial elastic characterization of
the laboratory-size geological model. The symmetric 6 × 6 elastic stiffness matrix (Cij),
together with density (ρ), define an elastic anisotropic medium. For a vertically fractured
medium, assuming orthorhombic symmetry, nine independent stiffness coefficients are re-
quired. The stiffness coefficients of a material are estimated from body-wave velocities
in various directions. Generally, the available explicit expressions (e.g., Backus, 1965;
Tsvankin, 2001) for phase velocity, in terms of stiffness coefficients, facilitate the estima-
tions. The measurements of phase velocity, however, are inexact and cumbersome (Mah
and Schmitt, 2001a).

For small specimens, the phase velocity measurements are obtained from ultrasonic
transmission experiments that utilize relatively large transducers. When the transducers
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are large compared to their separation, they will approximately transmit and receive plane
waves over a large spatial interval (Figure 1). In that case, the measured transmission
traveltimes will yield phase velocities (Dellinger and Vernik, 1994; Vestrum, 1994). Ac-
commodating the direct measurement, the specimen gets appropriate cuts along various
directions to make the desire contact plane for the flat-faced large transducers. When the
transducers are small, the measured traveltimes yield group velocities. For larger physical
models, therefore, the direct measurements of phase velocity are not possible. The phase
velocities, however, can be determined using the (τ, p) transform on physically modeled
transmission gathers (Kebaili and Schmitt, 1997; Mah and Schmitt, 2001a; van der Baan,
2002). This method implicitly assumes that the traveltimes themselves will yield group
velocities.

In a standard physical modeling setting, with transducer size much smaller than the
model dimensions, the transmitted traveltimes result in the direct measurements of group
velocities. Every and Sachse (1992), Vestrum (1994), and Kim et al. (1995) employed
group velocity measurements, using phase/group velocity relations converted them to phase
velocities. With some optimization methods, they estimated the stiffness coefficients of an
orthorhombic specimen.

There are no exact explicit expressions, except for orthorhombic symmetry axes, of
the group velocity in terms of stiffness coefficients. Song and Every (2000), and Daley
and Krebes (2006) introduced approximate expressions for group velocity as a function
of orthorhombic stiffness coefficients. We use their explicit linearized qP group velocity
formula to estimate the stiffness coefficients of an orthorhombic laminate phenolic layer,
simulating a fractured medium, from the easy-to-measure direct group velocity measure-
ments. Our group velocity measurements are obtained from physical model transmission
data acquired over a simulated fractured layer at the CREWES project, University of Cal-
gary, physical modeling lab. We estimate the diagonal stiffness coefficients from measure-
ments along orthorhombic symmetry axes, and the off-diagonal ones from a least-squares
inversion of quasi-P (qP) group velocity in various directions.

FIG. 1. The wavefront radiated and recorded by large circular physical model transducers, modeled
by an acoustic finite-difference method. The black parallel vectors show the travel of the plane-
wave portion of the wavefront. The transducer’s size is chosen to be half of the layer thickness to
exaggerate the plane-wave generation. The group velocity ray direction, edge-to-edge raypath, is
that of the first arrival energy.
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THEORY

In anisotropic media, velocities vary with the propagation direction. The phase veloc-
ity is velocity of seismic wave propagation in the direction of the wavefront normal, and
the group (ray) velocity is velocity of energy propagation along a raypath from source to
receiver. In an orthorhombic media the group and phase velocity, in various directions, are
different except along the symmetry axes.

Consider the reference Cartesian coordinate system, (x1, x2, x3), associated with the
orthorhombic symmetry planes. In this reference coordinate system, the nine indepen-
dent orthorhombic stiffness coefficients, are the six diagonal (Cii) plus three off-diagonal
(C23, C13, C12). Throughout this paper we will deal exclusively with the density-normalized
stiffness coefficients, Aij = Cij/ρ, which have the dimensions of velocity squared. The
body-wave velocities along the principal axes determine diagonal stiffness coefficients (Ta-
ble 1); three quasi-P (qP) velocities specify the Aii(i = 1 : 3), and three quasi-S (qS)
velocities specify Aii(i = 4 : 6). The off-diagonal stiffness coefficients, however, are not
individually related to the phase or group velocity along some particular directions. Next,
we describe the relation between off-diagonal density normalized stiffness coefficients and
group velocity.
Table 1. Body waves’ velocities along the principal axes. Here Vij (i, j = 1, 2, 3) is the body wave
velocity which propagates along the xj-axis and polarized along the xi-axis. For example V11 is the
qP velocity propagating along the x1-axis, and V23(= V32) is the qS velocity propagating along the
x3-axis and polarizing along the x2-axis.

