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Why seismic-to-well ties are difficult 

Gary F. Margrave 

SUMMARY 

Tying seismic data to well control is a crucial step in seismic inversion and 
interpretation.  This is where key ambiguities that prevent the interpretation of a seismic 
image as bandlimited reflectivity are resolved.  Reflectivity can be calculated directly 
from suitable well logs while the estimation of reflectivity from seismic data requires the 
unambiguous determination of the seismic wavelet and the removal of the same.  
However, due to the unavoidable presence of anelastic attenuation, the very notion of a 
single seismic wavelet is not robust.  Instead, constant-Q theory predicts that the source 
waveform evolves continuously as it propagates in the subsurface.  It progressively loses 
frequency content and undergoes continual phase changes.  This evolution means that 
each reflecting structure in the subsurface is illuminated by a unique waveform.  The use 
of stationary (standard) deconvolution methods leads to a trace with unbalanced 
amplitude, in both time and frequency, and time-variant residual phase.  Attempts to 
remedy this by time-variant balancing leads to a trace that can, at best, be tied to a well in 
a local time zone but which has misties above and below that zone.  Nonstationary 
deconvolution or inverse Q filtering can potentially address these effects but the former 
relies on a statistical reflectivity model while the latter requires knowledge of Q.  The 
theoretical advantage of inverse Q filtering over nonstationary deconvolution largely 
vanishes with the presence of even small noise levels.  Processes that successfully 
address nonstationarity must also be data adaptive to successfully deal with noise.  Well 
tying can be improved by using deconvolution algorithms and well-tying methodologies 
that are consistent with constant-Q theory. 

INTRODUCTION 

Tying seismic data to wells is meant to ensure that that the seismic data lives up to its 
promise of being a robust estimate of bandlimited reflectivity.  Reflectivity can be 
calculated directly in a well from suitable well logs (usually sonic and density logs) so 
well tying seeks to use the well information to “calibrate” the seismic estimate.  Since 
data processing is designed to estimate reflectivity, one might hope that well-tying would 
happen automatically with modern algorithms. However, this is not generally observed to 
be the case and it is the thesis of this paper that failure to adequately address anelastic 
attenuation is a first-order culprit.  The commonly assumed convolutional model, which 
is the basis for most seismic deconvolution algorithms, is invalidated by the presence of 
attenuation.  No matter the physical mechanism for attenuation, or whether it is intrinsic 
or extrinsic, as long as the attenuation is both time and frequency dependent then the 
convolutional model is not valid. This is because the wavelet evolves as it propagates, 
progressively losing high frequencies and undergoing phase rotations. The convolutional 
model assumes translational invariance meaning that the wavelet does not evolve and 
that an identical wavelet is incident on all reflectors.  Data processing has recognized this 
in limited ways that are adequate for zone-of-interest interpretation but cause problems 
for larger scale inversions.  For example, it can be argued that in a sufficiently limited 
time zone the convolutional model is approximately valid, and that deconvolution can 
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estimate a reasonable wavelet.  However, it will be shown here that above and below that 
design window the deconvolution becomes increasingly erroneous. Similar arguments 
hold for the wavelet estimations made during well tying.  At best they are valid locally 
and become increasingly erroneous with increasing displacement from the analysis 
window. 

Methods used for well tying vary but often follow empirical rules and techniques. 
White (1980) gives a spectral coherence matching formula for the estimation of a 
matching wavelet.  While theoretically valid if the convolutional model is assumed, more 
approximate approaches are common.  Usually a 1D synthetic seismogram is constructed 
from the well information but the well logs may first be altered by “stretching and 
squeezing”.  The synthetic seismogram is normally a simple convolutional one where the 
wavelet amplitude spectrum is that required to match the seismic data (i.e. the amplitude 
spectrum of the seismic divided by that of the well reflectivity) and the phase is initially 
zero.  Then a “phase rotation” is determined by scanning through all possible constant 
phase rotations to find that which minimizes the L2 norm of the difference between a 
seismic trace at the well and the synthetic.  Usually this process is done in a very limited 
time window dictated by the length of available logs. 

Possible objections to the standard process are many, including (1) the log information 
may be of doubtful quality or the 6 inch borehole measurements may not represent the 
wider stratigraphy, (2) the available well logs may be very short, (3) matching is usually 
done to primary reflectivity and there may be multiples present in the seismic data, (4) 
the sonic log may have been through an interpretive stretch-squeeze process, (5) simple 
phase scanning may be insufficient to model the actual wavelet, (6) when multiple wells 
are available, different wavelets are often obtained from each, (7) the character tie 
between synthetic and data may be ambiguous (especially a problem with long logs) (8) 
the extracted wavelet may have doubtful validity above and below the estimation window 
(due to attenuation).  This report will mainly be concerned with the last point.   

