
Analytic analysis of FWI

1D scalar full waveform inversion inferring convergence
properties with analytic and numerical examples

Wenyong Pan, Kris Innanen

ABSTRACT

Formulated as a least-squares form, Full waveform inversion (FWI) seeks to minimize
the difference between the modeling data and the observed data and estimate the subsurface
parameters. It has been widely studied in recent years, but some problems still remain to be
addressed. In this research, we performed the analytic analysis of 1D scalar FWI. The anal-
ysis to this simplest condition can help us achieve some new ideas and discoveries in FWI.
A simple two-interface model and a homogeneous background model are used as the true
velocity model and initial velocity model respectively. And two iterations are performed for
analysis based on some optimal assumptions. We found that: (1) after the first iteration, the
placement error at the second interface is influenced by the velocity contrast and interfaces
distance; (2) after the second iteration, the placement error at the second interface become
smaller for small velocity contrast, but may become larger for large velocity contrast; (3)
and the noises produced in the cross-correlation have a negative influence to the amplitude
recovery of the second interface, which will decrease the convergence rate of FWI; (4) but
the noises have no significant influence to the placement error of the second interface.

GENERAL PRINCIPLE OF FULL WAVEFORM INVERSION

As a least-squares local optimization, full waveform inversion seeks to minimize the
difference between the synthetic data and observed data (Lailly, 1983; Tarantola, 1984)
and update the model iteratively. The misfit function φ is given in a least-squares norm:

φ
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(n)
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)
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where s(n)0 (r) = 1(
c
(n)
0 (r)

) are the model parameters, the square of the slowness in the nth

iteration, and c(n)0 (r) is the velocity. δP mean the data residuals, the difference between the
observed data P

(
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)
and synthetic data G

(
rg, rs, ω|s(n)0

)
, ‖ · ‖2 indicates the

`− 2 norm.

The minimum value of the misfit function is sought in the vicinity of the starting model
s0(r) and the updated model can be written as the sum of the starting model and a model
perturbation δs(n)0 (r) (Virieux and Operto, 2009).

s(n)(r) = s
(n)
0 (r) + µ(n)δs

(n)
0 (r), (2)

where µ(n) is the step length in nth iteration, which is a scalar constant used to scale the
model perturbation and can be obtained through a line search method (Gauthier et al., 1986;
Pica et al., 1990).
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Applying a second order Taylor-Lagrange development of the misfit function and then
taking partial derivative with respect to the model parameters give the model perturbation
as:

δs
(n)
0 = −

∫
dr′H(n)−(r, r′)g(n)(r), (3)

where g(n)(r′) is the gradient and H(n)(r′, r) is the Hessian matrix.

For gradient, the first order derivative of the misfit function φ with respect to the model
parameters can be obtained by a zero-lag correlation between the data residuals and the
first order partial derivative wavefields.Then apply a perturbation derivation based on the
Born approximation, the sensitive matrix can be written as:

δG
(

rg, rs, ω|s(n)0

)
δs

(n)
0 (r)

= −ω2G
(

rg, r, ω|s(n)0

)
G
(

r, rs, ω|s(n)0

)
, (4)

Then we can get the gradient:

g(n)(r) =
∑
rs,rg

∫
dω<

(
ω2Fs(ω)G(r, rs, ω)G(rg, r, ω)δP ∗

)
, (5)

where G(r, rs, ω) and G(rg, r, ω) are the source-side and receiver-side Green’s functions,
respectively. And Fs(ω) is the source signature. Then the gradient can be calculated using
the adjoint state method by applying a zero-lag convolution between the forward modeling
wavefields and back-propagated data residuals, which avoids the direct computation of the
partial derivative wavefields.

