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More numerical experiments in high frequency edge diffraction 
theory 

P.F. Daley 

ABSTRACT 
Formulae related to the diffraction of seismic waves by linear edges in elastodynamic 

media, based on an extension of the high frequency, zero order Asymptotic Ray Theory 
(ART) formulation are presented. Theoretical aspects of the problem have been 
minimized, as these have been developed in numerous notable works. The intention here 
is to present the basic methodology for numerical implementation into synthetic 
seismogram software.  

Schematics indicating relevant details such as the shadow boundary and the boundary 
ray are have been included. The identification of the boundary ray is required as the 
argument of the diffraction coefficient is dependent on the angle between the shadow 
boundary ray and the diffracted ray or equivalently the difference between the diffracted 
and direct arrival times. The direct geometrical arrival does not exist in the shadow 
region and its travel time is required to determine the argument of the diffraction 
coefficient which is done within the context of analytic continuation and the 
aforementioned limits of minimal theoretical discussion. 

A basic problem is considered to give a brief overview of the theory of edge 
diffractions. The geometry of this problem involves a wedge embedded in a halfspace in 
a manner such that the plane of incidence is the ( ),r z plane and the wedge is such that its 
leading edge is perpendicular to this plane, i.e., parallel to the y axis. Both the source and 
receivers are located in the ( ),r z plane.  

INTRODUCTION 
The work of Klem-Musatov (1980) dealing with elastic waves diffracted by the linear 

edges of seismic interfaces, using an extension of zero order Asymptotic Ray Theory 
(ART) (Červený and Ravindra, 1970 and Červený, 2001, among others) was employed to 
obtain a high frequency approximation for elastodynamic waves diffracted by linear 
edges. The method presented uses modifications of ART incorporating the boundary 
layer method. This theory is applicable to a three dimensional case of rays, emanating 
from a point source, propagating in a geological model with homogeneous layers 
separated by curved interfaces. The Russian text by Klem-Musatov (1980), once 
relatively inaccessible may be found now in the English translation, Klem-Musatov 
(1995) as well as the translation of a more recent work, Klem-Musatov et al. (2007). A 
dissertation based on the original text (1980) is the topic of the Ph.D. thesis of Chan 
(1986), where many of the subjects contained in that book are discussed. The papers by 
Bakker (1990), Hron and Chan (1995) and Gallop and Hron (1997) pursue some aspects 
of the theory presented in the works of Klem-Musatov. The work of Bakker (1990) 
approaches the edge diffraction problem using a paraxial or Dynamic Ray Tracing (DRT) 
(Červený and Hron, 1980) approximation. Hron and Chan (1995) arrive at essentially the 
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same results using a more conventional ART modified by the inclusion of boundary layer 
theory. As stated above, it is the intent of this paper to engage in a minimal amount of 
theoretical development and employ previously derived formulae to introduce concepts in 
a form intended for numerical implementation. An extensive review of the literature 
would suggest for the purposes of this work the paper by Klem-Musatov and Aizenberg 
(1984) would be the most useful as the theory is presented in a compact and 
understandable manner.  

Formulae for use in the computation of numerical results would ideally be such that 
(a) they would allow for simple physical interpretation, (b) provide a practical means for 
the efficient calculation of the diffracted field and (c) in light of (b), also maintain a 
reasonable degree of accuracy when describing the diffracted wavefield. The ART 
approximation to the edge diffracted arrival consists of the zero order asymptotic 
expression for the incident wavefield at the diffractor, due to a point source, multiplied by 
what was termed a diffraction coefficient. The resulting diffracted wavefield was 
obtained by considering the diffractor as a secondary source of seismic energy and 
tracing its path to receivers in accordance with a modified form of Snell's Law and zero 
order ART. The theory may be referred to as 2.5D due to the fact that out of plane 
geometrical spreading is included. 

The accuracy of a method similar in development to the one described above was 
determined in the work of Chan (1986) where an approximate method for SH waves was 
compared with the highly numerically accurate results obtained by the Alekseev 
Mikhailenko method (AMM), a pseudo-spectral method (see for example, Mikhailenko, 
1985 and 1988). This same procedure was used to test the program of the ART type 
results presented here and in use for several decades.  

The problem considered here will be defined in the next section along with some 
comments and a restatement of the final formulae required for computation of the 
diffracted wavefield due to an edge diffractor will be given.  

The model that will be considered in the next section is shown in Figure 1 consisting 
of a wedge that is infinite in the y  direction with ray propagation constrained to the 
( ),r z  plane. The receivers in both geometries are along a vertical receiver profile. 
Another model of a similar type will be introduced when computing numerical results. 

