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ABSTRACT 

Deconvolution is a process that is normally applied to seismic data before migration to 
enhance the resolution.  We propose that deconvolution should also be applied to the data 
after a poststack or a prestack migration.  We address the objections to this process, then 
present arguments for its use.  The deconvolution process should be applied as a 
multidimensional process to the complete data.  However, a typical trace process is 
usually sufficient to provide a significant enhancement in the resolution after migration.  
Two data examples are provided that show significant improvement in the resolution of 
the data by use of a simple spiking deconvolution that was applied to each trace after 
migration. 

INTRODUCTION 

Deconvolution 

We propose that deconvolution should be applied after migration and refer to this 
process as DaM.  Ideally the deconvolution process should have dimensions equal to that 
of the migrated data.  However, a 1D deconvolution of a vertical trace, (trace 
deconvolution) is usually sufficient to enhance the resolution of the migrated data.  We 
have been applying this process for many years and are aware that  “others” have also 
been applying DaM, but refer to it as spectral whitening, or some related form that is 
often associated with high resolution acquisition.  We have also encountered significant 
opposition to applying DaM, and our intent is to discuss some of the objections and 
present reasons for it use. 

We commence by reviewing the resolution of wavelets before and after migration, 
review the objections to DaM, then present the reasons for applying DaM.  Two 
examples of real data are shown that illustrate the benefit of the process when a simple 
spiking deconvolution is used. 

Much of the discussion is illustrated using a Kirchhoff type algorithm that is 
conveniently described with Linear Algebra (or matrix theory); however, the principles 
do apply to all methods of migration.  We also present a simplified description of 
modelling seismic data using reflectivity and diffraction matrices, then estimate the 
reflectivity using the seismic and diffraction matrix using Least Squares Migration 
(LSM).  We then show that conventional migration is a simplification of LSM.  These 
concepts are well known in the seismic industry, and have been included here to help 
identify the deficiencies of conventional migrations (Claerbout 1992). 

LSM is an optimum form of seismic inversion as it recovers the highest resolution of 
the reflectivity when using a linear process.  As a migration, it does require a reasonably 
accurate velocity model, and can be used to refine and update that velocity model 
(Yousefzadeh et al. 2013).  It should not be confused with Full Waveform Inversion 



Bancroft et al. 

2 CREWES Research Report — Volume 25 (2013)  

(FWI) that uses migration as part of an iterative process to estimate “rock properties”.  
The higher resolution of LSM may aid in refining FWI to converge at a faster rate.  

A typical one dimensional deconvolution process, used in seismic processing, defines 
an operator from a time window which is then applied to each trace: we refer to this 
process as a trace deconvolution.  An alternate deconvolution may be applied to a section 
of data similar to image sharpening in photo processing.  We refer to this process as a 
multidimensional deconvolution.   

A great deal of seismic data can be migrated with a time migration where 
deconvolution after migration is a reasonably straight forward process as the traces are in 
time.  Deconvolution after a depth migration is not straightforward.  In a typical medium 
where the velocities increase with depth, the compression of a wavelet in a depth trace is 
more extreme that in a corresponding wavelet in a time trace.  In a deeper part of the 
section, the stretching of the wavelet in a depth trace is more severe than in a 
corresponding time trace.  This larger range in the size of the wavelet increases the non-
stationarity of a depth trace, making simple deconvolution difficult.  However, a simple 
conversion from vertical depth to vertical time may allow conventional time 
deconvolution to be applied. 

An earlier and simplified version of this paper was presented in the CSEG Recorder 
magazine (Bancroft 2012). 

