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A Perspective on Full-Waveform Inversion 

Gary F. Margrave, Kris Innanen, and Matt Yedlin. 

ABSTRACT 
We examine and compare the standard seismic inversion methodology, denoted SM, 

and full-waveform inversion, denoted FWI.  We find many parallels but also interesting 
differences.  Both methods produce a detailed impedance model (or impedance image) as 
the end product but differ in how this is created.  SM first produces a reflectivity image 
(i.e. a migrated section) that is then converted to impedance, in a step called impedance 
inversion, by incorporating low-frequency information from an external source, typically 
well control.  In a preparatory step, the reflectivity image is calibrated by comparing it to 
synthetic seismograms at well locations. We call this well validation and it serves to 
estimate the seismic wavelet whose removal matches the seismic reflectivity image to the 
well reflectivity.  Alternatively, FWI creates an impedance image as the result of an 
iteration which gradually adds detail into an initial impedance model.  The impedance 
update at each iteration comes from a type of migration of the data difference, which is 
the difference between the recorded data and synthetic data predicted by the impedance 
model as it exists at the iteration’s beginning.  This migrated data difference is derived 
from theory as the gradient of the data misfit function, or sum-of-squares of the data 
difference.  Essentially the impedance model is calibrated by comparing synthetic data to 
recorded data, and we call this data validation. 

Both methods require low frequency information but FWI requires this in the data 
while SM incorporates wells.  Both methods require knowledge of the source waveform, 
but SM achieves this by deconvolution and tying to wells which FWI commonly 
estimates this in the iteration.  SM validates the model at wells and never attempts to 
predict synthetic data.  FWI validates the model through data prediction and comparison 
to the raw data.  SM produces a migrated reflectivity image while FWI uses migration to 
estimate the gradient of the misfit function.  However, we show that this gradient is 
actually a rather poor migration which lacks gain correction. 

FWI is the method of the future but we suggest that a viable step forward is iterative 
modelling, migration, and inversion or IMMI.  Such an approach can incorporate any 
migration method and can use both well validation and data validation. 
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INTRODUCTION 
Seismic imaging is an essential technology that underlies the exploration for and 

development of the earth's hydrocarbon resources.  Despite this essential role and over 50 
years of evolution, the technology is far from optimal and is still rapidly improving.  
Today's seismic images are vastly superior to those of even 20 years ago and techniques 
have been developed to extract far more information from them.  These images are 
constructed by passing the raw data through a standard methodology (SM) of data 
processing (e.g. Yilmaz 1987) that, while very technologically sophisticated, is derived 
from a complex blend of physical theory and practical experience that has evolved over 
the past 50-60 years.  Now, a new comprehensive inversion process is emerging which is 
more firmly rooted in modern mathematical physics and inverse theory.  Called full-
waveform inversion or FWI, (e.g. Lailly 1983, Tarantola 1984, Pratt 1999, Virieux and 
Operto 2009) this relatively newer technique promises to deliver more accurate estimates 
of subsurface properties than SM but that promise is far from realized.  This paper 
examines the underlying principles of both methods with the intent to uncover 
commonalities and linkages.  In particular, we make a detailed examination of imaging 
conditions as used in prestack migrations in SM and also in the gradient calculation of 
FWI.  We show that the FWI gradient is a particularly poor migration which lacks gain 
correction.  Furthermore we argue that replacing the FWI gradient with a prestack depth 
migration using a deconvolution imaging condition is similar to estimating and applying 
the inverse Hessian to the FWI gradient.  We also examine two alternate forms of earth 
model validation: well validation as used in SM and data validation as used in FWI.  We 
argue that both are valuable and both should be used in ways that leverage off their 
different strengths.  The possibility of progression from SM towards FWI through the 
incorporation of techniques from SM into the FWI paradigm will be explored.  We 
suggest the term Iterative Modelling Migration and Inversion or IMMI as a descriptor for 
such new methods. 

DESCRIPTION OF THE METHODS 
The Standard Methodology 

For the purposes of this discussion, the standard methodology (SM) will be abstracted 
to a 4 step process of 

(1) compensation for attenuation (anelasticity) 
(2) estimation and removal of the source waveform (deconvolution) 
(3) spatial focusing (prestack depth migration) 
(4) impedance inversion.   

Of course, there are many more steps in any practical sequence such as statics, surface 
consistent methods, noise filtering, velocity analysis, etc.  The definition of SM here is 
simplified to emphasize the steps most relevant to the present topic.  

Steps 1-3 accomplish the construction of a reflectivity image which is commonly a 
bandlimited estimate of normal incidence reflectivity (if stacked) or offset reflectivity (if 
unstacked).  These steps include correction for geometrical wave spreading, reversal of 
anelastic attenuation, estimation and inversion of the source signature, and spatial 
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focusing of the data.  A great deal of physical theory is involved in these steps including 
wave propagation and anelastic loss mechanisms. 