A PERFECT CASE WITH DOUBTFUL PHYSICAL VALIDITY 

As mentioned previously, the convolutional model is the basis for the most common 
deconvolution algorithms as well as most well-tie procedures, so this is an appropriate 
place to start.  As used in practice, the convolutional mode posits a relationship between 
the reflectivity function ( )r t , the seismic wavelet ( )w t , and the seismic trace ( )s t  of 

the form 

 ( ) ( ) ( ) ( )s t w t r t n t= • +  (1) 

where ( )n t  is noise.  Strictly speaking, this is not derivable from the wave equation, 

rather, Green’s theorem says 

 ( ) ( ) ( ) ( )s t w t I t n t= • +  (2) 

where ( )I t  is the earth’s impulse response.  The difference between ( )I t  and ( )r t  is 

very significant for this discussion.  The former is the full response of the earth system to 
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an impulsive source and includes all physical effects of wave propagation such as 
wavefront spreading, reflection, transmission, multiples, attenuation, and anything else 
conceivable.  On the other hand, ( )r t  is simply a time series whose amplitudes represent 

the reflection coefficients of subsurface structures.  In order to assert that equation 1 
models a seismic trace, we must claim that data processing has corrected for all of these 
physical effects and somehow converted ( )I t  into ( )r t .  This is a tall order and is 

almost certainly achieved with considerable uncertainty. 

With that preamble, consider figure 1 which shows a trace formed by the 
convolutional model (without noise) in both the time and frequency domains.  In the time 
domain we see that the dominant frequency of the wavelet is essentially found at all times 
in the seismogram meaning that there is no frequency decay.  In the frequency domain we 
see that the spectral shape of the wavelet is imposed on the seismogram, essentially 
because the reflectivity spectrum is white (i.e. flat).  This is the case that is expected by 
standard deconvolution and is succeeds very well as is shown in Figure 2.  The maximum 
crosscorrelation coefficient between the reflectivity and the deconvolved trace is 0.89 and 
this occurs at a lag of -.02 samples.  Such a nearly perfect result is never seen in practice 
and makes well-tying essentially trivial.  If noise is added, the result becomes slightly less 
trivial with the final reflectivity estimate being bandlimited by a wavelet with some 
residual phase.  Any of the standard well-tying procedures would deal with this quite 
easily. 

I will not spend time here describing the algorithmic details of stationary 
deconvolution but a relevant discussion is found in Margrave et al (2011).  However, it is 
important to realize that the methods used here fall into the class known as blind 
deconvolution, meaning that the wavelet to be deconvolved is unknown and must be 
estimated from the data itself.  This estimation procedure involves assumptions about 
both the reflectivity and the wavelet and never gives a perfect result.  It is the main reason 
that the maximum crosscorrelation is not 1.0 in Figure 2. 

 
Figure 1: A trace formed by the convolutional model of equation 1 is shown in a) the time domain 
and b) the frequency domain (amplitude spectra). 

The problem with this example is that the trace model is not very realistic and does not 
adequately predict the behaviour of real seismic data under deconvolution.  In reality, 
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standard data processing does not adequately address the fundamental nonstationarity of 
seismic data.  Here I use the term nonstationary to refer to physical processes that cause 
data variation in both time and frequency.  Simpler nonstationary processes that are time 
variant but not frequency variant, such as wavefront spreading, are well handled by 
standard methods.  The essential sources of time-frequency nonstationarity are 
attenuation and short-path multiples.  As first argued by O’Doherty and Ansty (1971), 
short-path multiples cause a nonstationary filtering effect that is essentially 
indistinguishable from anelastic attenuation and has come to be called stratigraphic 
filtering.  In this paper, I will consider anelastic attenuation and stratigraphic filtering to 
produce a single combined effect that can be modelled by the theory of constant Q 
(Kjartansson, 1979). 

 
Figure 2)  The result of spiking (stationary) deconvolution on the trace of Figure 1.  As can be 
seen, the estimate of reflectivity is very nearly an exact match to the actual reflectivity. 

A NONSTATIONARY TRACE MODEL 

The convolutional model has been generalized to nonstationarity by Margrave and 
Lamoureux (2001) and Margrave et al. (2011).  This model is most easily described for 
discrete signals using nonstationary convolution matrices called Q matrices and which 
are described in more detail by Margrave (2013).  Figure 3 depicts a trace construction by 
the nonstationary convolutional model.  This model can be expressed mathematically as 

 
0 Q

s W W r=  3 

where s  and r  are column vectors representing the seismic trace and reflectivity 

respectively, 
0

W  is a stationary convolution matrix constructed from the source 
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signature, 0w , and 
Q

W  is a nonstationary convolution matrix that applies the constant-Q 

impulse response.  
Q

W  is called the Q matrix while 
0

W  is the source convolution matrix.  

Each column of 
Q

W  contains the impulse response of the constant-Q process for the 

particular traveltime of the column.  Figure 3 only shows the matrix product 
0 Q

W W  

while Figure 4 shows the individual matrices.  It is apparent that 
0

W  has the Toeplitz 

symmetry (or translation invariance) that is so essential in the convolutional model.  This 
symmetry is destroyed by 

Q
W  which describes the time-frequency decay of the Q 

process.  

