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Anelastic (poroviscoelastic ) medium – the SH – wave problem 

P.F. Daley 

ABSTRACT 
When considering the problem of extending seismic wave propagation in an elastic 

medium to a poroviscoelastic medium, replacing real quantities by complex equivalents 
has been the accepted way to proceed. Given the number of works dealing with, what 
could be called the inadequacy of this method of this approach, another line of reasoning 
might be in order. Starting with Biot’s equations for a poroviscoelastic medium, 
employing a simplification route, results in the  HS  (modified) potential related to the 
vector equation of motion. Biot’s theoretical development of wave propagation in a 
medium comprised of a fluid within a porous solid may be overly complicated for the 
pursuit of an alternate methodology for addressing this problem in its most basic form. 
As a consequence, the telegraph equation might be a more modest, yet informative 
analogue to consider, as it is a well studied problem from mathematical and physical 
perspectives. In what follows an HS potential wave equation is considered with 
attenuation introduced in a manner similar to that inherent in the telegraph equation. 
Additionally, the difficult situation (Krebes and Daley, 2007) will again be revisited, as it 
might be rationalized that a 1 – 2% modification of a real quantity such as velocity 
produces imperceptible effects in, say a reflection coefficient, while the same amount of 
perturbation introduced to make velocity a complex quantity results in significant 
dissimilarities between nearly similar initial input data. This is difficult to comprehend 
and seemingly at least as problematic to explain.  

INTRODUCTION 
It might be superfluous to begin with the phrase “In the recent literature the topic of 

wave propagation in poroviscoelastic media has received much attention.” as it has been 
an ongoing area of investigation for a number of decades. A series of papers by Morozov 
(2009a, 2009b, 2010, 2011) Morozov and Ma (2009) and others such as Lines et al. 
(2008), Ruud (2006) and Krebes and Daley (2007) have considered this problem.  There 
are a significant number of other relevant citations within all of the above including the 
standard texts of Aki and Richards (1980, 2002) and Carcione (2007). Some of the above 
will be specifically referred to here.  

As mentioned in the Abstract an analogy of the telegraph equation can be used to 
pursue a solution method. The reason for this is to not have to assume that the 
correspondence principle, Carcione (2007), is valid, which results it not having to require 
that in going from elastic to (poro)viscoelastic media does not require that real media 
parameters be replaced by complex valued equivalents. The telegraph equation is a 
problem encountered in almost all advanced undergraduate mathematical or 
mathematical physics texts. One of its forms for an infinite line is 
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This problem is often used as an example in presenting Laplace transform theory 

(Hildebrand,1962) and can be solved using the Laplace transform tables on pp. 1020-
1029 in Abramowitz and Stegun (1980). The two constants, andα γ  are composed of the 
quantities R – resistance , C – capacitance and L – inductance (all per unit length) which 
are real positive quantities and RC=α , LC=γ . As mentioned, a similar higher spatial 
dimension form of this equation type, specific to seismic wave propagation, may be 
obtained from Biot’s equations (Biot (1956a, 1956b, 1956c)2 for wave propagation in a 
poroviscoelastic medium for the HS potential wave equation, or equivalently the 
telegraph equation may be generalized to more spatial dimensions, as 
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with zero initial conditions 
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where ( ), tψ x  is the HS wave potential whose corresponding polarization vector is 
oriented perpendicular to the plane of incidence in what has been assumed to be a 
homogeneous medium. The quantity µ is Lamé’s rigidity parameter, ρ –– volume 
density and b – a dimensionally correct constant. In Biot’s theory, the quantity b  is 
defined as the mobility ratio in terms of real parameters as the mobility ratio 2b kφ η= , 
where porosityφ − , viscosityη −  and permeabilityk − . All of the preceding values are 
real and positive quantities. What has been assumed here is that only medium types that 
display attenuation visible on seismic records are those composed of a solid matrix with a 
fluid of any type occupying the porous part of the medium. This would exclude 
metamorphic formations such as a serpentine layer imbedded in a basalt structure, as 
there is little or no attenuation associated with this (in the strictest theoretical or 
geological sense).  