Step 4 is almost always accomplished with the assistance of well information.  The 
final impedance model, which is a type of earth model, is constructed from the 
reflectivity image and validated by comparing the seismic reflectivity to estimates from 
suitable well logs.  I will refer to this form of model validation as well validation.  
Roughly, impedance  and reflectivity  are related through  (  means 
differential) so the estimation of impedance involves integration followed by 
exponentiation of the reflectivity estimate.  In the Fourier domain, this integration is a 
division by frequency (the Fourier variable) which illustrates the importance of low 
frequencies in seismic imaging.  Since division by a small number (i.e. the low 
frequency) produces a greatly amplified result, the low-frequencies become essential in 
step 4, but were almost ignorable in steps 1-3.  The very lowest frequency is effectively 
the integration constant or initial impedance and slightly higher frequencies describe the 
impedance trend.  A reflectivity image lacking the lowest frequencies can only estimate 
impedance fluctuations away from an unknown trend.  Unfortunately, and this is a major 
limiting factor form both SM and FWI, seismic data is normally deficient in frequencies 
below 10 Hz so step 4 has usually obtained this low-frequency information by external 
input, most often from well data.  This incorporation of well control is done by 
computing the reflectivity function directly from suitable well logs and comparing these 
to the SM reflectivity estimate at the well location(s).  Many methods have been 
developed for this comparison but all result in an estimate of a seismic wavelet whose 
removal gives the optimal reflectivity match and a low frequency trend to add to the 
seismic impedance image.  This well validation (see Alfaraj et al, 2010, and White and 
Simm, 2003,  for a modern overview) is an essential step in exploration and lends great 
confidence to subsequent drilling decisions.  Other limiting factors for SM and FWI are 
the ever increasing volume of seismic data (and the consequentially large computational 
burden) and the essentially unknown, highly complex, structure of the earth between the 
surface and the exploration target. 

Full-waveform Inversion 
For full-waveform inversion (FWI), the goal is to estimate an earth model such that 

synthetic seismic data simulated from this model is an optimal match to the observed 
seismic data.  This alternative process of validating the earth model we will call data 
validation and it contrasts dramatically with the well validation used in SM.  The theory 
of FWI originates with Lailly (1983) and Tarantola (1984) and has been evolved 
extensively since then (e.g. Pratt, 1999).  An overview is provided in Virieux and Operto 
(2009).  The match between synthetic and observed data is usually determined by 
minimizing an objective function which is the sum of squares of the data difference (the 
subtraction of modelled data from observed data).  A key enabler is the theoretical result 
that the gradient of the objective function (with respect to the earth model) is estimated 
by a type of reverse time migration (hereafter RTM) of the data difference (hereafter 

).  This leads directly to a steepest descent iteration where an initial earth model 
 (in the simplest case this is a model of P-wave velocity) is updated by 

 where  is a scalar step length that must be estimated, usually by a 
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line search.  Alternative update schemes that are more complex are of the form 
 where  is either an exact or approximate inverse Hessian 

operator (e.g. Pratt, 1999; Shin et al., 2001; Virieux and Operto, 2009). 

Figure 1 shows an abstraction of FWI, with a cycle of four steps being used to indicate 
an iteration in a steepest-descent method.  The figure is made with assuming the simplest 
possible case of a constant density acoustic inversion for velocity only.  Inputs to the 
iteration are at (a) and (b) and are the initial velocity model and the recorded data.  Step 1 
is to create synthetic shot records from the initial velocity model having the same source 
and receiver locations as the recorded data.  In step 2, the data difference (recorded data 
minus synthetic data) is sent through a prestack migration and stacked.  This is regarded 
as a calculation of “the gradient” because, as mentioned above, theory shows the gradient 
of the misfit function to be a type of RTM migration.  Then, step 3 is the determination of 
the step-length scalar, λ , which scales the gradient into a velocity perturbation.  The 
conventional approach is to use a line search (a 1-D scan over likely values of λ ) to find 
the optimal value.  Margrave et al. (2010) proposed using well control to estimate the best 
λ .  Finally, in step 4, the velocity perturbation is added to the initial model to form the 
updated velocity model which is input into the next iteration. 

 

Figure 1:  The FWI cycle is depicted for a constant density acoustic inversion.  Each iteration of 
FWI consists of cycling through the four steps shown.  Input into each cycle are the current 
velocity model and the recorded data.  The result from each cycle is an updated velocity model 
(step 4).  For the thk  iteration, steps 1-3 calculate velocity perturbation, kvδ , as a prestack 

migration of the data difference, †
,r kM δψ   .  
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A major concern in FWI is that, since it is solving a nonlinear inverse problem, there is 
a danger that the algorithm may become stuck in a local minimum.  To possibly avoid 
this, Pratt (1999) suggests changing the frequency band from low to high as the iteration 
proceeds.  Only the very lowest frequency (or a small band of frequencies) are used on 
the first iteration which guarantees that the model perturbation will be smooth.  The next 
iteration then uses slightly higher frequencies and so on.  Somewhat surprisingly, Pratt 
finds that inversions limited to 10 Hz and lower can develop models with detail much 
finer than that expected from migration.  Although there is no proof that the procedure 
will avoid local minima, it is widely accepted as a robust method. 