The traces resulting from the stationary trace model of equation 1 and the 
nonstationary model of equation 3 are compared in Figure 5.  Since the source wavelet 
and the reflectivity were identical for this construction, all the differences are caused by 
the Q matrix.  At early times, the effects of nonstationarity are not large but they build 
progressively as time increases.  The loss of both amplitude and frequency content is 
clearly apparent such that the traces are very different at later times.  Here the stationary 
and nonstationary models agree at early times.  However, it is possible to build a 
convolutional model that agrees with the nonstationary model in any small time window 
but they will disagree dramatically outside this window. 

 
Figure 3: Depiction of the nonstationary convolutional model of equation 3.  The matrix product 

0 Q
W W  is shown as a single matrix here and as individual matrices in Figure 4. 
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Figure 4:  The individual matrices that compose the product 

0 Q
W W  in the nonstationary 

convolutional model of equation 3.  
0

W  is a stationary (Toeplitz symmetric) matrix while 
Q

W  

defines the time-frequency attenuation inherent in the Constant-Q process. 

 
Figure 5:  Comparisons of the traces for the stationary trace model of equation 1 and the 
nonstationary model of equation 3.  The source wavelet and reflectivity are identical for both 

models so that the Q matrix 
Q

W  is entirely responsible for the differences. 

Matrix multiplication is not generally commutative which means that 
0 Q

W W  cannot 

be expected to equal 
0Q

W W .  This seems unfortunate because, given knowledge of Q, 

we would like to process the nonstationary trace in such a way as to render it stationary 
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without yet knowing the source signature.  The result could then be input to stationary 
deconvolution with a reasonable expectation of success.  This means that we would like 
s  defined by 

 1 1

0Q Q Q
s W s W W W r− −= =  4 

to be similar to 
0stats W r= , the stationary trace.  This could only happen if 

0 Q
W W  are 

approximately commutative.  A numerical experiment is shown in Figure 6 that suggests 
that this is true. 

 
Figure 6:  A numerical demonstration that 

0 Q
W W  (green trace) is almost equal to 

0Q
W W  (red 

trace).  Thus we expect that the application of an inverse Q matrix should render the 
nonstationary trace stationary. 

WAVELET EVOLUTION DUE TO Q 

The constant-Q theory of Kjartansson (1979) offers a first-order explanation of the 
evolution of a wavelet in an attenuating medium. Here “first-order” means that 
transmission effects are reasonably well described but reflection is ignored. This theory 
captures the wavelet decay with both time and frequency and the associated minimum-
phase shifts. According to the constant Q theory, the amplitude spectrum of the wavelet 
evolves according to 
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 ( ) ( ) /
0ˆ ˆ, f t Qw f t w f e π−=  5 

where ( )ˆ ,w f t  is the amplitude spectrum after traveltime t, ( )0ŵ f  is the initial 

amplitude spectrum (as emitted by the source), f is frequency, and Q is a rock property 
independent of frequency although time dependence is allowed.  As first argued by 
Futterman (1962) and illustrated very well by Aki and Richards (2002), causality 
arguments completely determine the phase associated with the amplitude attenuation in 
equation 5.  Both references show that the phase is determined by the minimum-phase 
condition that the Hilbert transform of the log-amplitude give the phase.  Kjartannson 
(1979) gives the complete formula 

 ( ) ( ) ( ) ( )0/ , ,
0ˆ ˆ, f x v Q i f x Qw f x w f e π ϕ− −=  6 

where x is distance travelled, 0v  is a high-frequency reference velocity measured at 

frequency 0f , and  

 ( ) ( ), , 2 /f t Q f x v fϕ π= . 7 

with ( )v f  being the frequency dependent phase velocity given by 

 ( ) 0
0

1
1 ln

fv f v
Q fπ

 
= +  

 
. 8 

Defining traveltime 0/t x v=  we can re-write equation 6 as 

 ( ) ( ) 0

1
/ 2 1 ln

0ˆ ˆ,
ff t Q i f t

Q fw f t w f e
π π

π
 

− − −  
 ≈ . 9 

(These formulae are all written for positive f only and case must be taken when 
generalizing to negative frequencies.)  Figure 7 shows the result of equation 9 when used 
to calculate the impulse response of the Q theory (corresponding to ( )0ˆ 1w f = ) and the 

bandlimited response (corresponding to ( )0ŵ f  representing a minimum phase wavelet 

with a dominant frequency of 100 Hz.).  (See Margrave (2013) for a description of the 
software used to make this and similar figures.)  The main thing to observe here is that 
there is no single “wavelet” that can be analyzed and perhaps deconvolved.  Instead, there 
is a different wavelet for every possible traveltime (or travel distance) and so the seismic 
trace must have a continuously varying wavelet embedded in it.  This continuous 
variation is encoded in the Q matrix of Figures 3 and 4 and is transferred to the 
seismogram in Figure 5.  What we can say about these wavelets is that they are all 
derived from an initial source wavelet by the application of a minimum-phase forward Q 
filter.  If the initial source wavelet is minimum phase, then so are all of the embedded 
wavelets.   
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As a second thought experiment, suppose we have a reflectivity consisting of a 
sequence of unit spikes placed every 0.2 s.  Then applying 

Q
W  to this spike sequence 

extracts the expected Q-impulse response every 0.2 s.  Similarly, applying 
0 Q

W W , to the 

spike sequence extracts the evolution of an initial wavelet represented by 
0

W .  This is 

shown in Figure 8. 