ANALYTIC ANALYSIS OF FWI—1ST ITERATION

Having introduced the basic theory and framework of FWI, we can analyze how FWI
works beginning with the simplest condition: analytic example of 1D scalar FWI. In this
simplest possible problem, the initial or reference model is a homogeneous model with the
scalar velocity of C0, as shown in Figure 1. And the gradient based method is used to
reconstruct a 1D true velocity model with two interfaces located at the depths of Z1 and
Z2 and the velocity varies from C0 to C1 and C2 at interfaces of Z1 and Z2 respectively, as
shown in Figure 1. Through the derivation and analysis, it is possible for us to understand
how well and how quickly FWI does its job and address the current problems for FWI. So,
let’s examine FWI in the first iteration.

For a gradient based method, we use the form of s(n)(r) = s
(n)
0 (r)+µ(n)g(n)(r) to update

the velocity model, where µ(n) is the step length, a constant value, which traditionally
determined through a line search method. The gradient for this 1D scalar problem can be
written as:

g (z) =
∑

dω< (G(z, 0, ω)G(z, 0, ω)δP ∗(0, 0, ω)) , (6)

As indicated by equation (6), to obtain the gradient, we need to calculate two Green’s
functions of G(z, 0, ω) and G(0, z, ω) and the complex conjugate of data residual δP ∗. We
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FIG. 1. The velocity models used in the first iteration of FWI. The dash line is the homogeneous
reference model and the solid line is the true velocity model.

know that the Green’s functions in the homogeneous medium can be written as:

G(z, 0, ω) = G(0, z, ω) =
eik0z

i2k0
, (7)

The synthetic data in the reference model only includes the direct wave. So, it can be

FIG. 2. The gradient g0 for the first iteration.

written as G(0, 0, ω) = 1
i2k0

, where k0 = ω
C0

is the wavenumber and ω is the angular
frequency. While for the data D(ω) observed in the real velocity model, it includes the
directive wave and the reflections from the two interfaces. Then, we have:

D(ω) =
1

i2k0
+R1

ei2k0z1

i2k0
+R′2

ei2k0z1

i2k0
ei2k1(z2−z1), (8)

where R1 = C1−C0

C1+C0
is the reflection coefficient at the first interface and R′2 = (1−R2

1)R2

is the reflection coefficient at the second interface and R2 = C2−C1

C2+C1
. So, we can get the

complex conjugate of the data residual as:

δP ∗(0, 0, ω) = [D(ω)−G(0, 0, ω)]∗ = −R1
e−2k0z1

i2k0
−R′2

e−i2k0z1

i2k0
e−i2k1(z2−z1), (9)
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Then the full gradient can be given as:

g(z) = −
∫
dωω2 e

i2k0z

i2k20

{
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e−i2k0z1

i2k0
+R′2
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i2k0
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}
, (10)

= −R1C
2
0
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′
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where Z ′2 = z1 +
k1
k0
(z2 − z1). Then we replace dω with C0

2
× d(2k0) and we have:

g(z) =
R1C

3
0

8

∫
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i2k0
+
R′2C

3
0

8

∫
d(2k0)
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′
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i2k0
,

=
πR1C

3
0

4
H(z − z1) +

πR′2C
3
0

4
H(z − Z ′2).

(11)

where H means the Heaviside function. We notice that the gradient we get consists of two
Heaviside functions (step functions), which are like the two interfaces missed in the refer-
ence model. If we add the gradient with appropriate scaling, it will be a great improvement
for the velocity reconstruction. We can normalize gradient by dividing πR1C3

0

4
, then we get:

g0(z) = H(z − z1) +
R′2
R1

H(z − Z ′2), (12)

The gradient g0 is shown in Figure 2. We also notice that the placement of the first step
provided by the gradient is consistent with the placement of the first interface in the true
velocity model, which is z1. While the placement of the second step Z ′2 is not right. And
the error E between the right placement z2 and the wrong placement is:

E = z2 − Z ′2 =
(
1− C0

C1

)
(z2 − z1), (13)

We can see that the value of E is negative and the larger the difference between C0 and C1

or z2 and z1, the larger this error becomes.