THEORY 

Consider a three dimensional Cartesian coordinate system ( ), ,r y z , in an isotropic 
homogeneous elastic halfspace 0z >  with an explosive point source of compressional 
( )P  waves located at the origin, (Figure 1). An infinite wedge is assumed to be located at 
a depth zD  below the surface, occupying the three dimensional space 

D D(  ,  0 , ).z z r r y≤ < ∞ ≤ ≤ −∞ < < ∞  Receivers are placed in a vertical array in the 

( ),r z  plane containing the source. The direct ray from the source to the receiver, the ray 

transmitted through the wedge and the diffracted P wave from the edge at ( ),r z= D DD  
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are the only arrivals considered in the resulting synthetic seismograms. The 
compressional ( )P  wave velocities in the half plane, 1α , and in the wedge strip, 2α , are 
chosen such that 2 1α α> . 

 

Fig 1. Geometry of Model 1 for a point source and a vertical array of receivers. The wedge (dark gray) 
occupies the 3D  space (  ,  0 , ).z z r r y≤ < ∞ ≤ ≤ −∞ < < ∞D D The point of edge diffraction is in the 

( ),r z  plane at ( )r zD,D  Ray propagation is assumed to lie in this plane. The shadow region SΩ  (light 

gray) for the direct ray is defined by the boundary ray. The direct arrivals at a vertical receiver, ( )M z , such 

that ( )z z z≤ ≤T B  are seen on the synthetic traces. The diffracted arrival appears at all depths. 

When considering diffraction from the wedge there are two regions to be considered in 
the ( ),r z  plane, the illuminated ( )IΩ  and the shadow ( )SΩ  regions (Figure 1). The 
illuminated and shadow regions are separated from one another by what is termed the 
"boundary ray". In the uncomplicated situation being considered here the direct arrival 
only appears on the synthetic traces in the illuminated regions, the transmitted ray is 
present only in the shadow region, while the diffracted arrival exists at the receivers in 
both regions. 

The Fourier time transformed vector particle displacement of due to a compressional 
wave generated by a point source at the origin and recorded at the vertical receiver array 
may be written in terms of the zero order ART approximation as 
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 ( ) ( )
( ) ( ), expG G

G
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i

L
ω Π

ω ωτ=   U r r e
r

 (1) 

where the subscript " "G  (geometrical) indicates either the direct or transmitted P  
arrival, r  is the generally three dimensional position vector of some point in the 
halfspace that may, when convenient, be denoted as M , ω  is the circular frequency, 

( )Gτ r  ( )G Mτ    is the travel time along the ray from the source to a point r  in the 

vertical receiver array. The quantity ( )GL r  ( )GL M    is the three dimensional geometric 
spreading of the ray between the source and the point r  which for the direct arrival is 
given by 

 ( ) 1 22
GL M r z = + 

2
MM . (2) 

and the direct ray arrival time may be written as 

 ( )
1 22 2

1
G

r z
Mτ

α

 + = M M . (3) 

The term Π  in equation (1) is the product of all reflection and transmission 
coefficients encountered along the geometrical ray from source to receiver. In the direct 
ray case, 1Π = , as it does not interact with any interface. The unit vector e  is a vector 
which partitions the incident particle displacement at a receiver into its constituent 
vertical and horizontal components. ( )F ω  is the Fourier time transform of the band 

limited source wavelet, ( )f t , t  being time. A spherically symmetric radiation pattern of 
the source function is assumed.  

The particle displacement of the ray transmitted through the wedge is formally given 
as 

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( ), expT T T
G G GT

G

F
i

L
ω Π

ω ωτ =  U r r e
r

 (4) 

where Π  is the product of the two PP  transmission coefficients, at the top of the wedge, 
into the wedge and from the wedge flank back into the halfspace. The geometrical 
spreading for this ray is of the form (Červený and Ravindra, 1970) 

 ( ) ( ) 1 2 3

1 1 1 1
T
G R R RL

 
= + + 
 r

. (5) 

The related travel time is  
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 ( ) ( ) 31 2

1 2 1

T
G

RR Rτ
α α α

= + +r  (6) 

where the lengths ( )1,2,3iR i =  are defined in Figure 1. It is of note that in the limit as 

2 0R → , the transmitted arrival tends to the boundary ray. 

