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ABSTRACT 

Elastic Full Waveform Inversion (FWI) is an iterative method that simultaneously uses 
traveltime and amplitude of the seismic data to recover subsurface elastic properties. To 
date, despite the advancements in mathematical aspects of FWI, this method has not 
found much application in commercial seismic data processing, mainly because of its 
computation cost. Conventional elastic FWI methods require a depth imaging algorithm 
for forward modeling (e.g., Finite Difference Time Domain (FDTD)) and a depth 
migration for the inversion (e.g., Reverse Time Migration (RTM)).  

Our aim is to propose a revised “standard strategy” for the inversion of elastic 
properties from the linearized reflected elastic waves. We use the direct relationship 
between the scattering potential of the Born approximation with the reflectivity function 
of the asymptotic Kirchhoff approximation. To estimate the gradient function of 
algorithm, we implemented the direct inversion strategy of Beylkin and Burridge (1990) 
to obtain an iterative well-known standard AVO inversion. Both of the forward and 
inverse operators use prestack time imaging methods that map the migrated P-to-S 
traveltime to P-to-P traveltime. We obtain two registered volumes in a pseudo-depth 
eliminating the need of ray tracing for registration issues. For complex structures, one can 
add ray tracing to the algorithm.  

INTRODUCTION 

Seismic waveforms contain traveltime and amplitude information of a scattered 
wavefield that can be used to determine physical properties of the subsurface.  
Perturbation theory (e.g., Cohen and Bleistein, 1979, Beylkin, 1985, Bleistein et al. 1985) 
plays an important mathematical role in studying and understanding the scattered waves. 
In essence, it finds the relationship between the difference between recorded wavefield 
and a modelled wavefield, called the data residual, and the difference between their 
elastic properties, called perturbed model. Once the relationship is established, it 
performs the inversion of the perturbation from data residuals. In order to find a unique 
solution of the perturbed model, this method requires that the perturbed model be small. 
The inverted perturbed model is added to the initial background model to approximate 
the true solution.   

In the framework of perturbation theory, several studies have linearized the nonlinear 
acoustic wave equation by Born approximation (e.g., Morse and Feshbach, 1953) for the 
direct inversion of elastic properties. For example, Cohen and Bleistein (1979) used the 
Born approximation for direct velocity inversion of a migrated section (poststack data). 
Clayton and Stolt (1981) used Born and WKBJ approximations of prestack F-K 
migration (Stolt, 1978) for the direct inversion of density and bulk modulus. Beylkin 
(1985) presented a mathematical framework for migration/inversion of acoustic waves. 
His Born approximation forward problem was modified by Bleistein (1986) by including 
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the Kirchhoff approximation the ray-theoretic reflection coefficient of Bleistein (1984). 
Bleistein (1986) showed that the amplitude of his inversion is the same as the angle-
dependent geometric-optic reflection coefficient. Parson (1986) assumed that output of 
Bleistein’s (1986) inversion is equivalent to the linearized reflection coefficient of Aki 
and Richard (1980) and showed the direct inversion of the relative change of elastic 
properties with a P-to-P survey. A major problem with a direct inversion method is that 
the inversion operators require reasonable a priori knowledge of the medium to produce 
accurate results (Tarantola 1984a). This creates a need to iteratively update the inversion 
operators from the results of the previous steps.  

Several authors addressed the iterative approach by the technique of nonlinear least 
squares (mostly 2l  norm) for the inverse problem. In an acoustic Born approximation, 
Tarantola (1984) and later LeBras and Clayton (1988) showed that the inverse problem 
for linearized reflection data (e.g., multiple-free) can be solved using iterative classical 
Kirchhoff migration and forward modeling. Tarantola (1984b) provided an inversion 
strategy by iterative use of consistent migration and forward modeling. He did not specify 
the exact type of forward modeling and migration, but he showed that the inversion of a 
nonlinear acoustic (full) wavefield can be done using Reverse Time Migration (RTM) 
and two-way acoustic modeling. Similar strategies were later presented for inversion of 
the elastic two-way wave approximation (Tarantola, 1984c, Tarantola, 1986 and Mora, 
1988). Gauthier el. al (1986) applied the numerical method of Tarantola (1984b) by 
FDTD operators on a synthetic data set. The procedure of FWI by FDTD operators has 
been in the subject of much research; unfortunately, for nearly three decades, FWI-based 
FDTD has had a computational time burden that prevented its “standard” application.  

Besides FDTD, there were attempts to improve computational efficiency by 
implementing cheaper numerical schemes for forward modeling and migrations. Beydoun 
and Mendez (1989) and Jin et al., (1990) combined ray tracing and the Born 
approximation amplitude radiation patterns of elastic waves for the multi-parameter 
inversion of elastic properties. The technique was then improved by Thierry et al. (1999) 
and Lambare et al. (2003) in terms of computational costs and resolution. Operto et al., 
(2003) applied the method to a synthetic  3D survey on an SEG/EAGE overthrust 
acoustic model for velocity inversion.  