For scaling the gradient, here we can set the step length to make the first interface of
the updated velocity model match the real velocity model. In this condition, the step length
becomes µ =

(
1
C2

1
− 1

C2
0

)
and model perturbation becomes:

δs
(n)
0 =

(
1

C2
1

− 1

C2
0

)
H(z − z1) +

(
1

C2
1

− 1

C2
0

)
R′2
R1

H(z − Z ′2), (14)

Then we can add this model perturbation to reference model directly for getting the updated
model in the first iteration. In the new updated model, the placement of the first interface is
Z ′2 = z1 +

k1
k0
(z2 − z1) and the velocity of third layer becomes C ′2 = C1 + (C1 − C0)

R′2
R1

=

C1+(C1+C0)R
′
2. Because C ′2−C2 < 0, the updated velocity model after the first iteration

is as shown in Figure 3. From Figure 2, it can be seen that the updated velocity model after
first iteration match the true velocity model well at the first interface. While the velocity
and placements at the second interface are both not right. So, how does FWI works for the
next iteration? We can examine the second iteration of FWI using a similar method.
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FIG. 3. Updated velocity model after first iteration as indicated by the red-dash line.

ANALYTIC ANALYSIS OF FWI—2ND ITERATION

Then we can go head to see what will happen for the second iteration. To calculate
the gradient, we also need to calculate the Green’s functions and data residuals. While
comparing with the Green’s functions in the homogeneous medium, the Green’s functions
in different parts of the new updated velocity model are different, as shown in Figure 3.
We can analyze the gradient case by case. In order to make it easier to understand, we
transform the 1D velocity to a 2D velocity model for analyzing the Green’s functions and
data residuals.

FIG. 4. Green’s functions and data residuals in the second iteration.

Case 1 when z1 > z > z0

Firstly, for G0, when z1 > z > z0, as shown in Figure 4, we have:

G0(z, 0, ω) = G(0, z, ω) = G1
0(z, 0, ω) +G2

0(z, 0, ω) +G3
0(z, 0, ω), (15)

=
eik0z

i2k0
+R1

eik0(2z1−z)

i2k0
+R′′2

eik0(2z1−z)

i2k0
eik1(Z

′
2−z1).
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FIG. 5. Green’s functions when z1 > z > z0.

where R1 is the reflection coefficient at Z1 and R′′2 = (1 − R2
1)R

′′′
2 , where R′′′2 =

C′2−C1

C′2+C1
is

the reflection coefficient at Z ′2. The observed data and synthetic data can be written as:

Dobs(ω) =
1

i2k0
+R1

ei2k0z1

i2k0
+R′2

ei2k0z1

i2k0
ei2k1(z2−z1), (16)

Dsyn(ω) =
1

i2k0
+R1

ei2k0z1

i2k0
+R′′2

ei2k0z1

i2k0
ei2k1(Z

′
2−z1), (17)

And the complex conjugate of the data residual is:

δP ∗2 (0, 0, ω) = [Dobs(ω)−Dsyn(ω)]
∗ = −R′2

e−i2k0z1

i2k0
e−i2k1(z2−z1)+R′′2

e−i2k0z1

i2k0
e−i2k1(Z

′
2−z1),

(18)
Then, we can set the gradient as:

g(z) =

∫
dωω2AδP ∗(0, 0, ω), (19)

where

A =
ei2k0z

4k20

{
1 +R2

1e
i2k0(2z1−2z) + (R′′2)

2ei2k0(2z1−2z)ei2k1(2Z
′
2−2z1)

}
−e

i2k0z

4k20

{
2R1R

′′
2e
i2k0(2z1−2z)ei2k1(2Z

′
2−2z1) + 2R1e

i2k0(2z1−2z) + 2R′′2e
−i2k0(z1−z)ei2k1(Z

′
2−z1)

}
,

and the complex conjugate of the data residual is:

δP ∗(0, 0, ω) = −R′2
e−i2k0z1

i2k0
e−i2k1(z2−z1) +R′′2

e−i2k0z1

i2k0
e−i2k1(Z

′
2−z1),
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And the gradient becomes:

g(z) = 1
4k20

∫
dωω2 1

i2k0

(
R′2e

i2k0
(
z−

(
z1+

k1
k0

(z2−z1)
))

+R′2R
2
1e
−i2k0

(
z−

(
z1− k1

k0
(z2−z1)

)))
+ 1

4k20

∫
dωω2 1

i2k0

(
R′2(R

′′
2)

2e
−i2k0

(
2−(z1+ k1

k0
(2Z′2−z2−z1))

))
+ 1

4k20

∫
dωω2 1

i2k0

(
2R1R

′
1R
′′
2e
−i2k0

(
z−(z1+ k1

k0
(Z′2−z2))

))
+ 1

4k20

∫
dωω2 1

i2k0

(
2R′2R1e

−i2k1(z2−z1) +R′2R
′′
2e
−i2k1(Z′2−z2)

)
− 1

4k20

∫
dωω2 1

i2k0

(
R′′2e

i2k0
(
z−(z1+ k1

k0
(Z′2−z1))

))
+ 1

4k20

∫
dωω2 1

i2k0

(
−R′′2R2

1e
−i2k0

(
z−

(
z1+

k1
k0

(Z′2−z1)
))
− (R′′3)

3e
−i2k0

(
z−

(
z1+

k1
k0

(Z′2−z1)
)))

+ 1
4k20

∫
dωω2 1

i2k0

(
2R1(R

′′
2)

2e−i2k0(z−z1) − 2R1R
′′
2e
−i2k1(Z′2−z1) − 2(R′′2)

2
)
,

(20)
Because the reference model and the true velocity model match well when z1 > z >
z0, the best condition is that the gradient should be 0. While something actually exists.
These things are the low frequencies produced in the process of cross-correlation. When
cross-correlating the forward modeling wave-fields and back-propagated wave-fields, the
backscattered waves can also meet the cross-correlation imaging conditions. They are not
the real gradient what we want. They are the low frequencies noise just like those in reverse
time migration. Most of them are week along the wave path but also produce influence to
the gradient. So, we can neglect this part temporarily for analysis convenience.

Case 2 when Z ′2 > z > z1

FIG. 6. Green’s functions when Z ′
2 > z > z1.

The second condition is that when Z ′2 > z > z1. We can get the Green’s functions as:

G(z, 0, ω) = T10
e6ik1(z − z1)

i2k1
eik0z1 +R′′′2 T10

ik1(2Z
′
2 − z1 − z)
i2k1

eik0z1 , (21)

G(0, z, ω) = T01
eik1(z−z1)

i2k1
eik0z1 + T01R

′′′
2

eik1(2Z
′
2−z1−z)

i2k1
eik0z1 , (22)
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The data residual is as listed in equation (21). Here, we can also neglect the terms with
high order reflection coefficients. The gradient is:

g(z) =
∫
dωω2G(z, 0, ω)G(0, z, ω)δP ∗(0, 0, ω)

= T01T10
1

4k21

∫
dωω2

(
R′2

ei2k1(z−z2)

i2k0
−R′′2 e

i2k1(z−Z′2)

i2k0
+R′′2R

′
2
ei2k1(Z

′
2−z2)

i2k0

)
+T01T10

1
4k21

∫
dωω2

(
−(R′′2)2 1

i2k0
+R′′2

i2k1(Z′2−z2)
i2k0

−R2
2R
′′′
2
ei2k1(Z

′
2−z)

i2k0

)
.

(23)

Case 3 when z > Z2

FIG. 7. Green’s functions when z > Z2.