Propagation
Polarization x1 x2 x3
x1 V11 =

√
A11 V12 =

√
A66 V13 =

√
A55

x2 V21 =
√
A66 V22 =

√
A22 V23 =

√
A44

x3 V31 =
√
A55 V32 =

√
A44 V33 =

√
A33

Let ~N = (N1, N2, N3) = (sinΘcosΦ, sinΘsinΦ, cosΘ) be a unit vector in the direc-
tion of group velocity (ray direction), where Θ is the polar angle measured from the x3-axis
and Φ is the azimuthal angle measured from the x1-axis. An approximate linearized expres-
sion for the qP group velocity (Song and Every, 2000; Daley and Krebes, 2006) in terms of
orthorhombic Aij is

1

V 2( ~N)
' N2

1

A11

+
N2
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A22

+
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3

A33

−

E23N
2
2N

2
3

A22A33

− E13N
2
1N

2
3

A11A33

− E12N
2
1N

2
2

A11A22

. (1)

where the quantities Eij , are

E23 = 2(A23 + 2A44)− (A22 + A33),

E13 = 2(A13 + 2A55)− (A11 + A33), (2)
E12 = 2(A12 + 2A66)− (A11 + A22).
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The Eij are called anellipsoidal deviation terms, as they describe the deviation of the wave-
front from ellipsoidal anisotropy, see Appendix A. Equation 1 explicitly represents the qP
group velocity in terms of the nine orthorhombic stiffness coefficients. Daley and Krebes
(2006) derived equation 1 solving eikonal equation by the method of characteristics. Their
orthorhombic qP group velocity formula is identical with that presented by Song and Every
(2000) where the results were not established by rigorous derivation and were backed up
by the numerical results.

The approximate qP group velocity, equation 1 is generally in good agreement with
the exact calculations, even for highly anisotropic media. In Daley and Krebes (2006) the
group velocity approximation was bench marked against the "exact" solution and found to
be very accurate. In addition, it was compared to the approximation presented in Pšenčík
and Farra (2005). The results were equivalent; about 0.2% − 0.3% deviation from ex-
act traveltime calculations for weakly anisotropic media and 2% for a highly anisotropic
(olivine) medium. Song and Every (2000) numerically validated equation 1, and showed
that this formula can accurately account for the non-ellipticity of the qP group velocity
surface in the absence of cusps.

Determination of stiffness coefficients

We determine the diagonal Aij from direct measurements of qP- and qS-wave veloci-
ties, obtained from transmission traveltimes, along the x1, x2, and x3-axes. To determine
the off-diagonal stiffness coefficients, we use the qP group velocity expression, equation 1.
It can be written as

D = BE23 + FE13 + LE12, (3)
where the coefficients D, B, F, L are defined as follows

D = (
N1

2

A11

+
N2

2

A22

+
N3

2

A33

)− 1

V ( ~N)
2 ,

B =
N2

2N3
2

A22A33

, F =
N1

2N3
2

A11A33

, L =
N1

2N2
2

A11A22

. (4)

Incorporating qP velocity measurements in m different directions, equation 3 can be used
to write a linear system of m equations with three unknowns as B1 F1 L1

...
...

...
Bm Fm Lm

 E23

E13

E12

 =

 D1
...
Dm

 , (5)

or in a matrix form, Ge = d. We obtain the unknown vector e = (E23, E13, E12), vector of
deviation terms, from a damped least-squares inversion, as e = (GTG + µ)−1GTd where
µ is the damping factor. Knowing the deviation terms and diagonal Aij , we determine the
off-diagonal Aij from equation 2 as

A23 = (E23 − 4A44 + A22 + A33)/2,

A13 = (E13 − 4A55 + A11 + A33)/2, (6)
A12 = (E12 − 4A66 + A11 + A22)/2.