 In this study, we first describe the mathematics of the forward problem and the 
conventional inversion scheme which is based on the Born approximation (e.g., Beylkin 
and Burridge, 1990, Tarantola 1984a, Tarantola (1986) and Mora, 1988). We then 
propose the implementation of prestack time Kirchhoff-based methods for both the 
forward problem and inversion of linearized elastic reflection data. The framework of the 
inversion is similar to that of conventional FWI. The main difference is that we use the 
asymptotic Kirchhoff approximation. Hence, the perturbation of the model from data 
residual is found by the direct relationships between the scattering potential of the Born 
approximation with the linearized Zoeppritz approximation of Aki and Richards (1980). 
These relationships already have been derived by several authors; we apply them as 
suitable approximations for our problem. For more details on derivations, the reader is 
referred to Beylkin and Burridge (1985), Jaramillo and Bleistein (1999), Kroode (2013) 
and Shaw and Sen (2004).  
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In the Kirchhoff-based approach (Bleistein,1987), the migrated data residuals produce 
residual reflectivity functions when the migration operators use true amplitudes (e.g., 
accurate weight functions) and also remove the source signatures. In the form of steepest 
descent inversion, the integration of the residual reflectivity on the vectors perpendicular 
to the reflectors (e.g., normal rays) produces a scaled gradient of elastic properties which 
is then used in the frame of conventional FWI for updating the initial model. The 
approach is a multi-parameter elastic inversion scheme that is applicable to all types of 
reflected wavefields such as P-P, P-S, S-S and S-P; however, we only show the results of 
the inversion of P- and S- wave velocity from the P-P and P-S wavefields respectably.  

 The techniques required for conditioning the data are explained using a field data 
example. The nature of the technique is intended to be a self-updating iterative scheme. 
For inversion of the synthetic data (with the amplitudes under the control of modeling 
and migration), we can expect the algorithm to automatically converge to the true model. 
Field data typically have a lower SNR compared with the synthetic data. In this case, the 
challenge of SNR is controlled using the calibration of the amplitude and phase of the 
migrated true data with the modelled data obtained from well log information. So, instead 
of a self-updating procedure, at each step, a visual panel is created to determine the step 
length. 

FORWARD PROBLEM FOR SCATTERED ELASTIC WAVEFORM  

Consider an isotropic medium as shown in Figure (1), with true elastic properties 
( , , )true true true trueM λ μ ρ , that can be decomposed into an initial model 0 0 0 0( , , )M λ μ ρ  and a 

perturbation ( , , )M λ μ ρΔ Δ Δ Δ . The components of ( , , )true true true trueM λ μ ρ  are given by   
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where ( )xρ  is density, and ( )xλ and ( )xμ  are Lame`s parameters as defined by Aki and 
Richards, (1980). The subscript `true` refers to the true model to be found, the subscript 
`0` refers to the initial model to be updated. Initially it has the low frequency component 
of the true model and is assumed to be close to the true model. The variable x  is the 
subsurface coordinate. The terms ρΔ , λΔ  and μΔ  are the perturbations of the elastic 
properties which contain the higher frequencies of the true model, and in our problem are 
assumed to generate the perturbation of the total scattered elastic wavefield ( , )U s xΔ  
from the medium. The variable s  is the source location. It is assumed that the traveltime 
of the wavefield traveling through the initial model is close to the true model. Using the 
Born approximation, Beylkin and Burridge (1990) derived the single scattered wavefield 
components of the P-P wave ( ), ,PP

jkU s r tΔ , the mode converted P-S wave ( ), ,PS
jkU s r tΔ , 

S-P wave ( ), ,SP
jkU s r tΔ and the S-S wave ( ), ,SS

jkU s r tΔ  using a high frequency (ray based) 

approximation solution of wave equation. The total scattered wavefield is given by 
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 ( ) ( ) ( ) ( ) ( ), , , , , , , , , , ,PP PS SP SS
jk jk jk jk jkU s r t U s r t U s r t U s r t U s r tΔ Δ Δ Δ Δ= + + +  (2) 

where the subscripts jk  are the displacement in the k − direction due to a point force in 
the j − direction at point s .  

 
FIG. 1:  Adaptation of Beylkin and Burridge’s (1990) elastic Born approximation to the 

Kirchhoff approximation. In the Kirchhoff approximation, the elastic model parameters are thought 
to be independently decomposed to a homogenous model 0M  and the perturbed model MΔ  
across the interface.  

In 3D models, jkUΔ  consists of  9 components which are the result of combination of  

a 3-component acquisition source with 3-component receivers.  These 9-component are 
the resultant of 36-component wavefield combination on the right side of equation (2). 
Although the inversion approach presented here is applicable to all wavefields in 
equation (2), due to the low SNR of the amplitude information observed in the field data 
and the acquisition source type deployed, in this study the wavefields ( ), ,SP

jkU s r tΔ  and 

( ), ,SS
jkU s r tΔ  have been ignored. In addition for analysing P-to-P and P-to-S data with an 

18- component resultant wavefield, we consider two configuration of the vertical 
component source for vertical (for P-to-P wavefield) and radial components (for P-to-S 
wavefield). The term ( ), ,PP

jkU s r tΔ is defined by  

 ( ) ( )2, , ,PP PP P P P P
jk t j kU s r t S A A t dxΔ δ φ φ= −∂ − −  (3) 

and the term  ( ), ,PS
jkU s r tΔ  is defined by  

 ( ) ( )2, , ,PS PS P S PS P S
jk t j kl lD

U s r t S A A t dxΔ β δ φ φ= −∂ − −  (4) 

where the factor β  is the polarization unit vector of the shear wavefield that reaches to 
the surface (Figure 1).  