The third condition is when z > Z2. As shown in Figure 6, the Green’s functions only
consist of one component. So, we can write the Green’s functions as:

G2(z, 0, ω) = T21T10
eik2(z−Z

′
2)

i2k2
eik1(Z

′
2−z1)eik0z1 , (24)

G2(0, z, ω) = T01T12
eik2(z−Z

′
2)

i2k2
eik1(Z

′
2−z1)eik0z1 , (25)

where T21 = 2C1

C1+C2
, T10 = 2C0

C1+C0
, T01 = 2C1

C1+C0
and T12 = 2C2

C1+C2
are the transmission

coefficients. The observed data and synthetic data can be written as:

Dobs(ω) =
1

i2k0
+R1

ei2k0z1

i2k0
+R′2

ei2k0z1

i2k0
ei2k1(z2−z1), (26)

Dsyn(ω) =
1

i2k0
+R1

ei2k0z1

i2k0
+R′′2

ei2k0z1

i2k0
ei2k1(Z

′
2−z1), (27)

And the complex conjugate of the data residual is:

δP ∗2 (0, 0, ω) = [Dobs(ω)−Dsyn(ω)]
∗ = −R′2

e−i2k0z1

i2k0
e−i2k1(z2−z1)+R′′2

e−i2k0z1

i2k0
e−i2k1(Z

′
2−z1),

(28)
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Then, we can get the gradient:

g(z) =
∫
dωω2G(z, 0, ω)G(0, z, ω)δP ∗(0, 0, ω)

= −T21T10T01T12 1
4k22

∫
dωω2

(
ei2k2(z−Z

′
2)ei2k1(Z

′
2−z1)ei2k0z1

)
×
(
−R′2 e

−i2k0z1

i2k0
e−i2k1(z2−z1) +R′′2

e−i2k0z1

i2k0
e−i2k1(Z

′
2−z1)

)
.

(29)

Then after a series of derivation, the gradient becomes:

g(z) = −T21T10T01T12 1
4k22

∫
dωω2

(
−R′2 e

i2k2(z−Z′2)

i2k0
ei2k1(Z

′
2−z2) +R′′2

ei2k2(z−Z′2)

i2k0

)
= T21T10T01T12R

′
2
ω2C′2
8k2k0

∫
(2k2)

(
e
i2k2(z−(Z′2−

k−1
k2

(Z′2−z2)))

i2k2

)
−T21T10T01T12R′′2

ω2C′2
8k2k0

∫
(2k2)

ei2k2(z−Z′2)

i2k2
.

(30)

We can notice that gradient can be written as a summation of two Heaviside functions:

g(z) = T21T10T01T12
πR′2C0(C

′
2)

2

4
H

(
z − (Z ′2 −

C ′2
C1

(Z ′2 − z2))
)
−T21T10T01T12

πR′2C0(C
′
2)

2

4
H(z−Z ′2).

(31)
We can conclude that the gradient is proportional to:

g(z) ∝ −H(z − Z ′2) +
R′2
R′′2

= −H(z − Z ′2) +
R2

R′′′2
, (32)

where Z ′′2 =
(
Z ′2 −

C′2
C1
(Z ′2 − z2)

)
, R′′2 = (1 − R2

1)R
′′′
2 and R′′′2 = C−2′−C1

C′2+C1
. We can see

that the first step in gradient is negative and while the second step is positive. And the
placement of the first step is right, while the placement of the second step is wrong. And
the placement error E ′ is:

E ′ = z2 − Z ′′2 = (1− C ′2
C1

)(1− C0

C1

)(z2 − z1), (33)

we can see that this equation is similar to equation (16). And the placement error of the
second step is influenced by the differences of C ′2 and C1, C0 and C1, z1 and z1. We also
note that for equation (16) E > 0, which means that the placement of inverted second
interface is between z1 and z2 (z1 < Z ′′2 < z2). While for E ′, it is negative (E ′ < 0), so the
Z ′′2 > z2. How about the difference of E ′ and E? We can compare

(
| 1− C′2

C1
| −1

)
with

0. Then,(
| 1− C ′2

C1

| −1
)