The accuracy of these estimations is dependent on the accuracy of the diagonal Aijs.
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NUMERICAL EXAMPLES

We test the validity of the proposed inversion for off-diagonal terms for two numeri-
cal examples. Using transmission traveltimes along various directions, generated from an
anisotropic ray-tracing code, we calculate the group velocities. The first example, we use
the Aij of Greenhorn shale (Sayers and Ebrom, 1997), classified as weakly transversely
isotropic. The stiffness coefficients for this model are A11 = A22 = 19.19, A33 = 15.65,
A13 = A23 = 7.06, A12 = 7.79, A44 = A55 = 4.11, and A66 = 5.7 where all the Aij have
the units of (km/s)2. The estimated value of A13 is to within 1.2% accurate. The second
example is olivine, an orthorhombic medium with strong anisotropy. Its density normal-
ized stiffness coefficients are A11 = 9.779, A33 = 7.103, A13 = 2.163, A44 = 2.358, and
A66 = 5.7. Olivine’s qP group velocity surface, in the (x1, x3) symmetry plane, is highly
non-elliptical. In this case, our inversion for A13 resulted in a 2.3% error.

For the above weak and strong anisotropic examples, the proposed inversion for off-
diagonal Aijs are highly accurate. Of course, this accuracy is highly dependent on the
accuracy of the independently estimated diagonal Aijs, which in this case were assumed
known without error.

PHYSICAL MODEL EXPERIMENT

The physical modeling system we used is designed to carry out simulated seismic sur-
veys on scaled earth models, with a scale of (1 : 10000) for length and time. This means
that, for example, 1mm in the physical model represents 10m in real world. Having the
same scale for length and time, the velocity of the medium remains unscaled.

We used flat-faced circular piezoelectric transducers, as both source and receiver, in
acquiring transmission data; P- and S-transducers (Panametric V103 and V153) with di-
ameter of 12.7 mm and a nominal central frequency of 300 kHz. These transducers convert
electrical energy to mechanical energy and visa-versa, thus being capable of acting as ei-
ther sources or receivers. As a receiver, the P- and S-transducers are sensitive to displace-
ment normal and tangential to the contact face of the transducer, respectively, and repre-
sent vertical and horizontal component geophones. As a source, either P- or S-transducers
generate both P- and S-waves, but the stronger generated P-wave emanating from the P-
transducer and the stronger S-wave emanating from the S-transducer. Our modeling system
is equipped with a robotic positioning system with the precision to within 0.1mm. We man-
ually positioned the first source and receiver locations according to a predefined coordinate
system; the nearest edge distance between the source and receiver defines the initial off-
set. Once the initial source-receiver offset is set, the subsequent increments in offset are
computer controlled, thus are accurately known. There are separate arms for positioning
the source and receiver. Vertical stacking of repeated source excitations for each receiver
position and the progressive re-positioning of the receiver transducer generates a seismic
gather. The source pulse is highly repeatable over many hours of acquisition. More details
about the laboratory equipment and set-up are as described in Wong et al. (2009).

Our simulated fractured layer is made of LE-grade phenolic material, which is com-
posed of laminated sheets of linen fabric bonded together with phenolic resin (Figure 2),
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FIG. 2. Phenolic material from manufacturer.
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FIG. 3. (a) The simulated fractured medium in this study. (b) A slab of phenolic material with dashed
lines displaying the linen planes.

with mass density of 1390 kg/m3. Phenolic materials, because of their micro-layered tex-
ture, can be used to simulate finely layered structure rocks, such as sandstone, shale, or
fractured limestone (Chang and Gardner, 1997). The phenolic material exhibits seismic
anisotropy with apparent orthorhombic symmetry (Brown et al., 1991; Cheadle et al., 1991;
Karayaka and Kurath, 1994). A manufactured board of phenolic material is milled to pro-
vide flat and perpendicular surfaces parallel to the the layering, the warp, and the weave of
linen fabric as closely as possible. Hence, the symmetry of phenolic materials is relatively
well controlled (Mah and Schmitt, 2001b). To construct our simulated fractured layer, a
board of phenolic material with horizontally laid linen fabric was cut into slabs along planes
orthogonal to the plane of linen layers. These were rotated 90◦ and bonded together under a
uniform high pressure with epoxy. This constructed layer simulates a horizontal layer with
vertical fractures of a single orientation. It has an approximate area of 57 × 57cm2 and a
thickness of 7cm (Figure 3).