There are several serious issues not illustrated in Figure 1.  First, the source waveform 
must be known to even begin to model the recorded data.  However, the source waveform 
is never known a priori in seismic exploration and must be estimated somehow.  In SM, 
the vast field of seismic deconvolution and wavelet processing is dedicated to this task.  
Additionally, well control is often very valuable to fine-tune the wavelet estimate.  In 
FWI, this is typically estimated either by capturing an isolated arrival or by a separate 
inversion.  Second, it is almost certain that in a real data case the physics model used in 
calculating the synthetic data will only approximate the truth.  Even a fully elastic model 
is only an approximation to the real earth which appears to be both viscous and 
anisotropic in addition to elastic.  Moreover the mechanisms behind the viscous damping 
and anisotropy are only partly understood.  Perhaps most commonly, FWI is attempted in 
the constant-density acoustic case and the consequences of this with real data are not well 
understood. 

FWI needs low-frequency signal for precisely the same reason that SM does.  The 
lower the signal frequencies in the initial model, the less detail is required in the initial 
model.  In principle, with very low frequencies (less than 1 Hz) a constant model is 
possible.  However, while SM usually obtains this information from well control, most 
FWI approaches make no attempt to incorporate well information.  In this paper, as in 
Margrave et al. (2010) we propose using well control in a variant of FWI. 

While FWI offers an attractive validation of the derived earth model (it produces data 
that match the observed data) it has many difficulties including: (i) the source waveform 
must be known or estimated (ii) the forward modelling must contain sufficiently complex 
physics to replicate the observed data (iii) the seismic data must contain low frequencies, 
(iv) the initial model must be estimated, (v) the computational burden can be immense, 
and (vi) convergence of the iteration is rarely achieved.  These difficulties mean that the 
adoption of FWI by industry is still a long way off.  This research will focus on 
developing strategies to address these issues.  

ON IMAGING CONDITIONS IN MIGRATION 
Migration, as used in step 3 of SM, involves the direct estimation of reflectivity which 

usually is done via an imaging condition attributable to Claerbout (1971).  Imaging 
conditions are an essential ingredient to a migration algorithm and specify precisely how 
an estimate of reflectivity is made.  There are two basic types, deconvolution and 
correlation, and many variants.  The deconvolution imaging condition is the more 
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physical of the two and states that the deconvolution estimate of reflectivity, ˆ
dR , is given 

by 

 ( )
( )

, , ,ˆ ( , , , )
, , ,d

U x y z
R x y z

D x y z
ω

ω
ω

= , (1) 

where ( , , )x y z  are the Euclidean coordinates of a point in the earth, ω  is temporal 
frequency, the hat ^ over R  denotes the frequency domain, and finally U  and D  are 
upgoing and downgoing wavefields.  This imaging condition is simply a restatement of 
the definition of reflection coefficient as the ratio of the scattered wave (U ) to the 
incident wave ( D ).  As the estimate of dR  is posed in the frequency domain and hence 
complex-valued, a migration program will usually be integrated over all recorded 
frequencies as 

 ( ) ( )ˆ, , , , ,d dR x y z R x y z dω ω= ∫ . (2) 

The recorded data is assumed to be a measurement of the upgoing wavefield 
( )0, ,U x y z z=  where 0z  denotes the surface where the receivers are placed.  The estimate 

of U  at any point in the subsurface ( 0z z> ) is done through some form of wavefield 
extrapolation of the recorded data, commonly either by downward extrapolation in depth 
or backward extrapolation in time.  This is based on an approximate solution to a wave 
equation, the choice of which amounts to the choice of a governing physics model.  A 
required ingredient of wavefield extrapolation is a prior estimate of the velocity structure 
beneath the survey, and such estimates are called the migration velocity model.  The 
downgoing wavefield D  is an estimate of the wavefield from the seismic source (on land 
typically a dynamite blast or a vibratory vehicle).  Usually the source is modelled as a 
homogeneous Greens function in a small region around the source location and this is 
then extrapolated to all possible points in the subsurface.  A key point, which is only 
implicit in equation 1 and hence easy to miss, is that this imaging condition assumes that 
the source waveform in the recorded data is known and that same waveform is used in the 
estimate of D .  In almost all practical settings, the source waveform is not known and 
must be estimated.  In SM, this is the role of deconvolution and, since such estimates are 
inherently statistical, it must be assumed that the estimates are imperfect.  This means 
that ˆ

dR  as estimated in equation 1, will differ from the “true” value ˆ
TR  by a complex-

valued, frequency-dependent, scalar which we denote as  

 ( ) ( ) ( )ˆ ˆˆT dR Rω σ ω ω= . (3) 

In a reflectivity image with a vertical time coordinate, as is commonly produced, 
equation 3 is taken to imply the convolutional relationship ( ) ( ) ( )T dR Rτ σ τ τ= •  where 
( )σ τ  is considered as a residual source wavelet that must be estimated and removed.  