The derived angle-dependent scattering potentials PPS  and PSS  of Beylkin and Burridge 
(1990) are in terms of Lame’s constants shown in equation (1) and are given by  
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As shown in Figure (1), the angles PPθ  and PSθ are defined by PP i Pθ θ θ= + and 

ps i sθ θ φ= + , where the terms iθ , Pθ  and Sθ are the incident and reflected P- and S- 
waves angles, respectively. For an isotropic model, one can change the variables of the 
scattering potentials (5) and (6) to the perturbation of P-wave velocity Pv  and S- velocity 

Sv  by combining  Snell’s law with the differential operator Δ  in the following 

relationships,  

 2 2( 2 ),P Sv vλ ρ ρΔ = Δ −  (7) 

 2( ),Svμ ρΔ = Δ  (8) 
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where /S Pk v v= . (See e.g., Mora, 1987 and Jin et al., 1992) 

The source signatures are absent here, but in practice appropriate phase corrections 
and deconvolution schemes can be employed to remove the effects of the source. 
Available well log information can assist in removing the source signatures and aid in 
enhancing the true amplitude terms ( PA and SA ) by calibration of the forward models 
with the true data. More details about these steps are provided in our numerical field data 
example. 

THE INVERSE PROBLEM FOR A SCATTERED ELASTIC WAVEFIELD  

The forward problem (3) and (4) can be written in a more compact notation as 
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 pp pp
jkU f MΔ = Δ  (11) 

and  

 ps ps
jkU f MΔ = Δ  (12) 

where f  is the corresponding forward operator. Beylkin and Burridge (1990) derived the 

adjoint operator *f for the direct inversion of scattering potential PPS  and PSS  by 
considering the forward operator f  of the integral function in the equations  (11) and 
(12) as a generalized Radon formula (see e.g., equations 5.6 and 5.16 of Baylkin and 
Burridge, 1990). In principle, the result of direct inversion can be enhanced if the forward 
modeling and inversion of the Born approximation formulations of  (11) and (12) are 
adapted in an iterative scheme. The iterative approach uses a generalized 2l  norm to 
minimize an objective function J defined by 

 
2
,ijJ UΔ=  (13) 

where, ijUΔ  is the scattered field defined in equations (11) and (12). The inverse problem 

typically uses a steepest descent algorithm with the following steps:  

 ( ),T
k k

J
F U

M
γ Δ∂= − =

∂
 (14) 

 ,k k kMΔ α γ=  (15) 

and  

 1 ,k k kM M MΔ+ = +  (16) 

with kγ  and kα  being the gradient function and step length to minimize (13). The 

operator F is the derivative of f at the point M  (i.e.,
f

F
M

∂=
∂

) which satisfies the 

linearized forward problem defined by 

 0 0( ) ( ) .f M M f M F M+ Δ ≈ + Δ  (17) 

Note that the small perturbation of the model parameters facilitates the linearization of 
the forward problem using a Taylor series expansion. In seismic problems, the nonlinear 
inversion algorithms of the scattered wavefield include two common steps: 

1. Forward modeling, to minimize the norm of data residuals or the missing 
diffracted field UΔ  (i.e, ( )U f MΔ = Δ ). 

2. Inversion, using migration operator on the data residuals. (i.e., *( )F Uγ = Δ ).  

Equations (3) and (4) for f and *F  describes the first order Born approximation of the 
isotropic homogenous elastic wave equation. In the time domain, to include higher order 
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terms to this approximation, one may implement two wave equation operators such as 
FDTD and RTM for f  and *F  respectively. Although Tarantola (1984) did not specify 

the types of f and *F , most authors used FDTD and RTM, and a few authors used ray 

based approaches for designing f or *F (or both of them). The use of ray tracing 

alleviated the computational costs for f and *F  compared to time-stepping methods; 
however, both of the above steps are still computationally expensive if the operators use 
depth imaging algorithms. To date, this has been one of the major obstacles for the 
method to be applicable commercially.     

SOLUTION OF THE INVERSE PROBLEM USING THE KIRCHOFF 
APPROXIMATION  

Our approach further reduces the computational time for the iterative scheme of (13) 
to (16), but with the operators for both f and *F  being conventional PSTM. We show 

that for both of the f and *F operators the Born approximation is replaced by Kirchhoff 
approximation, as they are asymptotically similar with a smooth error. Detailed 
mathematical proofs of this similarity are discussed by Beylkin and Burridge (1990), 
Jaramillo and Bleistein (1999), Shaw and Sen (2004) and Kroode (2012); we will not 
repeat them here. The main difference between the Born and Kirchhoff approximations is 
in the shape of the scattering and reflectivity function. The scattering potentials PPS and 

PSS  of the Born approximation are derived from perturbation of the elastic properties 
MΔ  that has Heaviside-type singularity. If the singularity of MΔ  is defined by a delta 

function in a coordinate orthogonal to the reflector ( )R xγ , we have  

 ( ) ( ) ( ),RM x M x x
n

γ∂ Δ = Δ  (18) 

which after replacing in equations (3) and (4) transforms to the surface integral in the 
Kirchhoff approximation from the Born approximation.  