Data acquisition

We acquire several 3-component (3C) transmission seismic data, over the simulated
fractured layer. The vertical, radial, and transverse component data were acquired, utilizing
P-transducers, radially polarized S-transducers, and transversely polarized S-transducers,
as source and receivers, respectively. In our acquisition, the reference Cartesian coordinate
system is chosen with respect to the simulated fractured layer symmetry system; the x1-
axis along slow direction, the x2-axis along fast direction (isotropy plane), and the vertical
x3-axis along second fast direction. The transmission receiver lines were positioned along,
0◦, 90◦, 45◦, 135◦ azimuth lines at the top surface (Figure 4(a-d)) with the source located
at the bottom, and 0◦, 90◦ azimuth lines at the top surface with the source also at the top
with a distance from the receiver line (Figure 4(e-f)). The group velocity along different
directions in the (x1, x3), (x2, x3), azimuth 45◦, and azimuth 135◦ planes are read from the
transmission profiles in Figure 4(a-d). The group velocity along different directions in the
(x1, x2) plane are read from the profiles in Figure 4(e-f). Figure 5 shows the 3C data from
one of our transmission shot gathers.
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FIG. 4. Transmission profiles. Receiver lines are shown with bold lines, sources by ?, the raypaths
connecting source-receivers with thin lines, slab joints with dash lines. (a-d) Receiver lines at top
surface along 0◦, 90◦, 45◦, and 135◦ (with respect to x1-axis), with the source at bottom surface.
(e-f) Receiver lines at top surface along 0◦, and 90◦ with the source also at the top surface.
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FIG. 5. The 3C transmission data acquired along the profile shown in Figure 4(a)). Red dots are
first arrival picks of each mode. Displayed data have been filtered and a long-gate automatic gain
control has been applied for the vertical and transverse components; the radial component data
have been displayed with short window automatic gain control to boost the direct qSV arrival. The
three components have similar noise levels.
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Group velocity measurements

We treat our constructed simulated fractured layer as a homogeneous orthorhombic
solid. For a transmission experiment, on a homogeneous layer, with point source and re-
ceiver transducers, the length of the straight line connecting the source and receiver divided
by the first arrival traveltime yields the group velocity in the source-receiver raypath direc-
tion. For the transmission experiment, however, with the large source and receiver trans-
ducers, the effective source-receiver raypath is different from the source-receiver center-to-
center distance. For our transmission experiment, on the homogeneous simulated fractured
layer, with the transducers of the size 12.7mm, the effective source-receiver raypath is the
straight line connecting the nearest edges of source and receiver transducers. Similar to
Brown et al. (1991), we calculate the qP, qS-waves group velocities by dividing the ef-
fective source-receiver raypath to the first arrival traveltimes of each mode. The accurate
transducer size is decided by recordings on an isotropic homogeneous plexiglas layer in ad-
vance. This edge-to-edge consideration for large transducer recordings is consistent with
the traveltime data comparison in Sayers and Ebrom (1997) for data recorded by small
(3.5mm in size) and large (12.7mm in size) transducers. Next provides a justification for
considering the edge-to-edge distance as the raypath taken by the first arrival energy.

A circular physical model transducer approximates a circular seismic array. In Figure 1,
we display a seismic wavefront radiated and detected by source and receiver arrays, using
finite-difference medeling. Plane waves are generated in the direction normal to the face
of source transducer element. The first arrival recorded at the receiver, is generated by the
closest source and receiver points of the array. The first arrival energy, hence, has traveled
the Euclidian distance between the nearest edges of the transducers.

The qP group velocities, of the simulated fractured medium, are determined from qP
first arrival traveltimes picked on the vertical component data. The qSV and qSH group
velocities are obtained from qS-waves first arrivals picked on the radial and transverse data
components. The qP and qSH first arrivals are strong and easy to pick. The qSV first
arrivals, however, are difficult to be accurately picked (Figure 5). At this point, we suspect
that this is due to presence of cusp for qS-wave. The picks for middle range angles are
ambiguous.