 
Figure 7:  a,b) The evolution of an initial impulse (Dirac Delta) in a constant-Q medium.  Panel a) 
shows the wavelets in true relative size for various distances. Panel b) shows the wavelets after 
amplitude normalization and with most of the propagation delay removed.  c,d) Similar to a,b) 
except thet the intial pulse was a bandlimited minimum phase wavelet. 

 
Figure 8: A sequence of spikes representing a reflectivity (blue) is show after multiplication by 

Q
W  (green) and by 

0 Q
W W  (red) where 

0
W  was a minimum phase, 20 Hz dominant, wavelet. 
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In Figure 8, we observe that the bandlimited evolving wavelets always lag behind the 
corresponding unit spike by a progressively increasing amount.  This lag time in 
controlled by the 0f  parameter in equation 9.  In generating Figure 8, 0f  was taken to be 

the Nyquist frequency of the simulation which was 500 Hz.  Since 0f  corresponds to the 

frequency of measurement of velocity information, a better value for this would be the 
dominant frequency of well-logging which is about 12500 Hz.  Figure 9 compares the 
result of using Q matrices with 0 500f =  and with 0 12500f =  Hz.  As can be seen, the 

delay of the wavelet behind the spike is much larger for 0 12500f =  Hz.  This happens 

because 0f  is the frequency at which the reference velocity 0v  is assumed specified and 

the spikes are at times defined by 0 0t xv=  (see equations 6-9).  Because the wavelet has a 

dominant frequency near 20sf = Hz, it has a traveltime of ( )s st xv f= .  The time 

difference 0dr st t t= −  is called the drift time and is always positive.  The implication is 

that a synthetic seismogram computed with the velocities measured by a sonic tool will 
predict event times that are too early by drt .  This phenomenon can be corrected for in a 

variety of ways including (1) calibrating the sonic velocities by using a check-shot 
survey, (2) given a Q estimate, we can calculate the expected well velocities at seismic 
frequencies using equation 8, (3) the seismogram can be constructed at the measured 
logging velocities and then stretched to seismic time by calculating the drift correction, 
(4) the sonic log can be interpretively stretched by moving key markers to greater depths 
until the synthetic seismogram appears to match.  All of these methods are used in 
practice although (2) might have a theoretical preference. 

 
Figure 9:  Similar to Figure 8 except that the wavelet evolution for two different reference 
frequencies is compared.  The reference frequency of 12500 Hz is roughly the dominant 
frequency of well-logging. 

SYNTHETIC SEISMOGRAMS CREATED FROM REAL WELL LOGS 

Before examining the performance of stationary deconvolution on a nonstationary 
synthetic, it is advisable to make a more realistic synthetic seismogram than that shown 
in Figure 1.  That result was created from a synthetic reflectivity which fits the “white” 
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assumption of the deconvolution algorithm.  A more realistic choice is to use real well 
logs to create stationary and nonstationary synthetic seismograms.  Figure 10 shows the 
velocity and density logs available in well Hussar 12-27.  Using the density and p-wave 
velocity, Figure 11 shows the resulting reflection coefficients, stationary seismogram, 
and nonstationary seismogram.  To make these seismograms, 

0
W  was constructed using 

a minimum phase wavelet with a 30 Hz dominant frequency, and 
Q

W  used an invariant 

Q value of 75.  Additionally, to obtain longer seismograms that make a more dramatic Q 
effect, the depths in Figure 10 were doubled.  These seismograms are all multiple free 
and noise free, and time zero corresponds to the top of the logs.  Comparing Figures 11 
and 5 shows that the well reflectivity has more character (variation) than the synthetic 
white reflectivity, however, the essential differences between stationary and 
nonstationary seismograms remain. 

 
Figure 10: The velocity and density logs in well Hussar 12-27. 

 
Figure 11:  Stationary and nonstationary seismograms created from the logs in Figure 10 after 
doubling the depths (to exaggerate the Q effect). 
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STATIONARY DECONVOLUTION ON A NONSTATIONARY SEISMOGRAM 

The performance of stationary deconvolution on the seismograms of Figure 11 is a 
good proxy for what happens when gain corrected, high quality, real seismic data is 
deconvolved.  Gain correction is used to remove nonstationary effects that are frequency 
independent (like wavefront spreading) and by “high quality” it is meant that we are not 
considering any noise effects either random or coherent. 

Both the stationary and nonstationary seismograms have a reflectivity that is not 
white.  As shown in Figure 12, well log reflectivity has a flat “white” spectrum at high 
frequencies but at lower frequencies has a distinct spectral roll off.  This is contrary to the 
assumptions of stationary deconvolution but causes relatively subtle low-frequency 
errors.  Of greater interest and effect is the time and frequency variant spectrum of the 
nonstationary seismogram.  While this “brute fact” is usually understood by data 
processors, its full range of consequences is not.  The usual accommodation to spectral 
nonstationarity is to select a design window taken over the zone of interest and small 
enough that wavelet evolution should be small and within which the deconvolution 
operator is designed.  For this purpose, I will use the time window 0.6 1.2t≤ ≤ .  In view 
of Figure 8, this might seem a bit large but data processors typically choose such window 
sizes. 