The travel time of the diffracted arrival from source to receiver consists of two parts; 
the time it takes the ray to travel form the source to the diffraction edge in the ( ),r z  

plane at ( ),r zD D  plus the time taken for the ray to progress from the diffraction point 

( )D to the receiver at M. This infers that a diffracted arrival generally has a different ray 
parameter (horizontal component of the slowness vector) on either side of the edge 
diffraction point.  

From observations of field data and numerical results obtained from numerical 
modeling with finite difference methods a number of attributes of edge diffracted arrivals 
may be realized; (a). the diffracted wavefield is frequency dependent and (b). angular 
dependent measured at some unit distance about the diffraction point on the diffracting 
edge and (c). the point on the diffracting edge appears to act as a secondary source. A 
pseudo solution may be written in terms of the reflected arrival at some distance about 
the point D , which amounts to multiplying the reflected arrival at the point D  by some 
function, ( ),I ω ψ  yet to be determined. This function is assumed to be a frequency 

( )ω and angular ( )ψ  dependent in the ( ),r z  plane. Based on empirical observations, the 
particle displacement of the diffracted arrival may be written as 

 ( ) ( ) ( )
( ) ( ),

,  exp .
F I

i
L

ω ω ψ Π
ω ωτ =  U r r e

r D
D

D  (7) 

 

The three dimensional geometrical spreading ( ) ( )L L M=rD D  is the sum of the 
spreading from the source to the point of diffraction plus the addition of the spreading 
from this point to M . 

Another Cartesian coordinate system, ( ),u v , whose origin is at D , together with a 

related polar coordinate system, ( ),ρ ψ  are convenient to be introduced. Here, ψ  is 
positive/negative in the shadow/illuminated regions which are defined by the boundary 
ray. The quantity Mρ  is the distance from the point of diffraction at D  to the 
observation point M  fully defined by the additional coordinate, Mψ  within the context 
of the Cartesian system ( ),u v , (Figure 1). 
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Fig. 2.  Geometry of Model 2 for a point source and a vertical array of receivers. The insert shows the 
introduction of a boundary ray where one apparently does not exist. 

 

 

 

 

 

 

With the above Cartesian and polar coordinate systems definitions, the function 
( ),I ω ψ  will be replaced in Equation (4) by a more general related function, 

( ) ( )( )W with , , ,M Mž ž ž wω ω ρ ψ= , termed the diffraction coefficient.  
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The diffraction coefficient requires the solution of a Cauchy type integral which leads 
to what in diffraction theory has come to be known as the Sochotskiy-Plemel1 problem 
(Rektorys, 1969).. The text by (Rektorys, 1969) deals with this in possibly the most 
rigorous manner of all the works of complex variable theory that could be mentioned. 
This coefficient is derived in several of the previously cited works, with varying degrees 
of complexity to which interested readers are referred, as its inclusion here would 
introduce unnecessary length and be redundant. 

The diffracted waveP −  vector particle displacement at the point M has the form 

 ( ) ( ) ( )
( ) ( )W

 ,  exp
F ž

M i M
L M
ω Π

ω ωτ =  U eD D
D

.  (8) 

The geometrical spreading ( )L MD  and travel time ( )MτD  of the diffracted waveP −  
arrival may be written as 

 ( ) 1/ 22 2
ML M z r ρ = + + D D D  (9) 

and 

 ( )
1/22 2

1 1

Mz r
M

ρ
τ

α α

 + = +D D
D , (10) 

respectively. In addition, ( ), Mž ž wω=  and ( ), ,M M Mw w ω ρ ψ= , with ω  being the 
circular frequency and 

 ( ) ( )2 4W , with 2ž iž e erfc iž ž e wπ ω−= ± − =  (11) 

with the " "−  and " "+  signs associated respectively with the illuminated and shadow 
regions, and ( )W ž  is the scaled complementary error function. For small values of  ž  

 ( ) ( ) ( ) 1W W 0 , W 0
2

ižž
ω

≈ + =  (12) 

and the asymptotic expansion of ( )W ž  for large values of ž , ( )arg < 3 4ž π  is 

                                                 
 (1)  Gabor wavelet: ( ) ( ) ( )2

0 0sin 2 exp 2f t f t f tπ π γ= −    where γ  is a dimensionless damping that 

controls the amplitude spectrum width in the frequency domain and the side lobes of the wavelet in the 
time domain. 
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Fig. 3. Analytic continuation of the geometrical wavefield into the shadow region to obtain some simulated 
measure of the geometrical arrival time in this region. A more complete discussion may be found in 
Appendix A. 