There are other problems with this estimate such as the fact that reflection coefficients in 
theory are strictly only defined for planar interfaces.  We ignore these further 
complications for the present discussion. 
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The division involved in equation 1 is computationally problematic because the 
denominator can be very small at many places in the earth.  At such places, the numerator 
or scattered field will be even smaller and its estimate from recorded data will likely be 
noise dominated.  Hence the division of a noisy estimate by a small number will be 
wildly inaccurate.  A common fix for this is Claerbout’s correlation imaging condition 
and the resulting estimate 

 ( ) ( )*ˆ ( , , , ) , , , , , ,c gR x y z U x y z D x y zω ω ω= , (4) 

where * indicates the complex conjugate and the subscript g denotes that the data ( gU ) 
have been corrected for spherical spreading or gained.   

A thought experiment to compare imaging conditions 
To appreciate the reason for the gain correction, and to obtain a better understanding 

of the estimates produced by these imaging conditions, we examine a simple thought 
experiment. 

  

Figure 2:  A simple model of a homogeneous layer over a half space.  The scalar wave speed in 
the layer is 1v  and in the half space 2v .  The red lines denote the raypath from source to receiver 
for the specular reflection from the top of the half space. 

Consider the propagation of scalar waves in an earth consisting of a horizontal 
homogeneous layer over a half space (Figure 2).  Let the migration velocity model be 1v  
everywhere and the migration problem is to estimate the reflection coefficient at the layer 
bottom.  For small angles (assuming offset is much less than depth) the reflection 
coefficient can be approximated as  

 2 1

2 1 12T
v v vR
v v v
− ∆

≈ ≈
+

, (5) 

where the second approximation follows if 2 1v v v− ≡ ∆  is small.  The reflectivity, ℜ , is 
then taken to be a function zero everywhere except at the layer bottom where it equals 

TR .  Assuming the Helmholtz equation (i.e. the scalar wave equation after Fourier 
transformation over time) applies, the Helmholz Greens function for a homogeneous 
unbounded medium can be used to model propagation and it is 
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 ( ) 1,
4

ikrg r e
r

ω
π

= , (6) 

where 2 2 2r x y z= + +  is the distance from a unit strength source at the origin and 

1/k vω=  is the wavenumber in the layer.  Letting sr  be the distance from the source to an 
arbitrary point in Figure 2, then migration will estimate the downgoing field as 

 ( ) ( ) ( ),
4

sikr
s

s

W
D W g r e

r
ω

ω ω
π

= = , (7) 

where ( )W ω  is the presumed source waveform.  Similarly, letting gr  be the distance from 
the receiver to the same point, then the upgoing field at the receiver is 

 ( ) ( ) ( ) ( )
( )

( )
0 ,

4
s gik r rT

T s g
s g

W
U z z W g r r e

r r
ω

ω ω
π

+ℜ
= =ℜ + =

+
, (8) 

where ( )TW ω  is the actual source waveform.  Note that for the specular reflection we 
have s gr r=  and TRℜ =  so that 

 ( ) ( ) 2
0 8

sT T i kr
specular

s

R W
U z z e

r
ω

π
= = . (9) 

Concentrating on the estimate of the specular reflection, migration will “downward 
continue” equation 9 to the reflection point at rz  to obtain 

 ( ) ( )
4

sT T ikr
R specular

s

R W
U z z e

r
ω

π
= =  (10) 

Comparing 9 and 10 shows that downward continuation is accomplished by 

 ( ) ( )0
sikr

R sspecular specularU z z U z z r e−= = = . (11) 

We can now insert equations 7 and 10 into the imaging condition 1 to obtain 

 ( )
( )

( ) ( ) 1
,ˆ ( , )
, 4 4

s sR T T ikr ikr
d R

R s s

U z z R W W
R z z e e

D z z r r
ω ω ω

ω
ω π π

−
=  

= = =  =  
 

or 

 ( )
( )

ˆ ( , ) T
d R T

W
R z z R

W
ω

ω
ω

= = . (12) 

Thus, if TW W= , then we correctly estimate the specular reflection coefficient, otherwise 
the estimate is off by a complex valued scalar as in equation 3. 

Now, consider the correlation imaging condition of equation 4.  Applying gain to 
equation 9, gives 
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 ( ) ( ) ( ) 2
0 02

4
sT T i kr

g sspecular specular

R W
U z z rU z z e

ω
π

= = = =   (13) 

and downward continuation to the reflector depth gives 

 ( ) ( ) ( )
0 4

s sT T sikr ikr
g r s gspecular specular

R W r
U z z r e U z z e

ω
π

−= = = = . (14) 

Inserting equations 7 and 14 into 4 gives 

 ( ) ( ) ( ) ( )*
*ˆ ( , ) , ,

4 4
s sT T s ikr ikr

c r g r rspecular
s

R W r W
R z z U z z D z z e e

r
ω ω

ω ω ω
π π

−= = = = =  

or 

 ( ) ( )
( )

*

2
ˆ ( , )

4
T

c r T

W W
R z z R

ω ω
ω

π
= = . (15) 

The estimate in equation 15 is comparable to that in 12 and is achieved without a risky 
spectral division.  Of further interest for the discussion on FWI, is to consider what 
happens in the correlation imaging condition if the data are not gained.  This gives 

 ( ) ( ) ( ) ( )*
*

_
ˆ ( , ) , ,

4 4
s sT T ikr ikr

c ungained r r rspecular
s s

R W W
R z z U z z D z z e e

r r
ω ω

ω ω ω
π π

−= = = = =   

or 

 ( ) ( )
( )

*

_ 22

1ˆ ( , )
4

T
c ungained r T

s

W W
R z z R

r
ω ω

ω
π

= =  (16) 

So the estimate is off by a spatially variant factor of 2
sr
−  which is a much more serious 

error than in equations 12 or 15.  As will be shown, this analysis is relevant to FWI. 