 
Figure 12:  Comparison of synthetic random reflectivity and well log reflectivity in the Frequency 
Domain.  The low-frequency roll-off (below 50 Hz) exhibited by the well-log is outside the 
assumptions of standard deconvolution.  The white reflectivity shows constant power at all 
frequencies.  Real well-log reflectivity shows a roll-off in power at lower frequencies which means, 
of course, that it is blue. 

Figure 13 shows the result of running stationary deconvolution of the stationary 
synthetic trace of Figure 11.  The maximum crosscorrelation between the reflectivity and 
the deconvolved trace is a bit less than that in Figure 2 but still very good.  This is an 
excellent result in any context.  From this we can conclude that the effects of non-white 
reflectivity are relatively subtle at this stage.  However, for a subsequent impedance 
inversion, this becomes a more important issue (see Lloyd 2013, Lloyd and Margrave 
2012a, 2012b, and Esmaeli and Margrave 2013). 
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Figure 13:  The result of running stationary deconvolution on the stationary synthetic of Figure 11.  
The result is quit comparable in quality to that in Figure 2. 

 
Figure 14:  The Nonstationary Catastrophe is the result of running stationary deconvolution on the 
nonstationary seismogram of Figure 11.  The deconvolution parameters were identical to those 
used for Figure 13, and the reflectivity trace (blue) is identical to the one in Figure 13.  

In contract to the excellent results shown in Figure 13, the application of the identical 
deconvolution algorithm and parameters to the nonstationary trace of Figure 11 produces 
the catastrophic result in Figure 14.  The operator was designed within the same window 
as before, yet the result seems almost unrecognizable.  The maximum crosscorrelation is 
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only 0.08 when the entire trace is compared but is a more reasonable 0.41 when the 
comparison is restricted to the design window. 

Data processors are used to seeing the nonstationary catastrophe and typically cope 
with is by applying something like an AGC (automatic gain correction) after 
deconvolution.  Figure 15 shows the result of applying a 0.2 second AGC to the result of 
Figure 14.  This makes the variable character of the trace easier to assess and changes the 
maximum correlation values.  Within the design window the correlation lowers to 0.29 
while before the design window it is 0.55 and after the window it is 0.18.  The lag is 
smallest within the design window.  The implication of these numbers is that the 
deconvolved trace is still highly nonstationary so that the amplitude and phase errors are 
time variant as well.  

 
Figure 15:  An AGC with a 0.2s operator length has been applied to the nonstationary 
catastrophe of Figure 15. 

UNDERSTANDING THE NONSTATIONARY CATASTROPHE 

A better understanding of exactly why the nonstationary catastrophe occurs will help 
to appreciate its consequences and possible solutions.  Towards this end, consider again 
the wavelet evolution shown in Figure 8.  According to constant-Q theory the 
nonstationary seismogram contains a continuously evolving wavelet and Figure 8 shows 
a regularly spaced subset of those wavelets.  Designing a deconvolution operator over a 
limited time zone, as was done to produce Figure 14, is very much like taking one of the 
central red wavelets in Figure 8, calculating its numerical inverse and applying this 
inverse to all of the wavelets.  The result of doing exactly that is shown in Figure 16 as 
the red curve which directly simulates the nonstationary catastrophe.  The black trace in 
Figure 16 is achieved by applying an AGC to the disastrous result of the red trace.  We 
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can clearly see that the wavelets at times later than the design window are in an 
“underwhitened” stated meaning that they are insufficiently collapsed and will give and 
under resolved seismic image.  The wavelets before the design window are 
“overwhitened” meaning that high frequencies are erroneously exaggerated and, if there 
were noise present, this noise would be blown up.  Interestingly, all of these wavelets are 
still approximately minimum phase. 

 
Figure 16:  This is a simulation of what happens when stationary deconvolution is applied to a 
nonstationary signal. The green trace shows the same sequence of evolving wavelets that appear 
as the red trans in Figure 8.  The fifth wavelet from the left has been selected to represent the 
wavlet present in the deconvolution design window.  The inverse of this wave was then designed 
and applied to all of the wavelets to produce the red trace, which simulates the nonstationary 
catastrophe of Figure 14.  Finally, the red trace has been AGC’d to produce the black trace which 
should be compared with Figure 15. 

Greater understanding can be gained by considering this process in the frequency 
domain.  According to constant Q theory, the amplitude spectra of the evolving wavelets 
in Figure 8 are all related by equation 5.  Denoting the characteristic times of these ten 
wavelets by 1 2 5 10t t t t< < < < <  , we can write a general expression for these 

amplitude spectra as 
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 ( ) ( ) [ ]/
0ˆ ˆ, , 1, 2, 10kf t Q

kw f t w f e kπ−= ∈  , 10 

where ( )0ŵ f  represents the initial spectrum of the source.  Choosing wavelet 5 to 

design our deconvolution operator, ( )D f . means that  

 ( ) ( ) ( )
5 /

5 0

1
ˆ ˆ,

f t QeD f
w f t w f

π+

= =  11 

is the amplitude spectrum of the deconvolution operator.  Thus the deconvolved wavelets 
have amplitude spectra given by 

 ( ) ( ) ( ) ( ) [ ]5 /ˆ ˆ, , , 1, 2, 10kf t t Q
D k kw f t w f t D f e kπ− −= = ∈  . 12 

So for 5kt t< , ( )ˆ ,D kw f t  is a growing exponential while for 5kt t>  we have exponential 

decay.  Only for 5kt t=  do we achieve the desired flat spectrum.  The phase associated 

with the amplitude spectra in equation 12 should be locally minimum phase and hence 
nonstationary as well. 