A summary of objections to deconvolving data after migration 

Deconvolving data after migration (DaM) has met with considerable objection when 
requested by the authors.  Some of these objections are;  

1. Deconvolution before migration maintains the resolution of horizontal and 
dipping events and DaM is not necessary, 

2. Deconvolution may alias the frequencies of steeply dipping migrated events, 

3. Deconvolution will increase noise, 

4. Deconvolution will produce artifacts, and  

5. Kirchhoff migration already uses whitening operators and DaM is not 
necessary. 

REVIEW OF SEISMIC BASICS 

The movement of the wavelet 

Consider a zero-offset geophysical model where a wavelet is stationary and assumed 
to be defined by the source.  The zero-offset raypaths are normal to the reflectors.  The 
reflection energy is plotted below the source/receiver location to form a seismic section, 
even when coming from a dipping reflector, as illustrated in Figure 1a.  The reflection 
events on the section (b) will contain the same wavelet, independent of the dip, and will 
have the same frequency content.  After migration, these wavelets are “rotated” back to 
the geological location.  Deconvolution of the data in (b) will maintain the same 
resolution of the wavelet in both events after migration.  
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a)  

b)  

c)  

FIG. 1  Cartoon of a) raypaths, b) recorded traveltimes and wavelets, and c) wavelets migrated 
back to the reflector. 

The resolution of the two reflections is compared before and after a poststack 
migration in Figure 2.  The seismic data before migration in Figure 2a has a horizontal 
reflection and a dipping reflection with dip α .  After migration, the horizontal event 
remains the same, but the dipping reflector in Figure 2b has a dip β  as related by the 

migrator’s equation tan sinα β= .  The black circles in Figure 2a identify the distances 
between the wavelet minima when measured vertically along the trace, and are used to 
represent the vertical resolution.  The black dashed circle has the same diameter and 
represents the same wavelet on the vertical traces of the dipping event.  It is compared to 
the smaller diameter blue circle that is measured normal to the dipping event.  The 
resolution of the dipping event, when measured normal to the dip, is higher than the 
horizontal event. 

After migration, the same black circles are shown in Figure 2b, illustrating that the 
resolution of the horizontal event after migration remains the same.  The resolution of the 
dipping reflector, when measured normal to the reflector, is now the same as the 
horizontal reflector.  The red wavelet is identical to the vertical wavelets in Figure 2a.  
The green circle represents the new lower wavelength of the dipping event when 
measured vertical along a trace.  The lower frequency in a vertical trace is a natural part 
of the migration process that prevents aliasing of the dipping event. 

It is curious to note that the actual resolution of the dipping event is greater than the 
horizontal event before migration, but the same after migration. 

 

time
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a)     b) 

FIG. 2  Seismic events a) before migration and b) after migration. 

The FK view 

An alternate view of the migration process is illustrated in Figure 3 that shows the 
location of energy before and after migration in the frequency-wavenumber (FK) domain 
in a constant velocity medium.  The origin is at the bottom center.  The trace interval for 
the seismic data was chosen to match the Nyquist wavenumber to the equivalent 
maximum frequency of the data.  On the left in (a) we see the seismic data contained in a 
blue triangle that is bound by the maximum frequency and the maximum seismic dip of 
forty five degrees.  After migration, the energy is confined within the blue semicircle in 
(b).  Migration moves energy at dip α  in (a) vertically down to dip β  in (b).  Seismic 
energy at forty five degrees moves vertically down to a maximum dip of ninety degrees, 
as illustrated by the black dots.   

 
a)       b) 

FIG. 3  FK displays of seismic data a) before migration, and b) after migration.  
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Seismic reflection and diffraction energy, before migration, is confined to dips less 
than forty five degrees.  Any energy with dips above forty five degrees is considered to 
be noise, which should be over-written by the migration process and eliminated.  We 
used the word “should” because some migrations intentionally leave some of this noise 
for appearance purposes, or are unable to remove it.   

The frequency of the dipping event when measured along the dip in Figure 3a is 
greater than the frequency of a vertical event with zero dip, indicating it has a higher 
resolution as indicated in Figure 2a.  After migration, all dips have the same resolution 
(radius) when measured along the dip in Figure 3b, but will have a lower frequency 
wavelet when measured vertically along a trace as indicated by the orange arrow in the 
FK domain. 

Seismic diffractions 

A typical Kirchhoff migration sums the energy in a diffraction.  The diffraction can 
have many forms such as: 

• a single valued function (one value for each spatial location), computed analytically 
for each use,  

• a single valued function estimated from Eikonal wavefront mapping, and stored as  
vectors of traveltime and amplitude, 

• a single or multivalued function computed from raytracing that stores the arrival 
times and amplitudes in vectors, or  

• computed using wavefield propagation through a complex medium, and stored in 2D 
or 3D arrays.   