Ursin and Tygel (1997) provides a more physical interpretation of the Kirchhoff 
surface scattering integral by applying the divergence theorem to the Born scattering 
volume integral. As shown in Figure (2), they define a surface   along which the 
medium M varies steeply (e.g., same as in equation  (18)). So, the gradient of surface   
is parallel to the gradient direction of M . Now, instead of equation (1) (i.e., 

0trueM M M= + Δ ) we have 

 { 0

0

,

,
,M M above

true M M below
M

−

+
+Δ 
+Δ 

=  (19) 

where 0M is a function in D , and MΔ  are smooth functions (perturbations) above and 

below  , respectably. As shown in Figure (2), if the integration domain be divided into 

two upper and lower hemispherical volumes D+ and D− respectably, such that
D D D− += +  , then we can decompose the total volume integrals of equations 3 or 4 over 
D  to two volume integrals over D− and D+  
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 ( ) ( ) ( ) .i i i

D D D
U S x e dx S x e dx S x e dxωφ ωφ ωφ

− +
Δ = = +    (20) 

 The asymptotic approximation of Bleistein (1984, equation 2.8.2) for the Fourier integral 
shows how to decompose a volume integral into a surface  over D∂  and a volume 
integral over D  as  

 2 2

1 . ( ) ( ) ( )
( ) ( ) . .

( ) ( )
i i i

D D D

n x S x x
U S x e dx S x e d e dx

i x x
ωφ ωφ ωφφ φσ

ω φ φ∂

  ∇ ∇ Δ = = − ∇   
∇ ∇    

    (21) 

For the case of volume integral, the supporting scattering is inside the volume, and 
because of Sommerfield radiation conditions the contribution of the integration over the 
surface D∂  is small compared to the total volume D . For the volumes D− and D+ this 
scenario is different; surface integrals are dominant contributors. This is because the 
surface   (which is the main contributor to both region integrals) belongs to the surface 

D−∂ and D+∂ . For the rest of D−∂ and D+∂  the Sommerfield radiation condition applies 
and we have 
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∇=
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Now from I I I− += +  and using the definition of ( )S x (e.g., see Beylkin and Burridge 
1990) we have 

 
00

( ) ( )( ) ( )
( ) [ ] ,

( ) ( )
ijkl ijkl r s s r

ik j l k i
ijkl

c x c xx x
S x p p h h

x c x

ρ ρ δ
ρ

+ −+ − Δ − ΔΔ − Δ= +
Δ

 (24) 

where rp and sp are slowness vectors for the reflected (scattered) and incident 

wavefields, respectively. The terms rh and sh  are polarization vectors for the reflected 
(scattered) and incident from source wavefield respectively. The Einstein summation 
convention is used here. 

We emphasize that equation (24) is a general description of reflectivity (scattering 
potential) for various types of waves. Coupling the definition of the stiffness ijklc  for the 

type of model (e.g., elastic, anisotropic, poroelastic, etc), the slowness as well as the 
polarization vectors of the incident and reflected waves have been the basis for modeling 
and inversion of the wavefields. We refer the reader to the work of Shaw and Sen (2004) 
for examples of setting up the problem for isotropic and anisotropic models.   

In addition, equation (24) describes the main difference between the results of Born 
approximation modeling and inversion. As previously stated the radiation patterns of 
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scattering potential is step-like while the radiation pattern of Kirchhoff approximation is 
spike-like resulting from singularities over the surface   (i.e., steep gradient of elastic 
properties).  

                     

                              a)                                                                  b) 

FIG. 2: The relationship between the Born approximation (volume integral) and the Kirchhoff 
approximation (surface integral). Adapted from Bleistein et al. (2001). 

For the iterative scheme of equations (13) to (16), we use a standard Kirchhoff 
approximation with Zoeppritz reflectivity functions (Aki and Richards, 1980) for forward 
modeling and migration operators. Note that the Zoeppritz reflectivity functions of P-to-P 
and P-to-S waves; PPR and PSR  are related to equations (9) and (10) by ( Shaw and Sen, 
2004 and Ursin and Tygel , 1997)  
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The missing diffracted field in equations (3) and (4) can be approximated by PPR and PSR
and the angle-dependent weight functions of (25) and (26).  Equations (25) and (26) show 
that the final output of the inversion scheme by PSDM Kirchhoff operators should give 
similar result to the use of the Born 2l  ray-based methods (Beydoun and Mendez; 1989). 
For smoothly varying elastic properties, we successfully reduced the computational cost 
of the ray tracing operators for both f and *F  by traveltime approximation techniques of 
PSTM. 