Figure 17 panel a) shows a direct numerical calculation of the evolving wavelets 
before deconvolution (i.e. the green trace in Figure 16) and panel b) shows the wavelets 
after deconvolution (the red trace of Figure 16).  Equation 10 describes panel a) while 
equation 12 describes panel b). 

 
Figure 17:  A frequency domain explanation of the nonstationary catastrophe.  In panel a) (left) 
are the amplitude spectra of the evolving wavelets in Figure 8.  The red line indicates the 
spectrum of the wavelet chosen for the deconvolution operator.  Deconvolution is then simulated 
by dividing each curve on the left by the red curve, and the result is in panel b) (right).  Clearly all 
wavelets earlier than the design wavelet are exponentially overwhitened while the later wavelets 
are exponentially underwhitened. (“Exponentially” is used here because the vertical axis is a 
decibel log scale and the deconvolved spectra are straight lines on this figure.) 
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So, the nonstationary catastrophe is a consequence of trying to use a single 
representative of the evolving wavelet to deconvolve the wavelets at all times.  The 
wavelet chosen for the deconvolution operator design is the source wavelet as modified 
by the anelastic attenuation along the travel path to the design window.  When the 
resulting deconvolution operator is applied to earlier times, it removes too much 
attenuation and when applied to later times it does not do enough.  The result is a very 
poor reflectivity estimate and a subsequent AGC is really just a cosmetic adjustment. 

DEALING WITH THE NONSTATIONARY CATASTROPHE 

I will discuss three approaches to dealing with this situation which are: (1) a simple 
time-variant balancing after deconvolution, (2) an inverse Q filter, (3) Gabor 
deconvolution.  Of these, the first is not really a solution and is merely cosmetic, the 
second can work very well but requires knowledge of Q, and the third accomplishes a 
nonstationary deconvolution without knowing Q but can distort amplitudes. 

Time variant balancing 

Since the main visual effect of nonstationarity is a time-variant amplitude imbalance, 
we are lead to try an automatic gain correction whenever needed.  The results are shown 
in Figure 18.  Beginning with the raw trace at the top, the next trace shows the result of 
an AGC (0.3 second operator length) and this does indeed appear to have balanced the 
amplitudes.  However, the stationary deconvolution still results in a nonstationary 
catastrophe although perhaps less severe.  Another AGC afterwards serves as a cosmetic 
fix for the high amplitudes at the beginning of the trace but there is still an obvious 
frequency imbalance.  The correlation coefficients, measured in the design window 
between each trace and the reflectivity, are quoted on the Figure.  There is a general 
increase in correlation but the end values are quite small for a noise free simulation. 

The final step in Figure 18 is an attempt to correct the residual phase errors by doing a 
time-variant phase adjustment based on comparing with the known reflectivity.  This is 
analogous to comparing to well control.  The phase measurements are shown in Figure 
19.  The method for phase measurement is very simple and is conducted repeatedly in a 
sliding Gaussian window. For each window position, the trace and the reflectivity are 
windowed and the windowed reflectivity is bandlimited to match the bandwidth of the 
windowed trace.  Then these two signals are compared for all phase angles between -180 
and 180 in 1 degree increments.  The phase angle for which the L2 norm of the trace 
difference is minimal is chosen as the optimal angle for that window position.  Having 
measured a time-variant phase, the trace phase is rotated in a time variant way and then 
the phase is re-measured as a quality check.  Note that the residual phase measurement 
and correction actually causes a slight decrease in the correlation coefficient.  This is 
likely an indication that the actual phase errors are more complex than can be 
accommodated by time-variant constant phase rotations. 

For comparison in Figure 19, the measured time-variant phase for the stationary case 
(stationary seismogram and stationary deconvolution) are shown.  The measured phase 
error in this case is very small and essentially stationary.  After moving this phase, the re-
measurement shows essentially zero.  In the nonstationary case of Figure 18, the 
measured phase is nonstationary.  Given that we might expect the phase to be more 
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complex than a constant rotation and that the application of this phase actually decreases 
the correlation, the meaning of these phases could be challenged.   

Figure 18:  An attempt to deal with nonstationarity by using AGC for time-variant balancing before 
and after stationary deconvolution.  The AGC before stationary deconvolution lessens the 
apparent severity of the nonstationary catastrophe but it is still apparent.  The AGC afterward 
does a cosmetic adjustment of amplitudes. The cc values annotated are the maximum correlation 
coefficient measured in the design window when compared with the reflectivity. 