Table 2. Phenolic qP- and qS-velocity in principal directions.

Velocity (m/s) Pulse measurements Seismic measurements
V11 2926± 74 2950± 70
V22 3542± 77 3560± 70
V33 3425± 80 3500± 70
V23 1670± 20 1700± 35
V13 1525± 10 1530± 35
V12 1500± 15 1510± 35

To check the accuracy of the group velocities from physical model transmission first
arrival traveltimes, we compared the qP and qS velocities along the previously defined
(x1, x2, x3) axes to an average of the measured velocities from a conventional direct pulse
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FIG. 6. The group velocity surfaces for the three modes (qP, qSV , qSH ) in the three symmetry
planes. An elliptical wavefront is plotted for comparison in solid. The measured velocities in the 0◦

and 90◦ directions, are considered as the major and minor axes of the ellipse. Group angles are
plotted with respect to the vertical axis for the (x1, x3) and (x2, x3) planes, and with the x2-axis for
the (x1, x2) plane.

measurement conducted on 18 individual phenolic slabs (Table 2), similar to those used in
constructing our simulated fractured layer. Table 2 shows these comparisons. We find that
the group velocities from physical model transmission data are well estimated. We consid-
ered the errors of ±70m/s and ±35m/s for the qP- and qS-velocities measured from from
physical model data, using 0.1mm error in distance and 0.004s error for first arrival time
picks (1/8 of the dominant wavelength). The statistical errors of the velocities measured
from pulse measurements are calculated from the standard deviation of the values.

The qP and qS group velocity surfaces, polar plots of group velocity versus propagation
angle, for the symmetry planes are shown in Figure 6. The qSH wavefronts are purely
ellipsoidal, the qP wavefronts deviate slightly from the ellipsoidal, and the qSV wavefronts
deviate significantly from the ellipsoidal.
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SIMULATED FRACTURED LAYER AIJ

We present the estimatedAij of the simulated fractured layer, and their statistical uncer-
tainties, listed in Table 3; the statistical uncertainties are estimated by introducing a small
perturbation, representing uncertainty, in the measured group velocities and observing the
corresponding changes in the stiffness coefficients.
Table 3. Density-normalized stiffness coefficients of the simulated fractured layer. The Aij have the
units of (km/s)2.

8.70± 0.41 4.9± 0.21 4.96± 0.21 0 0 0

12.67± 0.49 5.58± 0.23 0 0 0

12.25± 0.49 0 0 0

2.89± 0.12 0 0
2.34± 0.11 0

2.28± 0.11

As an accuracy test for the estimated stiffness coefficients, we calculate the group ve-
locities predicted by these estimations. We first calculate the theoretical exact phase veloc-
ities followed by the exact group velocities; the exact explicit orthorhombic phase velocity
expression is given by Tsvankin (2001), and the expression relating the phase and group
velocities are employed (Appendix B). For the symmetry plane, Figure 7 compares the
measured group velocities from transmission data and calculated theoretical velocities. The
theoretical velocities match the measured velocities reasonably well. There are, however,
some discrepancies between the theoretical group velocities and measured group veloci-
ties. The maximum discrepancies are 140m/s for qP and 100m/s and 40m/s for qSV and
qSH velocities. These small discrepancies could be due to our assumption of homogeneity
for the simulated fractured layer, the employment of the approximate orthorhombic group
velocity expression rather than an exact form, or the assumption of orthorhombic symmetry
for the simulated fractured layer. A lower symmetry assumption such as monoclinic might
be more indicative of the simulated fractured layer.

The stiffness coefficients of the simulated fractured layer characterize the anisotropy of
the medium, while the strengths of anisotropy are hidden. The dimensionless orthorhom-
bic anisotropic parameters are defined in Tsvankin (1997), which express the measure of
anisotropy similar to the well-known Thomsen (1986) coefficients ε, δ, and γ for VTI me-
dia. Using expressions the orthorhombic parameters in terms of the stiffness coefficients
are given in Table 4. These parameters of the stimulated fractured layer and their statistical
uncertainties are as follows:

δ(2) = −0.185± 0.002, δ(1) = −0.069± 0.001, δ(3) = 0.228± 0.004,

ε(2) = −0.145± 0.003, ε(1) = 0.017± 0.0003, VP0 = 3500± 70 m/s

γ(2) = −0.106± 0.002, γ(1) = −0.013± 0.0003, VS0 = 1700± 35 m/s

The stiffness coefficients of the simulated fractured layer given in Table 3, reveal that
the experimental layer approximates a HTI medium with x1 being the symmetry axis and
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FIG. 7. The group velocities versus propagation angle in the symmetry planes (x1, x3), (x2, x3) and
(x1, x2). The solid lines are theoretical velocities and the dotted lines are measured ones. The qP
velocities are shown in black, qSV in red, and qSH in blue.

the (x2, x3) plane is the isotropic plane. If we treat the simulated fractured layer as a HTI
medium with x1-axis as the symmetry axis, the five effective HTI anisotropic parameters
required in investigating the azimuthally AVO responses of the medium (α, β, ε(V ), δ(V ), γ),
used by Rüger (2001), are

α = VP0 = 3500 m/s,
β = VS0 = 1700 m/s,

δ(V ) = δ(2) = −0.185,

ε(V ) = ε(2) = −0.145,

γ =
A44 − A55

2A55

= 0.117.

Converting these HTI parameters to their equivalent Thomsen (1986) coefficients ε, δ, and
γ which carry the conventional meaning of anisotropy, the fractional differences of the fast
and slow velocities, results in the following values: ε = 0.204, γ = 0.117, and δ = 0.116.
These values indicate the weak anisotropy for our simulated fracture layer.

Table 4. Tsvankin (1997) orthorhombic parameter relations to the stiffness coefficients.

δ(2) = (A13+A55)
2−(A33−A55)

2

2A33(A33−A55)
δ(1) = (A23+A44)

2−(A33−A44)
2

2A33(A33−A44)
δ(3) = (A12+A66)

2−(A11−A66)
2

2A11(A11−A66)

ε(2) = A11−A33

2A33
ε(1) = A22−A33

2A33
VP0 =

√
A33

γ(2) = A66−A44

2A44
γ(1) = A66−A55

2A55
VS0 =

√
A55
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CONCLUSIONS AND DISCUSSION

We have presented a straightforward method to characterize an orthorhombic mate-
rial and suggested the use of group-velocity measurements to estimate the stiffness coef-
ficients. We obtained the group velocity in various directions by measuring direct-arrival
traveltimes on physically modeled 3C transmission gathers. The effect of relatively large
physical model transducers were mitigated by using a single geometric correction. Our
method is based on a relatively new approximate relationship between group velocity and
orthorhombic stiffness coefficients. The orthorhombic qP velocity expression by Song and
Every (2000) and Daley and Krebes (2006) results in off-diagonal stiffness coefficients es-
timates. We showed that the estimates of stiffness coefficients, for our physical layer, are
consistent with our velocity data, by comparing the measured velocities with the calculated
theoretical velocities predicted by the estimated stiffness coefficients. Our experimental
physical layer approximates a weakly anisotropic HTI layer, or equivalently a vertically
fractured transversely isotropic layer.

The characterization of physical models are usually by employing the phase velocities,
as the theoretical link between stiffness coefficients and phase velocities are well under-
stood. Measurement of phase velocities, however, are cumbersome. The group velocity
measurements are near-to-exact and straightforward but comparable theoretical linkage for
group velocities and stiffness coefficients are not. We draw the readers attention to the
practicality of the linear orthorhombic group velocity expression that was used. A qP group
velocity approximation in a general 21-parameter weakly anisotropic medium is presented
in Daley and Krebes (2007). This could be employed in characterization of media with less
symmetry. An approximation for orthorhombic qS-wave is also available (Song and Every,
2000).

We assume homogeneity for our simulated fractured medium and believe that the fre-
quency dispersion in this experimental layer in minimal. The observed changes in the
wavelet, in our transmission data, are mostly the effect of transducer size. We numerically
modeled a P-wave shot gather, over an isotropic homogenous model with the dimensions of
our simulated fractured layer, using finite difference modeling with the source and receiver
array length equal to our transducer’s size. The gather is shown in Figure 8. This mod-
eling indicates the apparent change in wavelet shape from near to far offset is due mostly
to the large size of the source and receiver transducers and not due to frequency or grid
dispersion.
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FIG. 8. P-wave shot gather generated by acoustic finite-difference modeling with the source and
receiver sizes equivalent to the physical model experiment.