Finally, we remark that a robust deconvolution imaging condition may be formulated 
as 

 ( ) ( )
( ) ( ) ( )

*

*
max

, , , , , ,ˆ ( , , , )
, , , , , ,d

U x y z D x y z
R x y z

D x y z D x y z D
ω ω

ω
ω ω m ω

′ =
+

, (17) 

where ( )  ( ) ( )*
max

, ,

max , , , , , ,
x y z

D D x y z D x y zω ω ω =    and 0 1m< �  is a small positive number.  

The quantity ( ) ( )*, , , , , ,D x y z D x y zω ω  is known as the illumination and, when the 

illumination is good (i.e. much greater than maxDm ), we have ˆ ˆ
d dR R′ ≈ , while when the 

illumination is weak ˆ
dR ′  approaches an ungained correlation estimate.  Imaging 

conditions like 17 are quite practical, although the choice of m  may require 
experimentation. 
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EXAMINING THE FWI GRADIENT 
As mentioned previously, FWI seeks the earth model that produces the best synthetic 

data.  The “best” synthetic is measured by computing and minimizing the sum-of-squares 
of the data difference, that is 

 ( ) ( ) ( )( )2
,

,

ˆ ˆ, 0, , 0,k s r s k r
s r

x z x zφ ω ψ ω ψ ω′= = − =∑ , (18) 

where ( ), 0,s rx zψ ω=  is the ths  recorded shot record at frequency ω  with receiver 
locations at rx , ( ), , 0,s k rx zψ ω′ =  is the corresponding synthetic shot record at the thk  
iteration, and , ,s r k  are all positive integers.  The sum over shots in equation 18 is not 
strictly necessary since each shot is an independent physical experiment and could be 
treated separately.  Also, minimizing each shot independently would also minimize the 
sum.  However, it is usually regarded as simpler to treat equation 18 as the objective 
function.  The gradient of equation 18 with respect to the model is a hugely dimensional 
vector, having an independent dimension for each point in the earth model and each 
parameter.  That is, a discrete 2D model, measuring 1000x1000 points and estimating a 
single parameter at each point is a vector with 106 dimensions.  It has been shown many 
times, first by Lailly (1983) and Tarantola (1984), that the gradient is given by 

 ( ) ( )
2 *

, ,
,

ˆ ˆ( , , ) ( , ,, , )s k r s kk
s r

v x x zz z xω ψ ω δψ ωφ ω∇ = ∑ , (19) 

where ˆ ( , , )s x zψ ω  is a modelled source record at subsurface position ( , )x z  and frequency 
ω , ( )

*
,ˆ ( , , )r s k x zδψ ω  is the data difference (conjugated), formed at the surface as 

( ) ( ) ( ), ,ˆ ˆ, 0,ˆ ( , 0 , ,, 0) s r sr s k rk x zz x x zδψ ω ψ ω ψ ω′= −= == , and then back propagated to all 
possible subsurface locations ( , )x z , and the * indicates complex conjugation.   

While equation 19 is written in the frequency domain, when inverse transformed to 
time it is recognized as a reverse-time migration (RTM) of time-differentiated wavefields.  
Comparing equation 19 to the correlation imaging condition of equation 4 shows that the 
gradient involves a correlation imaging condition (the placement of the * does not matter 
once the gradient is summed over positive and negative frequencies).  However, the data 
difference is ungained and, from the subsection “Thought experiment to compare 
imaging conditions” we can anticipate that this will lead to an estimate that decays with 
depth.  Consider the model in that section and the first iteration using a homogeneous 
initial model.  The synthetic data will contain only a direct arrival and so the back 
propagated data difference will contain only the reflection and is given by equation 10, 
which we re-write as 

 ( )
( ) ( )*

1

*

,

*

ˆ (
4 4

, , ) s sikr ikrT T T T

s s
r s

R W R W
ex z e

r r
ω

π
δ ω

ω
π

ψ − 
= 

 
= , (20) 

and ˆ ( , , )s x zψ ω  is given by equation 7 as 
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 ( )
,1ˆ ( , , )

4
s

s
s

ikrx z
W

e
r
ω

π
ψ ω = . (21) 