 
Figure 19:  The result of a time variant phase analysis to (top) the stationary seismogram after 
stationary deconvolution, and (bottom) the nonstationary trace after stationary deconvolution and 
amplitude balancing.  In each case, constant phase rotations were estimated in a sliding 
Gaussian window by comparing to the actual reflectivity.  The time-variant rotations were then 
applied and the result was re-measured.  In the stationary case, the phase errors are essentially 
stationary while in the nonstationary case a time-variant phase error is measured. 
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Inverse Q filtering and Gabor Deconvolution 

Inverse Q filtering is the common terminology for applying an operator meant to 
remove the Q effect, thereby rendering the trace stationary. Following the inverse Q 
filter, stationary deconvolution is then applied to estimate and remove the source wavelet.  
As discussed previously in the vicinity of equation 4, this approach implicitly assumes 
that the Q impulse response matrix, 

Q
W , commutes with the convolution matrix for the 

source wavelet, 
0

W .  In general, these matrices do not commute, however; as 

demonstrated in Figure 6 they almost commute in at least this simple case.  It is not 
known how this almost commutativity might change with a more complex Q structure, 
but there have been many successful tests of inverse Q filtering. 

Another difficulty with this process is that the actual Q structure must be known.  
Measurement of Q is a difficult process and the reality is that the actual Q values can 
only be crudely estimated at present (e.g. Cheng and Margrave 2012, 2013).  The 
implications of an erroneous Q value will not be examined here. 

Despite these difficulties, it is worth examining the performance of inverse Q filtering 
in the context of the present discussion.  The computation of efficient inverse Q filters is 
important for processing large datasets, but here the simple pseudo inverse of 

Q
W  will 

illustrate the potential.  Figure 20 shows the result of an inverse Q filter (actually matrix) 
applied to the nonstationary seismogram of Figure 11 and compares it to the stationary 
seismogram.  As in the example of Figure 6 we see that the matrix commutation is almost 
exact. 

 
Figure 20: The inverse Q matrix applied to the nonstationary trace of Figure 11 essentially 

recovers the stationary trace due to the almost commuting nature of the matrices 
Q

W  and 
0

W .  

The correlation coefficient between the inverse Q filters result and the stationary result is 0.99. 
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Having applied the inverse Q filter, we now are in a position to run stationary 
deconvolution and avoid the nonstationary catastrophe.  Figure 21 shows the results, 
which are very good.  The correlation coefficients are relatively high and the and the 
spectral content appears to be very stationary.  This would not be the case if noise were 
present however. 

 
Figure 21:  After inverse-Q filtering, stationary deconvolution is sufficient to recover a very 
excellent reflectivity estimate.  There is no nonstationary catastrophe and the residual phase 
rotations are small (see figure 23). 

 
Figure 22:  Gabor deconvolution achieves a nearly stationary result and avoids the nonstationary 
catastrophe.  Note the large increase in correlation coefficient after phase rotations. 
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An alternative to inverse Q filtering is a nonstationary deconvolution like Gabor 
deconvolution (Margrave and Lamoureux, 2001; Margrave et al., 2011).  This process 
attempts to combine the operations of Inverse Q filtering and stationary deconvolution 
into a single step.  Unlike inverse Q filtering, Q information is not used because the 
algorithm uses a time-frequency decomposition of the data to measure the actual 
attenuation.  Figure 22 shows the result of Gabor deconvolution applied to the 
nonstationary synthetic of Figure 11.  While there is no nonstationary catastrophe and the 
spectral content of the trace appears visually stationary (compared with Figure 18) the 
correlation coefficient is only 0.36.  However, after the time-variant constant-phase 
analysis and correction, the correlation increases substantially to 0.51.  This is taken as an 
indication that the residual phase after Gabor decon is relatively simple and is correctable 
by this method.  The reason for the residual phase is not presently known. 

 
Figure 23:  Time variant phase analysis after inverse Q filtering+stationary decon compared with 
the same analysis after Gabor decon.  Gabor decon shows a much larger residual phase.  
However, it seems correctable upon comparison with well control. 

NOISY SYNTHETICS 

Incorporation of just a small amount of noise makes the inverse Q filter much less 
attractive.  Figure 24 shows the same synthetic seismograms with a small amount of 
normally distributed random noise added in.  The noise power was selected such that the 
time-domain signal-to-noise ratio in the design window of the nonstationary trace is 2.0.  
The same noise was added to the stationary trace so that it has a higher signal-to-noise 
ratio.  Note that the visual appearance of either seismogram is changed very little. 

In Figure 25 we see the performance of several different inverse Q filters.  The filters 
differ by the choice of a tolerance parameter used in the Matlab function pinv that was 
used to calculate the inverse of the Q matrix.  When designing the pseudo inverse of the 
Q matrix, pinv  does not invert singular values less than the tolerance and instead sets 
them to zero.  The tolerance value of 10ି଻ is the same value used in the results of Figure 
21 that worked so well in the noise free case.  This time the results are a mess because the 
operator has greatly amplified small amplitude noise.  To get a stable result, a tolerance 



Margrave 

22 CREWES Research Report — Volume 25 (2013)  

of 0.1 was used to get a stable result, but this has the effect of not rendering the trace 
stationary. 