Two diffractions are illustrated in Figure 4, computed from a scatter point in the 
Marmousi data set and displayed as a 2D matrix.  The first diffraction in (a) contains a 
multi valued diffraction of first arrival times computed with raytracing through a 
smoothed version of the Marmousi velocities.  The second diffraction in (b) is a wave 
field diffraction computed from the same location, but using wave propagation of a 
wavelet that includes multipathing and multiples.  This figure also contains blue dots that 
define the location and arrival times for a family of rays emanating from the scatterpoint.   

 
a)      b) 

FIG. 4  Two diffractions, a) multi valued computed using raytracing, and b) full waveform using 
wave propagation.  
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A basic Kirchhoff algorithm will only use a single valued diffraction stored in vectors 
of traveltime and amplitudes that is much more efficient than the matrix form in Figure 
4a as it contains mainly null space and is inefficient with memory usage.  Use of the full 
wavefield in (b) is considered to be very expensive to compute, but is more reasonable 
for storage in a matrix form, suitable for use in Linear Algebra. 

A Linear Algebra view of modelling and migration 

Kirchhoff modelling assumes that a reflector is composed of scatterpoints, and that 
each scatterpoint will produce a diffraction.  The sum of all diffractions creates a time 
section.  The amplitude of the diffraction energy is defined by the amplitude of the 
reflectivity.  This is a forward modelling process that can be represented in Linear 
Algebra with multidimensional arrays, D, r, and s that represent the diffractions, 
reflectivity, and seismic data respectively.  A special branch of Multidimensional Linear 
Algebra is required to manipulate these multidimensional arrays.  However, the arrays 
may be reduced to two dimensional (2D) arrays (matrices), or one dimensional (1D) 
vectors for use with conventional Linear Algebra, including Least Squares analysis 
(Claerbout 1998, Yousefzadeh et al. 2013, Bancroft et al. 2012).  With this 
understanding, we use an uppercase D to represent a diffraction array that can be 
simplified to a 2D matrix, and the lower case r and s to represent data that can be 
simplified to 1D vectors.  These definitions can apply to either time or depth migrations, 
to poststack or prestack migrations, and to 2D or 3D seismic data. 

An advantage of using Linear Algebra is that seismic data s can be created with the 
product of the diffraction matrix with the reflectivity vector  

 =Dr s . (1) 

Kirchhoff migration is the reverse or inverse process of modelling, which sums energy 
along a diffraction, then places that sum at the reflector point.  This summation is not a 
convolution process, and we are required to find a convolution type operator.  In a 
constant velocity environment, this operator is a semi-circle.  This semi-circle operator 
may be found by transposing two dimensions of a multidimensional diffraction array D to 
create DT.  Both D and DT are illustrated with a simple example in the appendix for 
modelling and migrating 2D seismic data.   

We now write the migration equation as  

 Tr = D s
  , (2) 

where r


 is the migrated form of the reflectivity.   

Seismic inversion 

Rather than trying to recover the reflectivity with a transpose process, it is more 
desirable to obtain an estimate of the reflectivity using the inverse diffraction matrix D-1 
defined as  
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 1−r = D s , (3) 

but that is not possible as the D matrix is usually multi-dimensional, not square, ill-posed 
with evanescent energy, and unstable.  We can however, multiply both sides of equation 

(1) with TD   

 T TD Dr = D s
   , (4) 

often referred to as the “normal equations,” to get the Least Squares solution of r


 using  

 ( ) 1−T Tr = D D D s
    . (5) 

The TD D   matrix is referred to as the covariance matrix or resolution matrix, and requires 
a stabilizing factor for its inversion.  These are the basic equations used for LSM and will 
recover a good estimate of the reflectivity r


.   

Least Squares migration using equations (4) or (5) is an expensive process and not 
commercially practical at this time with real seismic data.  In practice, the algorithms for 
estimating r


 do not invert the resolution matrix, but use an iterative solution with the 

conjugate gradient method.   