                                                 
1 Most often the boundary condition is given at some finite length   as ( ), 0

x
u x t

→
=


 (line open) and 

then let  →∞ . ( ), 0
x

du x t dx
→

=


 (line grounded). 
2 Frenkel, circa 1935, published a work in Russian on this topic that has subsequently been translated to 
English. This work has some inconsistencies. Most present day citations in this area of research refer to 
Biot. 
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PLANE WAVE THEORY 
It is probably useful to first consider a two dimensional plane wave solution for 

equation (3) of the form 

 ( ) [ ], , expx z t A i t i px i qzψ ω ω ω= − + + . (5) 

for some nonzero amplitude A . Introducing (5) into the source free form of (3) results in 

 ( ) ( ) ( )2 2 2 0i p i q i b i Aµ ω µ ω ω ρ ω + + − =  . (6) 

or as 0A ≠ , then 
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from which it follows that 
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Upon comparison of (8) with the vertical slowness defined in other works indicates 
that the dimensionless attenuation or quality factor Q is defined as Q bωρ= , and 

r ip p ip= + , with rp and ip being real positive quantities so that p is required to lie in the 
first quadrant of the complex planep − to satisfy radiation conditions. 

SH PLANE WAVE REFLECTION AND TRANSMISSION COEFFICIENTS 
Before considering the saddle point method related to this problem it is useful to begin 

with the plane wave reflection and transmission coefficients at an interface between two 
poroviscoelastic media. Consider two ( )1 and 2upper lower→ →  poroviscoelastic media 

separated by an interface in the ( ),x z  plane at 0z =  with z  chosen to be positive 

downwards. Media parameters are 2
k k kβ µ ρ= , kb , and kQ . The incident, reflected and 

transmitted plane waves may be written as 

                                                 
3 ω  is only here as a mathematical convenience in order to make the quantity dimensionless. If one starts 

from a finite difference solution ( ) 12tω −→ ∆ . Q must be determined empirically using other methods. 

However effective permeabilityk − and η − effective viscosity both may be frequency dependent.  
Usually the ratio b is taken as the frequency dependent parameter, if this type of dependence is wanted, or 
b bω→  so that Q bρ= . 
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With 11
SH

ref incA A R=   being the reflection coefficient and 12
SH

trn incA A R= the transmission 
coefficient the continuity of potential and potential shear stress at a plane interface 
between the two poroviscoelastic media using plane waves require that 

 11 12 1SH SHR R− = −  
 (10) 

and 

   
 11 1 1 12 2 2 1 1

SH SHR q R q qµ µ µ+ = . 
 (11) 

Defining D  to be 

 1 1 2 2D q qµ µ= +   
 (12) 

results in the expressions for the reflection and the transmission coefficients to be 
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As before, ( )0, 0r i r ip p ip p p= + ≥ ≥ . 

From the paper by Morozov (2011) the medium parameters for used here for SH  
reflection are similar to what was used in that paper for the acoustic wave case. As Q is 
infinite in the upper medium, this indicates that the upper medium is elastic. As a 
consequence, the values of 0p p= corresponding to plane wave incidence from medium 1 
for the range of incident angles ( )0 2θ π≤ ≤  is ( )0 10 p p≤ ≤ , where 1p  is located on 
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the real axisp − (Figure 1). The lower medium is assumed to be poroviscoelastic with the 
relation between the shear wave velocities in the two medium given by 1 2β β< . 

 

 
 
Fig. 1. This schematic shows the saddle point path for the zero – order saddle point approximation for the 
SH  wave equation for shear wave reflection from the plane interface between the two media. The 
parameter values in Table 1 indicate that the saddle point path should lie along the real axisp − . It has 
been moved slightly into the first quadrant for viewing convenience. 
 
 
 Shear Wave 

Velocity (km/s) 
    Density (gm/cm3)                  Q 

Upper (1) Medium              1.0               1.0                  ∞ 
Lower (2) Medium              2.0               1.2                 30/5 
 
Table 1. Medium parameters taken from Morozov (2011).  The upper medium is elastic. 
 

Two plots are presented for values of 30Q = and 5Q =  in medium 2 in Figures 2 and 
3. Each of these figures consists of an upper and lower panel. The upper panel contains 
the amplitude plotted against the real part of 0p  while the bottom panel is the phase 
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versus ( )0Re p . Both the poroviscoelastic coefficients and the reference elastic case 

( )1 2Q Q= = ∞  amplitudes and phases are shown in the figures. For completeness, the 
transmission coefficients for the two cases described in Table 1 are shown in Figures 4 
and 5. In all figures, the anelastic case is plotted in blue and the elastic case is in red. 
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Fig. 2. The 11
SHR  reflection coefficient at an interface between two medium. The upper (1) medium is 

elastic while the lower (2) medium is poroviscoelastic with Q2 = 30. Medium parameters are given in Table 
1.  
 