 

 

 

  

 ( ) ( )4 4W( ) i 2  =i i
Rž e w eπ ππ π πω τ τ≈ −D , (13) 

indicating that the amplitude of the diffracted arrival is of the order ( )1O ω  for large 

values of the argument of ž . The meaning of the quantity w  is found by studying the 
works dealing with solution method for edge diffracted waves and is defined as 
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( ) ( )( )

( )
2

1

2( ). illuminated zone

2( ). 1 cos shadow zoneM
M

Ga M M
w

b

ω τ τ
π

ρω ψ
π α

 − −=    − −   

D
 (14) 

Equation (14.b) for 2w  results from the fact that at points along the vertical receiver array 
no direct arrival exists in the shadow zone. Equation (14.b) was obtained using analytic 
continuation. Appendix A contains a discussion of its derivation in a simplified manner 
avoiding excessive mathematical rigor. For anyone deciding to pursue work in this area a 
Cauchy type integral problem known as the Sochotskiy-Plemel integral (Rectorys, 1969) 
should be given more than cursory consideration. Figure 3 depicts schematically the 
discussion presented in Appendix A. As before, the compressional wave velocity in the 
halfspace, except for the wedge, is 1α . 

NUMERICAL RESULTS 
Parameters defining the the geological model used in this report are given in Table 1. 

Additional quantities required for model definition are the distance from the surface to 
the tops of the wedges, 400h m= , the horizontal distance from the source location to the 
points of diffraction, 1000r m=D  and the horizontal distance from the source to the 
points the boundary ray in. These together with a time scale and a brief description of 
what is shown in a given figure appear on all of the synthetic seismograms. A Gabor 
wavelet(1) is used when producing the synthetic traces. The function ( )W ž  is a standard 
function available in most mathematical libraries such as IMSL, where it is denoted as 
ZERFE (Gautschi, 1979a and 1979b). 

Schematic of the two model used are given in Figures 1 and 2 where additional 
information may be found in the caption. The synthetic seismograms presented include 
both the vertical and horizontal components of displacement along the vertical line of 
receivers composed of an elastic halfspace with an embedded wedge. To keep matters 
simple only the direct and diffracted arrival are shown in the synthetics. The transmitted 
arrival through the wedge or reflected arrival from the flank of the wedge is not included. 

Figures 4 through 7 are associated with Models 1 and 2 described in Table 1 and 
display the vertical and horizontal components of particle displacement. There are 3 
panels in each of the Figures 4 – 7 showing: (a). the direct arrival, (b). the diffracted 
arrival and (c). the combination of the two.  

CONCLUSIONS 
Simple geological models have been used for the investigation of some of the basic 

concepts of diffraction theory in elastic media were presented. This was done within the 
framework of asymptotic ray theory (ART) and certain extensions thereof. ART produces 
results equivalent to those derived using the high frequency geometrical optics solution 
method and it has been shown in previous numerical experiments to be reasonably 
accurate when compared to “exact” methods. The models were designed to investigate 
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properties of edge diffraction from a 3D wedge. The introduction of the boundary ray for 
different geometries and ray types were considered. This ray is such that it defines the 
illuminated and shadow zones for the reflected arrival. The diffracted ray exists in both 
regions while the reflected ray exists only in the illuminated region. The formulae for the 
edge diffracted arrival were obtained from other works cited in the Introduction. The 
smooth transition of the diffracted arrival across the boundary ray from one region to 
another was taken as an indication that the formulae being used satisfied at least that 
constraint. Comparison of the modified ART solution for this problem has been checked 
for more complex media using finite difference and related methods and as such has not 
been included here. The diffraction coefficient is a function of the difference of the 
diffracted and direct travel times. As the direct arrival does not exist in the shadow zone 
it was necessary to introduce the concept of analytic continuation to provide an 
appropriate value for this quantity. What has been presented here is not a definitive 
source of all theory that is required for the introduction of edge diffracted arrivals into 
synthetic traces for complex structures, but rather a simple introduction to the topic to 
provide a basis for the numerical implementation of diffraction theory. The presentation 
here, based on more theoretically complete works, was only for the purpose of providing 
a foundation for the numerical implementation of diffraction theory into ART type 
software. 
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 P Velocity (km/s) S Velocity (km/s) Density 
(gm/cm3) 

Wedges I & II      2.50/1.60       1.44/0.92 2.20/1.50 
Halfspace          2.00           1.15     1.80 

 
 
 

APPENDIX A 

Assume a point source of compressional ( )P  waves located at the origin of an 
isotropic 3 dimensional Cartesian half space in which there is embedded a wedge of 
infinite dimensions in the y  direction (Figure 3). At a time after an impulsive excitation 
of the point source the direct wavefront will have progressed to the define the wavefront 
surface at Gτ  and the diffracted wavefront, defined by τD , begins at the time the direct 
arrival reaches D , the point of diffraction (Figure X). The ray associated with the point 
source at the origin which is such that it passes some small distance : 0ε ε →  front the 
point D and denoted BR  will be called the boundary ray. This ray separates the 
illuminated zone ( )IΩ  from the shadow ( )SΩ  zone for the direct wavefront which 
originates from a point source at some arbitrary origin, O . 