Approximate method of inversion 

The TD D   matrix of a Least Squares problem may be considered to be diagonally 
dominant, and can be approximated with the identity matrix I, which has the convenient 
inverse that equals I, i.e., 

 ( ) ( )≈
-1 -1TD D I = I  . (6) 

In this case, the inverted term in equation (5) is eliminated, and we get the transpose 
solution of equation (2).  Migration is a simplification of LSM (Claerbout 1992). 

In seismic applications, the TD D   matrix is not diagonally dominant, indicating its 
elimination in a conventional migration produces and inferior approximation to the 
inversion.  The lack of diagonal dominance also makes the inversion process of LSM 
difficult and iterative solutions using the Jacobi or Multigrid methods are not useful.  
However, the Conjugate Gradient method does provide a viable solution (Yousefzadeh et 
al. 2010, and 2013). 

The wavelet matrix 

We conveniently left out any mention of a wavelet in our modelling.  This is quite 
normal in conventional modelling and migration where we use single valued diffractions 
or semi-circles as it is more convenient, faster, and does a reasonable job.  In these cases 
the wavelet is assumed to be part of the reflectivity structure.  However, the wavelet 
should be part of the diffraction as used above with D . 
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Let us now define a wavelet matrix W that can be multiplied with the single valued 

diffraction matrix D  to put wavelets on the diffractions, i.e. WD = D .  The modelling 
equation becomes  

 WDr = s , (7) 

where the reflectivity matrix r is a high frequency representation of the reflectivity.  

Recalling that 
T T T(WD) = D W , the Least Squares solution is now 

 ( )-1T T T Tr = D W WD D W s


. (8) 

Removing the inversion part and going back to the migration or transpose solution we 
have 

 T Tr = D W s . (9) 

This equation implies that, when migrating with a single valued diffraction, we need to 
“correlate” the seismic data with the wavelet.  The migration will contain a zero-phase 
wavelet, and have a higher signal to noise ratio (SNR), which is typical of a true Matched 
Filter.  However, correlation of the wavelet lowers the bandwidth of the migration, so in 
practice, the correlation of the wavelet is not included, i.e. 

 ≈ Tr D s , (10) 

leading to the belief that migration with single valued diffractions is recovering the 
higher frequencies. 

AN EXAMPLE OF LEAST SQUARES MIGRATION 

LSM is computationally intensive and usually only simple models or small data sets 
are shown.  Figure 4 shows a simple example of LSM with (a) a reflectivity structure, (b) 
a prestack migration from seismic data modelled on the structure, and (c) a corresponding 
LSM using the same data as (b).  This simple model used four source (shot) records that 
produce reasonable results.  Notice the wavelet remains with the migration in (b), but has 
been substantially removed in the LSM in (c).  Both the migration in (b) and the LSM in 
(c) used single valued diffractions in D. 

The results of the LSM may appear impressive, but the modelling process only 
included a small amount of random noise that enabled the high frequency content of the 
wavelet to reconstruct the reflectivity.  There are many other benefits to LSM, such as 
recovering missing data, but the intent of the example in Figure 4 demonstrates that LSM 
does recover a higher resolution of the reflectivity than a conventional migration. 
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a)    b)    c) 

FIG. 4  Illustration of a) a reflectivity structure, b) a migration, and c) a LSM. 

We now use these tools to discuss the objections of DaM and present arguments for its 
use. 

A DISCUSSIOIN OF DaM OBJECTIONS 

1.  Deconvolution before migration maintains the resolution of horizontal and 
dipping events 

Figures 1 and 2 demonstrate that the resolution of the wavelet in horizontal and 
dipping events is restored by the migration process.  A 1D temporal (trace) deconvolution 
before migration will therefore provide the necessary resolution enhancement for both 
horizontal and dipping events.  This does not imply that the resolution after migration 
cannot be improved by DaM. 

2.  Deconvolution may alias the frequencies of steeply dipping migrated events 

Trace deconvolution after migration increases the frequency content of a dipping event 
and may cause it to be aliased and harm the data.  That is true to some extent when 
applying a trace deconvolution to steeply dipping data.  However, the aliasing may not be 
a serious problem as the eye may be able to ignore the aliasing.  If the aliasing is serious, 
as would be the case in sub-salt imaging, a multidimensional deconvolution that 
considers the dip may be required.  In areas where the geological structure is less 
complex, such as in sedimentary basins, a trace deconvolution may be adequate. 