 
Figure 24:  Identical Gaussian random noise has been added to both seismograms.  The noise 
power is such that the signal-to-noise ratio is 2 in the design window of the nonstationary 
seismogram.  This means that the stationary seismogram has a much higher signal-to-noise ratio. 

 
Figure 25:  The performance of 3 different inverse Q filters on the noisy nonstationary synthetic of 
Figure 24 is shown.  The tolerance parameter is used in the design of the pseudo inverse of the 
Q matrix.  A smaller tolerance is a more precise inverse.  The tol=10ି଻ filter was the same as that 
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used for Figures 20 and 21, but this time it blows up the noise disastrously.  A much larger tol is 
required for a stable result but this lessens the performance of the inverse Q filter. 

Figure 26 shows a repeat of the results of Figure 21 but using the tolerance parameter 
just mentioned on the noisy trace.  After apply stationary deconvolution there is a hint of 
a nonstationary catastrophe, although not drastic and the final correlation values are much 
reduced.  The spectral content is definitely reduced at later times, and the derived phase 
rotations do not improve the correlation. 

 
Figure 26: This is a repeat of the experiment of Figure 21 but using the noisy nonstationary trace 
of Figure 24 and the tolerance parameter 0f 0.1 (see Figure 25).  The inclusion of noise has 
dramatically reduced the effectiveness of the inverse Q filter. 

The application of Gabor deconvolution to the noisy seismogram is an interesting 
contrast with the inverse Q filter.  The latter is a purely mathematical construct 
determined by the Q structure and the tolerance parameter while Gabor deconvolution is 
a data adaptive process.  This means that Gabor deconvolution measured the time-
frequency spectrum of the data as disturbed by the noise and then attempts to “whiten” 
that observed spectrum.  Gabor deconvolution will still amplify noisy frequencies 
because it cannot distinguish signal from noise, but the power at all frequencies will be 
roughly equalized.  As observed previously, we see a significant increase in the 
correlation value after the time-variant phase analysis.  This is taken as an indication that 
the actual residual phase is relatively simple and is well modelled by this process. 

Finally, in Figure 28 is shown the results of the time-variant residual phase before and 
after inverse Q filtering and Gabor deconvolution.  This compares reasonably well with 
Figure 23.  We still see a large phase error from Gabor deconvolution but it appears to be 
easily removable. As mentioned previously the source of this error is not currently 
known. 
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Figure 27:  This shows the results of Gabor deconvolution on the noisy nonstationary synthetic 
and should be compared with Figures 22 and 26.  The presence of noise degrades the 
performance of Gabor deconvolution but not as drastically as it does for the inverse Q filter.  This 
is because Gabor deconvolution adapts to the data while the inverse Q filter does not. 

 
Figure 28:  Time-variant residual phase analysis is shown before and after the application of the 
inverse Q filter and Gabor deconvolution to the noisy nonstationary seismogram.  Compare with 
the noise free case of Figure 23 

CONCLUSIONS 

It has been argued that anelastic attenuation is the cause of well-tying difficulties such 
as spectral balancing and phase matching.  Using stationary deconvolution on a 
nonstationary trace leads to large nonstationary amplitude and phase errors that are 
difficult to correct, even with well control.  Termed the nonstationary catastrophe, it was 
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shown that these errors are directly attributable to deconvolving a temporally evolving 
wavelet with an inverse operator designed from a snapshot of the wavelet in a target 
zone.  This causes an exponential (with time and frequency) increase in amplitude at 
times before the design time and an exponential decrease at later times.  These 
nonstationary amplitude errors are paired with nonstationary minimum phase spectra.  
The common practice of an AGC after the deconvolution does balance the amplitudes in 
time but leaves the amplitude spectrum nonstationary and does not address the phase 
errors.  Attempts to correct the phase errors by nonstationary constant phase rotations 
were generally unsuccessful. 

The theoretically better approach is to apply an inverse Q filter followed by stationary 
deconvolution.  This avoids the nonstationary catastrophe and gives a reflectivity 
estimate with small amplitude and phase errors.  However it requires knowledge of Q.  
Gabor deconvolution provides an alternative that also avoids the nonstationary 
catastrophe, does not require knowledge of Q, but has larger amplitude and phase errors 
than inverse Q filtering.  However, the residual phase after Gabor deconvolution appears 
to be correctible by nonstationary constant phase analysis in comparison with well 
control. 

The inclusion of noise leads to greater problems for inverse Q filtering than for Gabor 
deconvolution.  Fundamentally, this is because Gabor deconvolution adapts to the data 
while an inverse Q filter does not.  Application of an inverse Q filter with even a small 
amount of noise leads to unstable amplification of the noise.  Gabor deconvolution 
measures the inherent attenuation of the data in time and frequency and designs a data 
dependent operator to remove it.  There are other similar processes that are also data 
dependent in the same class as Gabor deconvolution. 

It has been argued here that better well ties will come from data processing that 
recognizes and addresses the fundamental nonstationarity of seismic data.  Such 
processes will need to be data adaptive to cope with noise. 
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