In the region of the boundary ray, where 0ψ = , ( ) ( )
0 0D GM M

ψ ψ
τ τ

= =
   =     and from 

simple geometrical considerations ( ) ( )
0 0

0D GM M

ψ ψ

τ τ
ψ ψ

= =

   ∂ ∂
= =   ∂ ∂   

 so that a Taylor 

series expansion of ( )G Mτ  in this region in the variable ψ  is of the form 

Table 1. Elastic parameters for Models I and II. 
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( ) ( ) ( )

( ) ( ) ( )

2
2

20
0

2
2

2 0
0

1 or
2

1
2

D
D

D
D

G

G

M
M M

M
M M

ψ
ψ

ψ
ψ

τ
τ τ ψ

ψ

τ
ψ τ τ

ψ

=
=

≈
≈

 ∂
= +  ∂ 

 ∂  ≈ −   ∂ 

. (A.2) 

The above approximation for the second derivative of Dτ  with respect to ψ  is inherent in 
the solution of the Sochotskiy-Plemel problem (Rectorys, 1969) for the determination of 
the diffraction coefficient. 

In the shadow zone the direct geometrical arrival does not exist even though its travel 
time in this region is required to determine the argument of the diffraction coefficient, 

( )W ž , where  

 4 = 
2

iž e wπ ω  (A.1) 

and w  is defined (tentatively) by the relation 

 ( ) ( )( )2 2
Gw M Mω τ τ

π
 = −  D . (A.2) 

In the shadow region the travel time of the geometrical arrival to the point M  must be 
determined by analytic continuation of ( )0G Mτ  from the shadow/illuminated boundary 

into the shadow region. As TS  is the tangent plane to ( )0G Mτ  on the boundary ray BR  

it may be interpreted as the local representation of ( )0G Mτ  there, which is to say that 
from the view point of seismic energy partitioning due to encounters of the ray with 
interfaces it is identical to a seismic plane wave at that point. From a mathematical point 
of view the analytic continuation of the travel time along the plane representation of the 
wave front TS  requires that the travel time is the same along the plane wave front as it is 
at 0M . The same argument may be used to infer that the amplitude along the plane wave 
front TS  must also be the same as its value at 0M . 

Using the coordinate system ( ),ρ ψ  defined in the text which is centered at the 

diffraction point D, assuming that all rays are constrained to lie in the ( ),r z  plane of the 

( ), ,r y z  Cartesian system initially assumed here, the travel time of the direct geometrical 

arrival on the seismic boundary ray BR , is ( )0G Mτ  and as a result of the preceding 
argument 
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 ( ) ( )0 where TG GM M M Sτ τ= ∈ . (A.3) 

If 1τ  is the time taken for the direct geometrical arrival to travel from the point source to 
the edge diffraction point D , then it may be seen from Figure 3 that 

 ( ) 1 MMτ τ ρ α= +D  (A.4) 

and 

 ( ) 1 cosM MG Mτ τ ρ ψ α= +  (A.5) 

where α  was defined in the text as the P  wave velocity in the half space. Substituting 
equations (A.4) and (A.5) into (A.2) the quantity ž expressed in terms of w  may be 
obtained from 

 ( ) ( )( ) ( )2 2 2 1 cosM
G Mw M Mω ω ρτ τ ψ

π π α
     = − = −         

D . (A.6) 
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Fig. 4.  Radial component of displacements of the (a). diffracted, (b). direct and (c). combined arrivals, for 
Model I with receivers located at the model surface. 
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Fig. 4. Vertical component of displacements of the (a). diffracted, (b). direct and (c). combined arrivals, for Model I 
with receivers located at the model surface. 
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Fig. 6.  Radial component of displacements of the (a). diffracted, (b). direct and (c). combined arrivals, for 
Model II with receivers located at the model surface. 
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Fig. 7.  Vertical component of displacements of the (a). diffracted, (b). direct and (c). combined arrivals, for 
Model II with receivers located at the model surface. 
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