3.  Deconvolution will increase noise 

The bandwidth (BW) of seismic data is considered to be that part of the amplitude 
spectrum where the signal to noise ratio (SNR) is greater than one.  Deconvolution 
attempts to flatten or whiten the amplitude spectrum of both the seismic data and the 
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noise.  Identifying the new bandwidth of the data after migration may require additional 
signal processing or testing with a number of bandpass filters.   

A quality migration should attenuate noise and increase the BW of the seismic data.  
Some interpreters may consider the appearance of a low noise section to be “wormy” and 
objectionable.  Consequently, some migration algorithms add noise back to the data to 
“improve” its appearance.  A deconvolution after migration increases the resolution of 
the migrated section and makes it less “wormy” and more interpretable.   

Some migrations avoid the use of an appropriate antialiasing filter (AAF) to save 
computing time and costs, or to make a section look less wormy.  In these cases, the 
benefit of DaM may not be realized. 

4.  Deconvolution will produce artifacts 

Some processes overcome the time varying (non-stationary) nature of seismic data by 
processing parts of the data in time windows or spatial windows.  These windows of data 
are then combined (by cut and paste) to create the total section.  The edges of these 
windows will have abrupt changes in the wavelets, so the data are high-cut filtered to 
remove this discontinuity.  Time varying processes may include static analysis, 
deconvolution, and migration.   

A deconvolution applied to these cut and paste sections will enhance the 
discontinuities to reveal the window boundaries and be unacceptable.  In this case, a 
deconvolution after migration may be more desirable for a client to show imperfection in 
the algorithm. 

5.  Kirchhoff migration already uses whitening operators 

A Kirchhoff migration that uses a single valued function for the diffraction is much 
faster and requires less memory.  It does not convolve with the extra wavelet as required 
by a true matched filter, but does produce a migrated wavelet with a higher resolution.  
This process has been considered to be a form of spectral whitening, and that any 
additional spectral whitening is not required. 

Consider again the Least Squares equation (8) and rewrite it in a form for some kind 
of dimensional analysis r


 that includes a wavelet with the seismic data, i.e., 

 ~
T T

T T

D W s s

D W WD WD
> =r

 . (11) 

When simplifying the inversion to a transpose process on the right of equation (11), we 
replace 1/D with DT or 

 
Ts D s

WD W
≈ , (12) 

where the conventional migration = Tr D s  using a single valued diffraction (equation 
(10)) still requires the removal of another wavelet to match r


 of equation (11).  The 
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prestack migration example in Figure 4b did use single valued diffractions in D, and the 
wavelet from modelling is still present in the data. 

REASONS WHY DECONVOLVOLUTON IS NECESSARY AFTER 
MIGRATION 

The used of DaM is dictated by the inversion process 

Conventional migration that uses the transpose process assumes that the “resolution 

matrix” ( )-1TD D   is not part of the process.  However, it is this part of the inversion 

process that increases the resolution of the data.  Even the use of a single valued 
diffraction does not produce the same result as the LSM.  The inversion can be simulated 
with a trace deconvolution that tends to flatten (or whiten) the amplitude spectrum of the 
trace.  In areas with complex geology, a more sophisticated multidimensional 
deconvolution process could be used that involves the dips of the reflectors. 

The example of LSM in Figure 4 indicates that the resolution of the prestack migration 
in (b) could be increased by a deconvolution process.  Since the structure of this example 
is relatively horizontal, we contend that a simple spiking deconvolution would produce a 
result similar to the LSM in (c). 