 

Fig. 3. The 11
SHR  reflection coefficient at an interface between two medium. The upper (1) medium is 

elastic while the lower (2) medium is poroviscoelastic with Q2 = 5. Medium parameters are given in Table 
1.  
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Fig. 4. The 12

SHR  transmission coefficient at an interface between two medium. The upper (1) medium is 
elastic while the lower (2) medium is poroviscoelastic with Q2 = 30. Medium parameters are given in Table 
1.  
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Fig. 5. The 12
SHR  transmssion coefficient at an interface between two medium. The upper (1) medium is 

elastic while the lower (2) medium is poroviscoelastic with Q2 = 5. Medium parameters are given in Table 
1. 
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BRANCH POINTS AND RIEMANN SHEETS – THE DIFFICULT CASE 
The parameter contrast at the interface between the two poroviscoelastic media 

for the difficult case is 2 1β β>  and 2 1>Q Q  where the incident/reflection (upper) 
medium is denoted as 1 and the medium of transmission (lower) as 2. As has been shown 
in many previous works on this problem, the location of the saddle point for all source 
receiver offsets ( )0 r≤ < ∞  lies along the straight line from the origin of the p – plane to 

the point 
1 2

1
1 1

1 1 ip
Qβ

 
= + 

 
. 

When considering a problem whose solution is in the complex plane or some part of it, 
care has to be taken when the solution approaches a singularity or discontinuity. As is the 
case when the solution space is the real axis, discontinuities in some quantity in the 
solution will produce a questionable solution. The question to be asked is probably: Is the 
discontinuity inherent in the quantity involved in the solution or is it reasonable to 
assume that the quantity is continuous over the total space of the solution? An example 
of this is crossing a branch cut. From the example in the previous section, it would appear 
no. In the cases presented there, where the upper (incident – 1) layer was not 
poroviscoelastic, the value of p  corresponding to all incident angles from 0 to 2π  are 
those real values of p lying along the real axisp − , ( )0 10 p p≤ ≤ . Box 6.2 in Aki and 
Richards (1980) gives a brief discussion of what appears next. Other references to this 
may be found in almost any 3rd or 4th year mathematics texts related to the theory of 
complex functional analysis.  

The complex valued radical 2q , defined in the complex planep − , may be written as 

   ( ) ( ) ( )
1 2 1 2 1 22 2

2 2 2 2q p p p p p p= − = + −
   

 (15) 
and has branch points at 2p p=  and 2p p= − . As only p  values in the upper right (first) 
quadrant are of interest in what is considered here, the branch point at 2p p= is of 
necessary concern. Before proceeding it should be noted that both branch points have 
related branch points at p = ±∞ in the upper and lower half planes (manifolds) of the 
complex planep − . Any path from 2p p= to some point at infinity may be taken as a 
branch cut. Here, a more specific requirement will be invoked: The branch cut from 

2p p=  to p = +∞  will coincide with the path defined by the relationship ( )2Im 0q = , 
which defines the branch cut associated with the branch point, 2p p= . 

It may be useful now to consider a reference function that is analytic and continuous in 
the first quadrant of the complex planep − : 
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Fig. 6. This schematic shows the saddle point path for the zero – order saddle point approximation for the 
SH  wave equation for shear wave reflection from the plane interface between the two media. The 

parameter values in Table 2 indicate that the saddle point path should lie along the line from the origin to 1p . 

This path requires that the branch cut associated with 2p p= be crossed. The radical 2q  is required to 

remain on the first Riemann sheet as a result of arguments presented in the text 
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2q  is the modulus of this generally complex quantity and 
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phase. Introduce the related functions 
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under the assumption that no other singularities are present in the vicinity of the existence 
of this function.  The 2π rotations are taken in a counterclockwise sense around the 
branch point at 2p p= and the first 3 m functions in the series are 

   

 

( )
( )
( )

2 2
2 20

2 2 2
2 21

2 2 4
2 22

i

i i

i i

q q e

q q e

q q e

φ

φ π

φ π

+

+

=

=

=

. 

 (18) 

With this it follows that the first 3 m functions associated with 2q  are 
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 (19) 

The above 3 equations are standard in complex variable analysis and possibly 
unnecessary to repeat here.  However, they do explain the fact that 2q  may be defined on 
two Riemann sheets in the upper right hand quadrant of the complex planep − . It may be 
further noticed that in the first quadrant the quantity 2q  may be forced to stay on the first 
sheet if the complex conjugate value of 2q  is used after crossing the branch cut, as 
pointed out in Krebes and Daley (2007). As 2

2q  is a continuous analytic function in the 
first quadrant of the complex planep − , it is reasonable, based on previous arguments to 
require that 2q  have similar properties.  
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Fig. 7. The real and imaginary values of the multivalued function ( )1 22 2
2 2q p p= − on the two possible 

Riemann sheets. For computational purposes sheet (b) where both real and imaginary parts of 2q  are 

continuous. Close examination of the individual figures reveals the position of the point 2p . 