In practical schemes of using Kirchhoff operators, the optimum weight functions K  
can be assigned to account for several amplitude factors such as attenuation, reflection, 
transmission and geometrical spreading factor.  
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NUMERICAL IMPLEMENTATION FOR GRADIENT ESTIMATION 

Figure (3) shows a geology model where the elastic properties vary differently in 
depth. The source and receivers are on the surface. The migrated shot record 
demonstrates the different radiation patterns and reflectivity of scattered P-to-P and P-to-
S wavefields.  For all individual shot records, each scatter point response is migrated to 
its P-to-P time (See Figure 4). By gathering all migrated shot data, we are able to sort all 
individual scatter point responses to form a common image gather. Since the algorithm is 
based on the common traveltime of scatter points, the traveltime acts as a pseudo-depth 
and removes the need for ray tracing. For complex structures one may add the ray tracing 
to the algorithm.  

 
FIG. 3: Geological model having changes in elastic properties at three different depths. The unit 
for density is 3/kg m . 

The multiparameter gradient function is obtained in a similar way to conventional 
AVO inversion. For each scatter point, two systems of equations are formed for P-to-P 
(to solve for three unknowns PvΔ , SvΔ  and ρ ) and for P-to-S (to solve for two unknowns 

SvΔ  and ρ ). An example of this operator at 0.75 s is shown in Figure (5). It shows that 

the operator for the inversion is dependent on the knowledge of the velocity field at far 
offsets. In addition, note the similarity of inversion operators of  PvΔ  and ρΔ  for P-to-P 

wavefield and SvΔ  and ρΔ  for smaller angle of incident. This creates deficiency in rank 

of inversion matrix. For this problem, we need to identify the density field in the real data 
to enhance the gradient functions.  

The inversion of P-to-P and P-to-S data can be done separately or simultaneously; 
however, simultaneous inversion is more stable because the results can be combined and 
compared with well log data. Note that the our term “simultaneous inversion” refers to 
the traveltime; it is different from other authors’s terminology, which assumes a 
relationships between Pv , sv and ρ  to reduce equations (29) and (30) to two equations 

and two unknowns. Examples of their strategy varies from Garner’s relationship (Smith 
and Gidlow; 1987, Stewart, 1990) or a constant Pv  to sv  ratio. Without loss of generality, 

we can implement them in the frame of FWI for gradient calculations. 
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FIG. 4: Radiation patterns and reflectivity of a scattered wavefield recorded at surface. The model 
is shown in Figure (3) and the offset corresponds to the source position. a) The vertical 
component of a shot record of P-to-P data. b) The horizontal component of a shot record of P-to-
S data c) The migration of (a) with true amplitude correction d) The migration of (b) with true 
amplitude correction.  

 
FIG. 5: A sample scatter point: the angle-dependent matrix operator coefficient (linearized AVO 
matrix) based on Aki and Richard (1980) for: a) P-to-P radiated waves b) P-to-S radiated waves. 
Note that the legend shows that dotted lines are initial models. 
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DESCRIPTION OF THE INVERSION PROCESS  

To demonstrate a our form of FWI technique we use a simple numerical model. Figure 
(6) show a numerical estimation of the reflectivity of P-to-P and P-to-S data from a single 
shot in a 1-D geological model that has an upper horizontal layer with 3000pv =  m/s,

1500sv =  m/s and 2000ρ =  kg/m3 and a lower horizontal layer that has 4000pv =  m/s,

2000sv =  m/s and 2300ρ = kg/m3. For demonstration purposes let us assume that the 

final output of the migration is a delta function with the amplitude of the reflectivity. 
Figures (6a & 6c) show the migrated data residual between the true data reflectivity of 
the P-to-P and P-to-S waves ( true

ppR  and true
psR ) located at the true depth truez (or true time 

trueτ ) and the modeled reflectivity m
ppR  and m

psR  located at initial depth mz  (or initial time 
mτ ). The angle-dependent elastic parameters for calculation of the data residual from the 

Zoeppritz equations can be written as  

 m m mI ( ) ( ') ( ) ( ') ( ) ( ') ( ) ( '),residual true
pp pp pp p pp s ppz R z z R v z z R v z z R z zδ Δ δ Δ δ Δρ δ= − − − − − − − (27) 

which is defined for P-to-P waves. In the shot record, for normal incident P-waves, the 
contribution of svΔ  is neglected. Similarly, for the P-S wave at an arbitrary non-normal 

angle of incidence 20θ = ° we have  

 m mI ( ) ( ') ( ) ( ') ( ) ( '),residual true
ps ps ps s psz R z z R v z z R z zδ Δ δ Δρ δ= − − − − −  (28) 

where for  Rps
m, the reflectivity has been scaled to a non-normal angle of incidence ( 

20psθ °= ). An integration of the data residual (Figure 6b & 6d) is equivalent to the 
gradient function of equation (14) for all parameters 