The imaging condition 

A common method of estimating the reflectivity R was presented by Claerbout in 1971 
in which he defined the down-going energy D just above a reflector, and the up-going 
reflected energy U just above a reflector, all defined in the frequency domain.  The 
reflectivity was defined by  

 
U

R
D

= . (13) 

Instabilities in this computation lead to a simplification that replaced the inversion 
with D by the product of the conjugate, D*,  

 *R UD≈ . (14) 

In the time domain, this becomes a cross-correlation of the seismic data that is 
migrated to the depth of a reflector U, with modelled seismic data at a depth just above 
the reflector D.  Notice that the inversion of equation (13) is replaced by the correlation 
of equation (14), similar to the transpose process of a conventional migration.  This 
correlation process does not recover the bandwidth of the reflectivity that could be 
achieved with a process similar to equation (13).  A deconvolution after migration will 
tend to recover the bandwidth lost in the correlation process. 

A heuristic argument for deconvolution after migration 

Deconvolution essentially tries to flatten the amplitude spectrum of the seismic data.  
However, when we flatten the spectrum we flatten both the signal and the noise.  We 
generally consider the bandwidth of the signal, or reflection energy, to be the area of the 
amplitude spectrum where the signal is greater than the noise, i.e., when the signal to 
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noise ratio (SNR) is greater than one, i.e., SNR > 1.  This is illustrated in Figure 5, which 
contains an exaggerated cartoon sketch of the amplitude spectrum of seismic data and 
three levels of noise.  The first noise level represents the noise level in the raw data, the 
second is the reduced noise after stacking, and the third is the noise level after migration.  
Each time we reduce noise we increase the frequency band where the SNR is greater than 
one, i.e., from Fr to Fs and then to Fm.  Deconvolution tends to flatten the amplitude 
spectrum in each of these bands where a broader bandwidth corresponds to an increase in 
resolution.  Bandpass filters are designed to attenuate the energy when the SNR < 1. 

Figure 5 illustrates the improved bandwidth at the higher frequencies when the noise is 
reduced.  Similar improvements are also obtained with DaM at the lower frequencies.  
This may be especially important to other inversion processes such as model based 
inversions (Lindseth 1979, Russell et al. 1991, Hampson, et al. 2005) and full waveform 
inversion (FWI) in which migration is part of the inversion process. 

Poststack migration benefits from the stacking process, and it is common practice to 
apply a deconvolution at this stage of the processing.  Improved resolution can still be 
obtained with DaM. 

Prestack migration does not stack the data before the migration, thus does not benefit 
from the improved resolution of deconvolution after stacking.  It tends to have spectral 
whitening over a bandwidth equivalent that of the “Raw noise” in Figure 5.  However, a 
prestack migration does have an improved SNR due to the migration and stacking, and 
have a greater bandwidth where SNR > 1.  It will benefit greatly from a deconvolution to 
whiten the spectrum over this increased bandwidth.  Consequently, the bandwidth gained 
through deconvolution after prestack migration is considerably greater than that for 
poststack migration, and DaM should be considered essential in this case. 

 
FIG. 5  Cartoon illustrating the increased bandwidth of the SNR as the noise level is reduced after 

stacking and then after migration.  

Frequency

A
m

p
lit

u
d

e

Raw noise

After stacking

After migration

Fr Fs Fm



Deconvolution after migration 

 CREWES Research Report — Volume 25 (2013) 13 

EXAMPLES OF DECONVOLUTION AFTER MIGRATION 

NE British Columbia data 

A noisy 2D seismic line was chosen from a project in NE British Columbia, Canada, 
which used a low-dwell sweep from 1 to 100 Hz, into the vertical component of a 3C 
phone.  The data were processed to a flat datum at the central elevation.  Deconvolution, 
gain recovery, and statics were applied to the prestack data.  The data were then prestack 
time migrated using the Equivalent Offset method (EOM).  The migrated section is 
shown in Figure 6a, and the migration followed by a spiking deconvolution is shown in 
Figure 6b.  The increase in resolution with deconvolution after migration is evident. 

The amplitude spectra of the data are compared in Figure 7, with (a) the prestack 
migration, and (b) the same data with a spiking deconvolution applied after the migration.  
Note the flatter amplitudes of the deconvolved section in the seismic band, and the 
broader pass band at the lower and higher frequencies.   

 
a) 

 
b) 

FIG. 6  Seismic sections: a) a prestack migrated section and b) deconvolution applied to the 
section in (a).  
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a)      b) 

FIG. 7  Amplitude spectra of a) the prestack migrated data, and b) the migrated data with 
deconvolution. 