Then, assuming only 1 source and 1 receiver, the gradient becomes 

 ( ) ( ) ( ) ( ) ( )* *
2 2

1 2 2, ,
4 4 16

s sikr ikrT T T
v T

s s s

W R W W W
x z e e R

r r r
ω ω ω ω

φ ω ω ω
π π π

−∇ = = , (22) 

so we see that the gradient does indeed decay as 2
sr
−  in this simples example but we 

expect similar behavior in more complex models.  This is a restatement of the point noted 
previously that the use of a correlation imaging condition requires that a gain correction 
be done.  The lack of a gain correction here presents serious difficulties for a descent 
method which seeks to choose a scalar, λ , such that  

 ( )1 1 , ,vv x z dδ λ φ ω ω= ∇∫   (23) 

is an “optimal” update to the starting velocity model (here the integral is taken over 
whatever frequency band is being used in the present step and includes both positive and 
negative frequencies).  Given that the gradient decays as 2

sr
− , this is clearly a very crude 

update.  Since the velocity model is an earth property, 1vδ  should be independent of 
distance from the source; however, this is clearly not the case.  The best that can be hoped 
for is that λ  will represent some sort of average gain correction for the entire section. 

Based on the forgoing discussion, it seems appropriate to find a way to incorporate 
some sort of gain correction into the calculation of the velocity update.  The poorly-
scaled nature of the gradient was commented upon by Gray (1997) in the context of 
lease-squares migration and in more detail by Shin et al. (2001) in their insightful 
analysis of the inverse Hessian.  They showed that the diagonal terms of the inverse 
Hessian apply a gain to the gradient estimation.  To understand this better, recall that a 
steepest-descent method is an iterative approach to an inversion that is generally solved 
more directly with a Newton or Gauss-Newton approach.  The difference in these is that 
the former calculates the full inverse Hessian operator while the latter calculates an 
approximation.  Mathematically, these methods replace equation 23 

 ( )1
1 1 , ,vv H x z dδ φ ω ω−= ∇∫  (24) 

where 1H −  is either the full inverse Hessian operator or an approximation.  Shin et al 
(2001) show that the main effect of 1H −  is a gain adjustment.  In a discrete setting, 1H −  is 
a matrix whose size is the square of the size of the gradient.  So, for a 2D 1000x1000 
earth model, 1H −  is a matrix of size 106x106 and thus has one trillion entries.  Clearly 
some approximation is needed.  Using just the diagonal terms of 1H − , which can be 
viewed as an image the same size as the gradient, Shin et al (2001) produced the results 
in Figure 3.  Figure 3a represents the model to be estimated by updating a smooth initial 
model.  Figure 3b is the estimated gradient obtained from an implementation of equation 
19 and the loss of amplitude with depth is clearly evident.  In Figure 3c is show the 
diagonal terms of the 1H −  formed into an image the same size as the gradient.  The 
division of each point of b) by the corresponding point of c) is an approximate 
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implementation of equation 24 and the result is in d).  Clearly, this is a better velocity 
update than a simple constant-scaled version of b).   

 

 

Figure 3:  Adapted from Shin et al (2001).  a) The “true” velocity model.  b) The gradient estimate 
resulting from an initial velocity model and equation 19.  Note the gradual fade-out with depth.  c) 
The image formed from the diagonal entries of 1H − .  d) The pointwise division of b) by c) 
representing equation 24. 

Last year we suggested (Margrave et al, 2011a) that a conventional prestack migration 
using a deconvolution imaging condition accomplished a result similar to that of Shin et 
al. (2001) but with far less computational effort.  However, our analysis was purely 
theoretical and the final result seems to contain an extra factor of 2r , which we have not 
yet resolved.  Here, we present a numerical result using the Marmousi model in the 
context of the numerical experiment presented in Margrave et al (2010).  Figure 4a shows 
the gradient estimation made using equation 19 for a migration with the Marmousi 
model.  For this experiment only 41 shots were used, placed regularly from 4000-800m 
along the model.  For the result in Figure 4, only frequencies from 0-5 Hz were used and 
the initial model was a heavily smoothed version of the true model (see Figure 5).  
Examination of Figure 4a), shows two undesirable features: the slow decay with depth 
and a dark band at the top.  The former has already been discussed, while the latter is an 
artifact resulting from incomplete cancellation of the direct arrival when forming the data 
difference (a similar artifact may be present in Figure 3b.)  In Figure 4b), the migrated 
shot records of the data difference were gained before stacking.  This is a better estimate 
of an earth property in that both negative features of the direct gradient have been 
reduced.  The gain correction used in Figure 4b is only approximate as it was 
accomplished after the migrated by a simple scaling by 1/2

sr  as is appropriate for 2D.  An 
accurate gain correction requires full modelling of wave propagation and this can be 
accomplished, with minimal additional cost, by simply implementing a deconvolution 
imaging condition in the migration instead of a correlation condition.  The result of this is 
shown in Figure 4c).  Also implemented in this result is an ordinary stacking mute as is 
commonly used to suppress artifacts caused in the shallow section by low fold.  While the 
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mute may be overly severe and more information could be allowed into the shallow 
section, such a tool is clearly beneficial given the right parameters.  Using the estimate of 
Figure 4c, and a further calibration by comparison to well control, Figure 5 shows the 
resulting velocity model update that results.   