 ( , , ) ( ) ( ) ( ) I ( ) ,pp residual
p s p s ppM v v v z v z z z dnΔ ρ Δ Δ Δρ α= + + =   (29) 

and  

 ( , ) ( ) ( ) I ( ) ,ps residual
s s psM v v z z z dnΔ ρ Δ Δρ α= + =   (30) 

where for a flat reflector n  is the z  (or τ ) direction. Note that z  and τ are 
interchangeable using depth-to-time (or time-to-depth) conversion techniques (e.g., 
Hubral, 1997). The normal ray n  for the horizontal reflectors are in the direction of the 
time τ or depth z . Equations (29) and (30) show that if the images inside the integration 
are defined in τ  (e.g., PSTM outputs), then the MΔ and 0M can be defined in τ . This 

means that during the inversion process with equations  (21), (22), (25) and (26), there is 
no need to transform the model to the depth z . Kirchhoff approximation provides the 
opportunity to estimate the gradient function for different elastic properties. 
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FIG. 6: A numerical example of FWI and the contribution of elastic properties to the gradient 
calculation. a) The true amplitude migrated P-to-P data residual after removal of the source 
signature (assuming full band reflectivity is a spike).  b) Integration of Figure (6a) to give the 
gradient function of P-to-P data. c) The true amplitude migrated P-to-S data residual after 
removal of the source signature (assuming full band reflectivity is a spike).  d) Integration of 
Figure (6c) to give the gradient function of P-S data.   

THE EFFECTS OF DATA NOISE AND BANDLIMITATION ON FWI 

Figure (7) demonstrates the effects of low SNR and limitation if frequency bands of 
the signal; two common problems found in real data. The blue graph in Figure (7a) is a 
data residual signal to be added to the noise shown by the green line. The integration of 
the noisy residual is shown by the dotted black line. Tarantola (1984) suggested using 
appropriate smoothing operators to improve the inversion result. For our available real 
field P-to-S data that has low SNR, we migrated all the data and used visual comparisons 
to determine step length. Further discussion on this issue is found in our field data 
example. We also note that the reflectivity functions of field data are band-limited. The 
band-limited reflectivity functions produce artefacts in the inversion. The lack of zero 
frequency causes the integral output of equations (29) and (30) not to produce an accurate 
gradient function, which should be a perfect step function as in Figures (7b). For more 
examples of artefacts of band limitation, the reader is referred to Bleistein et al. (2001) , 
Innanen (2011) and Kroode ( 2013).  
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                                                a)                                         b) 

FIG. 7: Numerical considerations of FWI. a) The influence of random noise on the gradient 
function. b) The influence of band limitation (low cut 5Hz filtered data residual) on the gradient 
function. Note that the ideal gradient function is expected to be similar to the gradient in (a).  

 

THE INITIAL MODEL AND DATA CONDITIONING 

As in the inversion strategy proposed by Tarantola (1986), we can first invert for the 
more contributing model M parameters such as pvΔ  and svΔ , then invert for ρΔ . The 

starting pv  and sv  can be obtained by conventional velocity analysis such as prestack 

migration gathers or available well log information. The updated model is used to update 
the forward modeling operator f and its adjoint operators f ∗  to improve the traveltime in 
each step. This is done using the relationship between the updated interval velocity to 
RMS velocity (Dix, 1955). The data conditioning of the full wavefield examples were 
studied by several authors (e.g., Sears et al., 2008 and Warner et. al., 2013).  However, in 
time imaging techniques, the procedure of waveform inversion is slightly different 
because it is based on the linearization of seismic reflection data (primary reflection 
data). Therefore, in real field data we will have to eliminate noise and preserve true 
amplitude in order to minimize the objective function defined by equation (13). Noise in 
this case is any signal that is not a reflected wave and is not included in the forward 
modeling. Examples of noise are multiples, surface waves, surface related noise, and 
dead traces. The effects of the source wavelet should be removed from data residuals by 
appropriate deconvolution methods prior to calculating the gradient function. As 
previously stated improvements in the bandwidth of the signal can improve gradient 
functions. 
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SYNTHETIC NUMERICAL EXAMPLE  

As shown in Figure (8), a synthetic numerical model from an available well log from 
NEBC (Figure 8a) is created. The Kirchhoff operators for the forward modeling produced 
a single shot record, with a maximum of 4000m offset in split spread configuration with a 
receiver spacing of 12.5m. A minimum phase wavelet with a dominant frequency of 45 
Hz was arbitrarily chosen. For demonstration purpose we assume that a priori 
information is available by smoothing the true model to construct G  for inversion. 
Making use of the radiation pattern of scatter points shown in Figure (8), two least 
squares engines are implemented in each step for P-to-P and P-to-S data. This leads to 
convergence using 2l  norm convergence criterion after a few iterations. Figure (9) 
compares the differentiated true model (convolved with wavelet and scaled) with the 
inverted reflectivity. As shown in Figures (7 & 8), our control on the traveltime and 
amplitude of synthetic waves means there is no difficulty getting high correlation match 
of modeled and observed data 2l  norm as well as a high convergence rate toward true 
model.     

 
FIG. 8: Radiation patterns and reflectivity of scattered wavefield. The algorithm is same as Figure 
(4) but the model is obtained from a real well log data. a) Well log data. b) The vertical component 
of shot record of P-to-P data c) The horizontal component of shot record of P-to-S data 
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FIG. 9: Radiation patterns of scattered wavefield on prestack gathers. c) the migration of real part 
of Figure (8b). d) The migration of real part of Figure (8c). b) The migration of imaginary part of 
Figure (8b). d) The migration of imaginary part of Figure (8c).  