South America data 

The following data are from a 3D project somewhere in South America.  The data 
were processed commercially and completed with a high quality prestack time migration.  
It was difficult to convince the persons processing the data to apply a deconvolution after 
the migration.  The results are shown in the following sections of Figure 8.  Zoom 
displays are included in Figure 9 that focuse on an area of significant improvement in 
resolution when using DaM. 
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a) 

 

b) 

FIG. 8  a) Prestack migration followed in b) with a spiking deconvolution applied to (a). 
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a)      b) 

   
c)      d) 

FIG. 9  Zoom of the data with a) showing one portion and b) its equivalent deconvolution.  Part c) 
and d) show a similar comparison for another part of the data. 

 

  



Deconvolution after migration 

 CREWES Research Report — Volume 25 (2013) 17 

COMMENTS AND CONCLUSIONS 

Least Squares migration performs an inversion of seismic data that is independent of 
dip, implying that it recovers the optimum resolution for horizontal and dipping events.  
We have only approximated this process with a trace deconvolution that is appropriate 
for data with shallow dips.  A more elaborate multidimensional deconvolution that 
considers dip may be more appropriate in structured environments. 

A simple spiking deconvolution was applied in the examples.  A non-stationary or 
time varying deconvolution such as Gabor deconvolution (Margrave et al, 2011) should 
produce greater improvements over a larger time portion of the data.   

A clean, noise reduced migration may appear wormy to an interpreter, and noise may 
be deliberately added to improve its appearance.  A deconvolution after the migration 
will make the section appear less wormy, with the added benefit of increased resolution.  

Deconvolution should be applied after a quality migration. 

Deconvolution after migration is even more important after a prestack migration. 
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APPENDIX 

A 4D diffraction matrix G for 2D seismic data is shown below in Figure A1.  It shows 
a 2D array of reflectivity [k, l] that contains 2D sub-arrays of diffractions [i, j].  Each 
diffraction has 4 rows of time (i = 1 to I) and 5 columns or traces (j = 1 to J).  The 
reflectivity structure has 3 depth samples (k = 1 to K) in 5 columns or spatial locations, (l 
= 1 to L).  The 2D transpose of G is formed by transposing the i and k elements, 

 ( ) ( ), , , , , ,i j k l k j i l=  
T

G G , (15) 

as shown in Figure A2 that displays the migration operators as approximate semicircles 
in each black […], that become sub-matrices of the migration matrix […].   

 

FIG. A1  The 4D diffraction matrix 

 

FIG. A2  The 4D transpose of the diffraction matrix. 
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Figure A3 shows a 3D diffraction array and its transpose for one vertical array of 
scatterpoints at a fixed spatial location (x).  The medium has constant velocities, so the 
diffractions have a hyperbolic shape and the migration operators are semicircular.  Figure 
A3a shows the diffraction array for modelling with three green diffractions in (x, t) at 
three different depths (z).  These three, and all possible diffractions, form the shape of a 
cone.  It represents the central location of the column sub-matrices in Figures A1.  A 
horizontal slice through the cone is represented by the red semicircle.  

Figure A3b shows the 2D transpose of the diffraction array that rotates the vertical 
cone in (a) to the horizontal cone in (b).  Now, the red vertical intersection in (x, z) at a 
specific time (t) is the semicircle that represents the migration operator. 

          

a)       b) 

FIG. A3  A 3D view of a 3D diffraction array G for a) modelling and a) the transpose GT for 
migration. 

If the velocity varied, the diffractions become non-hyperbolic and the diffraction 
surface will deviate from the cone, and could become multivalued with caustics.  In that 
case, for 2D seismic data, a different 3D diffraction array is required for each spatial 
location in x, creating the 4D diffraction array as indicated in Figure A1.   

Additional complexity could be added to the diffraction array by using diffractions 
computed using wave propagation.  In that case, the inside of the “cone” with contain 
caustics, multiples, and wavelets.  It is these situations where practical use of the arrays 
may become viable.  
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