This appendix provides the basis on how the Eij terms in theory section can be in-
terpreted as deviation, from elliptical anisotropy terms. We start with the definition of a
velocity surface, plotting the phase/group velocity of a given mode (qP-, qS-waves) as the
radius-vector in all directions. The group velocity surface, therefore, is the wavefront at
unit time. An orthorhombic medium has ellipsoidal anisotropy, if the wavefront, and hence
the group velocity surface, is an ellipsoid, then, the formula for group velocity surface is
that of an ellipsoid. The qP ellipsoidal group velocity surface, then, has the exact form

1

V 2( ~N)
=
N2

1

A11

+
N2

2

A22

+
N2

3

A33

, (7)

and the corresponding phase velocity has the form (Musgrave (1970), equations 8.2.1 and
8.2.2b page 96)

v2(~n) = A11n
2
1 + A22n

2
2 + A33n

2
3, (8)

where ~n = (n1, n2, n3) = (sinθcosφ, sinθsinφ, cosθ) is the unit vector normal to the
wavefront, with θ and φ having similar definitions as Θ and Φ.

For a general weakly anisotropic medium, the first-order linearized approximation for
qP phase velocity is ρv2(~n) ' cijklninjnknl, (Backus, 1965). Defining density normalized
stiffness tensor as aijkl = cijkl/ρ, it reads

v2(~n) ' aijklninjnknl. (9)

Using Voigt notation for indexes (11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6), the
density-normalized stiffness coefficients Aij will be obtained as aijkl = Amn. Expanding
equation 9 for orthorhombic symmetry one obtains

v2(~n) ' A11n
4
1 + A22n

4
2 + A33n

4
3 + 2(A12 + 2A66)n

2
1n

2
2 +

2(A13 + 2A55)n
2
1n

2
3 + 2(A23 + 2A44)n

2
2n

2
3. (10)

Equation 10 can be modified to read (Daley and Krebes, 2006),

v2(~n) ' A11n
2
1 + A22n

2
2 + A33n

2
3 +

E23n
2
2n

2
3 + E13n

2
1n

2
3 + E12n

2
1n

2
2. (11)

where the quantities Eij were perviously defined. Equation 11 is an expression for or-
thorhombic phase velocity in an approximate form. Comparing it with the ellipsoidal phase
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velocity (equation 8), we interpret the Eij as anellipsoidal deviation terms. Helbig (1983)
states, that in the study of transverse isotropy by Rudzki (1911), the wavefront for the com-
pressional wave in the (x1, x3) plane is ellipsoidal if and only if (A11−A55)(A33−A55)−
(A13 + A55)

2 = 0. The E13 deviation term in equation 2 is a linearized approximation of
this deviation term used by Rudzki (1911).

APPENDIX B
Exact orthorhombic velocity expressions

Tsvankin (1997) presented the exact orthorhombic phase velocity expressions for the
symmetry planes. For propagation in the (x1, x3) symmetry plane, the exact qSH phase
velocity is

vSH
(θ)2 = A66 sin2 θ + A44 cos2 θ, (12)

where θ is the phase angle with the x3-axis. The exact phase velocity of the qP and qSV
modes are

2v2(θ) = (A11 + A55)sin
2θ + (A33 + A55)cos2θ (13)

±
√[

(A11 − A55)sin
2θ − (A33 − A55)cos2θ

]2
+ 4(A13 + A55)

2sin2θcos2θ,

where the plus and minus signs correspond to the qP and qSV modes of propagation, re-
spectively. For the propagation in other symmetry planes, the appropriate indexes are used.

For the orthorhombic symmetry planes, the group velocity and group angle, of three
wave modes, are related to the phase velocity by (Berryman, 1979)

VG = v(θ)

√
1 +

(
1

v(θ)

dv(θ)

dθ

)
, (14)

tanψ =
tan θ + 1

v(θ)
dv(θ)
dθ

1− tan θ
v(θ)

dv(θ)
dθ

, (15)

where VG is the magnitude of the group angle, ψ is the group angle, v is phase velocity, and
θ is the phase angle.
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