 
                               a)                                      b)                                     c) 
FIG. 10: Synthetic model multiparameter inversion. a) Inverted P-wave velocity. b) inverted S-
wave velocity. c) Inverted density. Corresponding well log data are plotted as dotted lines. To 
perform a comparison the well data is differentiated and convolved with a suitable wavelet.  
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A FIELD DATA EXAMPLE: VELOCITY INVERSION (NEBC) 

We chose 51 shot records that were acquired by Nexen Energy ULC in the Northeast 
British Columbia (NEBC) region of Canada. The receiver spacing is 10 m and the source 
spacing is 60 m.  The source type was Vibroseis used vertical vibration mode. The 
sample rate was 4 ms and the grid lateral spacing for the inversion is 12.5 m. The 
maximum offset for P-to-P and P-to-S data are arbitrarily chosen to be 1000 m and 1500 
m, respectively. The vertical and radial components of the 3C geophones were employed 
and are assumed to contain predominantly P-to-P and P-to-S waves, respectively. For the 
limitation of offset on our data we could not reconstruct reliable density, so we aim to 
invert for Pv  from P-to-P and Sv  from P-to-S data.  

Well log information in the study area is shown in Figure 8a. To obtain the true 
amplitude of P-to-P data, transmission loss and spherical divergence are considered in the 
forward modeling. Attenuation compensation (Kjartansson, 1979) with Q=80 for 
shallower events (0-0.7 s) and Q=120 for deeper (0.7-1.5 s) was applied to the data 
(Figure 8b). For the P-S data, attenuation compensation with Q=45 for shallow (0-1 s) 
and Q=80 for deeper events (1-2 s) was applied. Spherical divergence (Miao et al., 2005) 
and transmission loss compensation have been applied on P-to-S forward modeling 
shown in Figure 11. 

 To perform quality assurance on the forward operator, the results of forward 
modeling of all shots are migrated and then compared with the migrated section of real 
data (see Figures 11-12). Higher amplitude compensation at the time 1.0τ =  s in Figure 
12d is due to the attenuation (Q ) logarithmic factor applied to field shot records to be 
calibrated to the modeled data in Figure 12c.  

Given the low SNR of the field data, we can visually compare the migrated residuals 
to find an optimum α . This means that for the purpose of quality assurance the objective 

function (13) is coupled with 
2

MΔ such that  

 
2 2

min .J U M= Δ + Δ  (31) 

Equation (31) is the objective function of Tarantola (1984); however, a slight 
difference is that the term MΔ , essentially a step function, was obtained by the 
integration of a spike-like migrated reflectivity function. Here, to overcome the problem 
of numerical convergence of the equation (31), the band-limited spike-like reflectivity is 
used for visual comparison, as it is easier to identify (see e.g., Figure (7b) or Bleistein et 
al., 2001).  

The inversion result of P-wave and S-wave velocity is shown in Figures (13). The 
initial velocity for inversion was obtained using a linearization of the well log as shown 
in Figure (14).  The migration algorithm was not efficient for shallow reflectors, so we 
inverted data for reflectors deeper than 0.5 s on the vertical component (assumed to be P-
to-P dominant) and 0.3 s for radial component (P-to-S dominant). The lack of low 
frequency contents of seismic data prevented the integration of reflectivity function to 
produce an ideal step like gradient function. Consequently, as shown by the color scale in 
the Figure 13, we display the inversion result only within the range of 2000 to 6000 m/s 
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for the P- wave and 1000 to 2200 m/s for the S- wave velocity inversion. However, the 
lateral variation of the resulting inversions shows good correlation with the well log data. 

To improve the inversion result, the low frequency components of the well log added 
to the gradient function in order to update the velocity. As shown in Figure (14), the final 
inversion result showed good correlation with well log information. 

 
                                a)                         b)                          c)                          d) 
FIG. 11: Comparison of PSTM mapped in P-to-P time. a) Migrated field P-P data b) Migrated 
modeled P-P data c) migrated modeled P-S data d) migrated field P-S data. 

 
                                     a)                         b)                  c)                    d) 
FIG. 12: Comparison of migration results at a control well. a) Migrated field P-to-P data b) 
Migrated modeled P-to-P data c) migrated modeled P-to-S data d) migrated field P-to-S data. 
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FIG. 13: P-to-P and P-to-S iterative waveform inversion a) P-wave velocity inverted from the 1-5 
Hz frequency band of P-to-P data. b) S-wave velocity inverted from 1-5 Hz P-to-S data. c) Same 
as (a) but the frequency range is 1-15 Hz. d) Same as (b) but the frequency range is 1-15 Hz. 

 
 a)                                                                                b) 

FIG. 14: Inversion results at a control well. a) P- wave velocity, b) S- wave velocity compared with 
sonic well log (solid blue curve). Low frequency of the well log is added to the gradient function. 
Initial model is shown as green dotted line.   
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FIELD DATA EXAMPLE: SHEAR VELOCITY INVERSION FROM SH-to-SH 
WAVEFIELDS   

In addition to recording vertical and radial data using a vertical Vibroseis source, we 
also recorded horizontal data using a Vibroseis source in horizontal mode. As shown in 
Figure (15), a conventional velocity analysis have been done byforming S-to-S wavefeild 
CSP gather (Bancroft, 1998). As shown in Figure (16a), this approach can provide the 
low frequency component of the shear wave velocity. Low SNR prevented an accurate 
picking of the events.  