 

Figure 4:  Adapted from the experiment of Margrave et al. (2010).  a) The gradient from the first 
iteration of a FWI using the model of Figure 5b.  Note the decay with depth.  b) The result of 
applying gain to each migrated shot record.  c) A prestack depth migration using a deconvolution 
imaging condition.  

 

Figure 5:  From Margrave et al. (2010).  a) The exact Marmousi velocity model.  b) The smoothed 
starting model formed by convolving a 2D Gaussian (half-width 600m) with the exact model. c) 
The velocity model after updating with the calibrated migration stack of Figure 4c. The update 
was scaled and phase rotated in a standard comparison with simulated well control. 

IMMI: TRANSITIONING FROM SM TO FWI 
In the previous section, we have demonstrated that the FWI gradient is a very poor 

migration.  We then showed that simple improvements, using techniques (depth migration 
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with deconvolution imaging condition and muting) borrowed from SM, improve the 
gradient and, presumably, lead to faster convergence.  We showed that the simple use of a 
deconvolution imaging condition, which has an almost un-measureable cost increment 
relative to correlation, accomplishes something very similar to the application of the 
inverse Hessian, which can be hugely expensive.  From this we conclude that there is 
much to be gained from incorporating aspects of SM into FWI.  We suggest that there is a 
broad middle ground between SM and FWI whose exploration will bring progress from 
the former to the latter.  As a useful name to refer to applications in this middle ground, 
we suggest IMMI or Iterative Modelling Migration and Inversion.  Below is an algorithm 
for IMMI using techniques from both SM and FWI.  We present this algorithm for the 
simplest possible case of constant density, P-wave only estimation of velocity. 

1. Prepare the data.  If the modelling to be done uses limited physics, for example 
acoustic modelling for land data, then this dictates at least some of the 
processing.  Ground roll may need to be suppressed and deconvolution may be 
required.  Strongly nonstationary data may benefit from an inverse Q filter or a 
Gabor deconvolution (e.g. Margrave et al., 2011b).  An effort should be made 
to estimate the wavelet at the end of this step. 

2. Build initial background model as a very smooth migration model.  The 
background model should be capable to replicating the data first breaks but 
should show almost no reflections.  This model becomes the current model for 
the first iteration. 

3. Create synthetic seismic data with the current model and the geometry of the 
real seismic data using the current wavelet estimate.  Generally, this will be 
done with finite difference modelling. 

4. Migrate the data difference with a prestack depth migration. Initially migrate 
only the lowest frequencies.  As the iteration proceeds move up the frequency 
band.  We recommend using an f-x migration algorithm like PSPI with a 
deconvolution imaging condition.  Stack the migrated shot records with 
whatever mute seem appropriate. 

5. Convert the migrated stack into a velocity update either through a line search 
or, if well control is available, by tying the stack to logs.  A mixture of both 
methods may prove useful.  If tying to wells, then a wavelet update may also 
be obtained.  The procedure using well control is essentially analogous to 
standard impedance inversion. 

6. Update both velocity model and wavelet and repeat steps 3-6 as often as 
desired. 

Given that SM never iterates while FWI is often iterated hundreds of times, it is 
reasonable to expect that a dozen iterations will prove very useful.  While this suggested 
IMMI approach is yet untested on real data, its feasibility was shown on the Marmousi 
synthetic by Margrave et al. 2010. 
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An Impedance Imaging condition 
The deconvolution imaging condition is designed to estimate reflectivity directly. 

When used in IMMI, the resulting reflectivity image must then be converted to 
impedance.  This conversion could be made easier by using an imaging condition that 
estimates impedance directly.  Such a condition was suggested previously by us in 
Margrave et al. (2011a).  Recall that at interface j , the normal incidence reflection 
coefficient and impedance are related through 

 1

1

j j
j

j j

I I
R

I I
+

+

−
=

+
 (25) 

where jI  and 1jI +  are the impedances above and below the interface and jR  is the 
impedance at the interface.  If 1j jI I +�  then we can write this as 
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from which we obtain 

 2j j jI I R∆ = . (27) 

We propose to treat equation 27 as a prescription to obtain an impedance perturbation 
from a reflectivity estimate during an IMMI iteration. Specifically, our impedance 
imaging condition is then 

 12k k kI I R−∆ =  (28) 

where k  now counts the  iteration number in IMMI and 1kI −  is the impedance model at 
the start of iteration k , kR is the reflectivity estimate made iteration k  from the 
deconvolution imaging condition, and kI∆  is the corresponding impedance perturbation. 
Thus the updated impedance model will be  

 1k k kI I I−= + ∆  . (29) 

If the source wavelet is known then equation 29 can be used directly; however, if the 
source wavelet is imperfectly known, then equation 28 will need an amplitude and phase 
correction before using the result in equation 29 (see the discussion around equation 12).  
It is likely that this correction can be estimated from comparison to well control. 