 

 

 Shear Wave 
Velocity   (km/s) 

    Density (gm/cm3)                  Q 

Upper (1) Medium              1.0               1.0                 20 

Lower (2) Medium              2.0               1.2               30/50 

       

Table 2. Medium parameters for the difficult case, taken from Table 1.  The two models here are for Q2 = 
30 and 50 with Q1 = 20 for both.  
 
 All of this section may be written may be written more generally for the specific 
problem considered. Let ( ) ( )2 2

2h p p p= −  be an analytic, continuous function defined in 
the first quadrant of the complex p-plane . Let the definition of a related function be 

given as ( )( ) ( ) ( )11 2 2 2 2
2 2

n p qn
h p p p p p= − = − , where and,n p q  are integers and  

andp q  have no common divisors except unity. For this problem it will further assumed 
that and,n p q  are all positive. 
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Standard complex functions methods have  

  ( )( ) ( ) 11 2exp for a positive integer
nn i i Nh p h p N

n n
φ π = +  

. (20) 

Any source of ambiguity in the above equation, resulting in ( )( )1 n
h p  being a 

multivalued function is not due to the amplitude, ( ) 1 n
h p , but rather to the fact that there 

are infinitely many choices for the phase, with the principle value defined with phase 
[ ]exp i nφ and ( )( ) ( )( )1tan Im Reh p h pφ −  =   . 

What is required here is that ( )( )1 n
h p is also continuous in the first quadrant of 

the p-plane . Let ( )( )12
n

h p be the value of ( )( )1 n
h p at 2p . Construct a circle of finite size 

(radius - ε ) centered at 2p . It will be assumed that no other singularity of  ( )( )1 n
h p  lies 

within this circle. Choose another point on this circle at say ( ) ( )2ˆ ˆ, Re Rep p p p= > , so 

that the function value here is ( )( )1ˆ n
h p . Proceed along the circle in a counterclockwise 

direction until the point ( )( )1ˆ n
h p  is again reached. At this point ( )( )1ˆ n

h p will return to 

its initial value or it will not. If one keeps this process up, circling the point 2p  a total of 

N times, where the value of ( )( )1ˆ n
h p  returns to its original value, it may be said that in 

the limit as 0ε → , 2p  is a branch point of order ( )1N − . For the case being considered 

here ( )( ) ( )1 21 2 2 2
2h p p p= − ,  2N = . This may be observed in equation (19). 

Similar to the previous section, reflection and transmission coefficients will be 
presented for the model described in Table 2. Again the anelastic case is shown in blue 
and the elastic case in red. The reflection coefficients are shown in figures (8) and (9), 
with the related transmission coefficients given in figures (10) and (11). 
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Fig. 8. The 11

SHR  reflection coefficient at an interface between two medium. Both the upper (1) medium 
and the lower (2) media are anelastic with Q1 = 20 and Q2 = 50. Medium parameters are given in Table 2.  
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Fig. 9. The 11
SHR  reflection coefficient at an interface between two medium. Both the upper (1) medium 

and the lower (2) media are anelastic with Q1 = 20 and Q2 = 30. Medium parameters are given in Table 2.  
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Fig. 10. The 12
SHR transmssion coefficient at an interface between two anelastic media. The upper (1) 

medium has Q1 = 20 while in the lower (2) medium Q2 = 30. Medium parameters are given in Table 2. 
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Fig. 11. The 12

SHR  transmssion coefficient at an interface between two anelastic media. The upper (1) 
medium has Q1 = 20 while in the lower (2) medium Q2 = 5. Medium parameters are given in Table 2. 
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CONCLUSIONS 
A method for dealing with wave propagation in attenuating media was investigated 

using equations that originated with Biot and earlier with Frenkel. Using the theory 
presented by these authors the often used concept of complex velocities is eliminated, and 
the attenuation is achieved through the introduction of term specific to that physical 
phenomena. The writer of this has for many decades had difficulties with complex 
velocity, what its physical meaning was and how it was incorporated into theories based 
on equations defining wave propagation in an elastic media. There are hundreds, if not 
thousands, of papers in the literature based on the hypothesis of complex velocities. This 
report was not written to question the validity of these previous works, but rather to 
introduce an alternative that might be of use in specific situations. 
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