In Figure (16), we show a Band Limited Impedance (BLIMP) inversion (Ferguson and 
Margrave, 1996) of poststack SH-to-SH migrated section. The BLIMP algorithm adds the 
low frequency of a well log to the integrated reflectivity of the poststack section. The 
similarity of BLIMP with FWI can be thought of as the first step of the FWI algorithm 
with the initial velocity being constant. The constant velocity makes the data residual to 
be equivalent to true data (i.e., 0vΔ = ). The result of inversion can be optimized by 
adjusting the range of well log frequencies be added to the integrated trace. Similarly, in 
FWI the initial model is a smoothed version of true model implying that the reflectivity 
of initial model is small compared to true model. Therefore, one can take advantage of 
the BLIMP methodology to estimate the gradient function by including low frequency of 
well data. In contrast the FWI has the advantage of forward modeling to scale the 
gradient toward the true model. 

As shown in Figure (16), after 1.5 s (SH-to-SH time) the inversion gives more 
correlation with well log data and sv  inversion from P-to-S data. Accurate deconvolution, 

true amplitude and phase corrections could enhance the result of inversion.    

 
FIG. 15: Shear velocity analysis. a) Sample CSP gather for conventional velocity analysis. b) 
Hyperbolic semblance of (a). The black line indicates the RMS velocity obtained from well log c) 
The migration of the SH-to-SH data. The vertical black line shows the location of CSP gather. 
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FIG. 16: Shear velocity inversion. (a) The picked velocity from semblance of CSP gathers. b) One 
step inversion of SH-to-SH wavefield using the poststack inversion (Fergusen and Margrave 
1998). The shear velocity is assumed to be the dominant contributor of the reflectivity. As shown 
in Figure (15a), the level of SNR is low, so we were not able to successfully iterate the inversion 
for more accurate result. 

FIELD DATA EXAMPLE: DENSITY FIELD DETERMINATION WITH LIMITED 
OFFSET DATA (NEBC) 

The inversion for density is a difficult task and usually requires high angle of incident 
to be able to distinguish between the effects of velocity and density (see e.g., Figure 5) on 
the data. Another problem is that the variation of density of the models is smaller than the 
variation of velocity. Fortunately, the method of FWI has the capability to perform 
forward modeling. So we can decompose the total linearized wavefield into velocity field 
and density field as shown in equation (29) and (30). Figure (17a) shows a synthetic data 
computed from the available velocity and density. Figure (17b) obtained by the same 
parameters of Figure (17a) except the density is set to be constant. Figure (17c) is the 
difference between Figure (17a) and Figure (17b) or the same as the density field. Once 
the density field is obtained we can assign them to the real data. Figure (18a) shows the 
migrated real data. Figure (18b) and Figure (18c) are the migration of the modeled total 
wavefield field and velocity field respectively (as obtained in Figure 17). Figure (18d) is 
the estimated density field which gives the trend of density field in the real data. From 
Figure (18), we obtained the velocity and the density field in Figure (19a) and Figure 
(19b) which improve the gradient calculation in FWI procedure.  

Obviously, noise is present in the real data, which prevents a prefect reconstruction of 
the wavesfield. It is a common sense that the implementation of human judgment (e.g., 
manual picking and editing) improves the recovered fields.    
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                               a)                                       b)                                    c) 
FIG. 17: Strategy for estimation of density field in prestack data. a)The total wavefield modeled 
from a well control is decomposed into b) the velocity field, and c) the density field. 

 
FIG. 18: Density field estimation strategy. a) An inline migrated section from a real 3D data. b) 
The migrated section of the modelled data obtained from (a). c) Velocity field of (b). d) Density 
field of (b). Note that the lateral extension of the field data is compressed.   
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FIG. 19: Linearized FWI gradient calculation with the density in Figure (18). a) Estimated 
reflectivity from the velocity field. b) Estimated reflectivity from a density. 

CONCLUSIONS 

We proposed an efficient algorithm for multiparameter inversion of the elastic 
properties in the frame of Full Waveform Inversion (FWI). For reducing the 
computational costs, we demonstrated that the linearized solution of the seismic 
reflection inverse problem can be obtained using standard Prestack Time Migration 
(PSTM) and corresponding forward modeling in an iterative scheme. We showed that we 
can use the linearized Zoeppritz solvers for amplitudes radiation pattern of scatter points 
and Double Square Root (DSR) equation for traveltime consideration of P-to-P and P-to-
S data during the waveform inversion. We showed that gradient function of objective 
function can be obtained by the well-known AVO inversion schemes. The method is 
practical for real data applications since all engines of the inversion are known to be 
applicable for standard methods. We showed examples of the inversion of real data using 
the waveform characteristics of P-to-P and P-to-S data. Without the loss of generality, the 
approach is adaptable for different combination of modes such as P-to-P, P-to-S, S-to-S 
and S-to-P, and for different mediums such as anisotropic, anelastic, poroelastic and 
viscoelastic. Implementing Kirchhoff based methods for higher order Born scattering 
data (multiples) and 3D data are being investigated and will be the subject of another 
paper. 
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