WELL VALIDATION VERSUS DATA VALIDATION 
We have discussed two distinct methods of validating an impedance model.  In SM, a 

reflectivity image is compared to well control and then converted to impedance by 
including the low-frequency contribution from the well.  In effect, the resulting 
impedance section has been validated by comparing to well control, hence we call this 
well validation.  In FWI, an impedance model is validated by demanding that synthetic 
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seismic data predicted from the impedance model match the real data; so we call this data 
validation.  Both of these approaches also offer opportunities to estimate the seismic 
wavelet. 

While well validation and data validation are both desirable, they are distinctly 
different constraints, having different features and different computational algorithms and 
effort.  Well validation is typically a relatively minor computational burden in that is 
requires comparison of the reflectivity image to well control at a small number of spatial 
locations.  In addition, the well logs will usually span only a small fraction of the depth 
range of the seismic image and almost always there is no logging coverage in the shallow 
section.  Data validation, in contrast, requires solution of a wave-equation initial value 
problem in order to forward model the synthetic data.  While not all measured shot 
records need be modelled, this is still a much larger computational effort and often 
requires many iterations of FWI to achieve a good fit. 

Usually, seismic migration uses a physical theory that is known to be much simpler 
than the anisotropic visco-elastic theory that would be needed to fully simulate seismic 
waves.  Most migrations today still use a scalar wave theory, usually both lossless and 
isotropic, to form an image.  In SM, the image is a reflectivity image while in FWI it is a 
gradient of an objective function, but both are accomplished by migration algorithms 
with simplified physics.  Well validation can proceed with such inadequate physics by 
simply assuming that the image represents P-P or P-S or other reflectivity and deriving an 
appropriate wavelet to match the image to the appropriate logs.  The issue is far less clear 
with data validation, but it seems that inadequate physics will have a greater impact 
because, for example, a scalar wavefield might never achieve a useful match against 
elastic data.  This places an additional burden on data pre-processing as the effects which 
cannot be modelled should be suppressed. 

The two validation methods have different sensitivities to perturbations at different 
depths.  Data validation is far more sensitive to changes in the shallow part of the model 
than well validation.  This sensitivity is directly indicated by the FWI gradient with it’s 
rapid decay with depth.  While this decay is not a desirable feature of an earth property, it 
is a valid statement about the sensitivity of the FWI objective function to changes in the 
shallow section.  On the other hand, well validation is limited by the depth range of the 
logging.  There will always be an unlogged portion in the upper section due to practical 
considerations.  Generally, in a well-tying exercise, this portion is filled with a simple 
constant gradient function that gives roughly correct traveltimes.  However, well tying is 
very definitive in the logged interval and can effectively determine both the seismic 
wavelet and the scaling from reflectivity to impedance. 

CONCLUSIONS 
We have argued that there is a close connection between the standard seismic 

processing methodology (SM) and the emerging technique of full waveform inversion 
(FWI).  Both methods have the goal of creating an earth model, in the present context an 
impedance model, from seismic data and both require low-frequency signal content and 
knowledge of the seismic waveform.   
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SM, being far older and having evolved from early intuitive ideas to more mature 
physical theory, is a rich collection of algorithms typically run in a sequence with the goal 
to create a reflectivity image which is then combined with well information to estimate 
impedance.  The process of comparing the reflectivity images to well control offers a type 
of model conformation which we call well validation.  The rich algorithmic set in SM is 
designed to deal with the many complexities of seismic data such as random and coherent 
noise, anelasticity, near surface complexities and statics, wavelet estimation and 
deconvolution, anisotropy, spatial focusing (migration), and more.  Interestingly, while 
detailed impedance sections are commonly made, there is never any attempt to predict 
synthetic data from them or to use them to re-migrate. 

FWI shows great promise as a possible step forward into a new imaging paradigm 
with potentially much greater resolution.  The method is formulated as a nonlinear 
inversion that strives to minimize and objective function that measures the misfit between 
real and predicted data.  The resulting impedance model is thus consistent with the 
recorded data and we refer to this as data validation.  While data validation is a very 
strong constraint, the method takes much greater computational effort than SM and places 
a much stronger demand on properly modelling the physics of seismic waves. 

We showed that the FWI gradient, which is often said to be a reverse time migration 
(RTM) is actually a very poor migration as it produces an ungained image.  This is 
indicative of the fact that changes in the near surface have a greater effect on the data 
misfit than deeper changes, but it is also a likely reason that FWI convergence is slow.  A 
gained image can easily be achieved by replacing the correlation imaging condition 
inherent in the FWI gradient with a deconvolution imaging condition.  We argued that 
this is a very close parallel to the correction obtained by applying the inverse Hessian 
operator to the gradient.  However, the deconvolution imaging condition is far less 
computational effort than estimating the inverse Hessian. 

Therefore, we suggest that an FWI like process, which we call iterative modelling 
migration and inversion or IMMI, can be created from standard techniques such as finite 
difference modelling, any standard prestack depth migration of the data difference, 
calibration of the migrated section using well control to deduce an impedance update, and 
iteration.  This has been demonstrated with synthetic data and is a focus of current 
research with real data. 
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