=

(
4C0

C1 + C0

× C2 − C1

C2 + C1

− 1

)
=

(
C2(3C0 − C − 1)− 5C1C0 − C2

1

(C0 + C1)(C2 + C1)

)
,

(34)
It is easy to get that if C1 ≥ 3C0, which means that |1− frac(C ′2)C1| < 1, the error of the
second interface placement in the second iteration is smaller than that in the first iteration,
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which is | E ′ |<| E |. And if 0 < C1 < 3C0&C2 <
5C1C0+C2

1

(3C0−C−1) , the error of the second
interface placement also becomes smaller in the second iteration. We can conclude that
for small velocities’ contrasts among C0, C1 and C2, the placement error becomes smaller
when increasing iterations. While for large velocities contrast among C0, C1 and C2, the
placement error may increase. We know that C2 > C ′2, so R2 > R′′′2 and R−2

R′′′2
> 1. So the

FIG. 8. Gradient g1 in the second iteration.

gradient g1 is like the form shown in Figure 7. If we select the optimal step length to make
the second layer of the new updated velocity model match the true velocity model well, the
updated velocity after the second iteration is like the form shown by the green-dash line in
Figure 8.

FIG. 9. The inverted velocity model after the second iteration.

NUMERICAL VERIFICATION

To verify our prediction, we performed a series of numerical tests. The 1D numerical
example is shown in Figure 9 (a). The solid black line in Figure 9 (a) is the true velocity
model with 4000m in horizontal. It consists of two interfaces with the locations of Z1 =
977.5m and Z2 = 1564m. The velocities of the three layers are C0 = 1500m/s, C1 =
3000m/s and C2 = 4500m/s respectively. And the reference model is homogeneous
model with the velocity of C0 = 1500m/s, as shown by the red-dash line in Figure 9 (a).
Then we performed the first iteration of FWI. The data residual is shown in Figure 9 (b).
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FIG. 10. (a) True velocity model (the solid-black line) and the reference model (the red-dash line);
(b) Data residual.

Two impulses caused by the two interfaces are present. Then we calculate the gradient g0 in
the first iteration, as shown in Figure 10. The red line and green line indicate the placements
of interface 1 (z − 1) and interface 2 (z2) of the true velocity model, respectively. And the
black line is the predicated placement of the second interface in the inverted velocity model
using equation Z ′2 = z1+

k1
k0
(z2−z1) = 1270.75m. We can see that the predicted placement

Z ′2 matches the second spike very well, which means that our prediction in the first iteration
is right. And we also need to transform the spike to "step" through integration over time.
We can also get similar result in the "step" like gradient. To update the velocity model,
we need the step length the scale the gradient. Here, for analysis convenience, we can set
the step length to make the updated velocity match the true velocity model well at the first
interface z1. Then, the step length can be set as µ = (C1 − C0) = 1500. Then the velocity
perturbation becomes:

(C1−C0)H(z−z1)+(C1−C0)
R− 2′

R1

H(z−Z ′2) = 1500H(z−977.5m)+266.7H(z−1270.75m),

(35)

And then, we add this velocity perturbation to the reference model directly and get the
updated velocity model indicated by the red-dash line in Figure 11 (a). And Figure 11(b)
shows the data residual and two spikes are present. The first negative spike is caused by the
second interface Z ′2 in the updated velocity model and the second positive spike is caused
by the second interface Z2 in the true velocity model.

Then, we calculate the gradient g1 in the second iteration. We can see that the predicted
placement of the second interface Z ′′2 match the second spike of the gradient very well.
WhatâĂŹs more, Z ′′2 and the error E ′ < E. These are all in consistent with our predictions.
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FIG. 11. Gradient g0 in the first iteration.

FIG. 12. (a) Velocity models for the second iteration; (b) data residual.

We also notice that in Figure 12 (a), before the first interface Z1, some noise is present.
These are the noise that we neglect in equation (25). If we integrate the gradient over time,
we notice that the value of the second step is negative. While according our prediction,
because R−2

R′′′2
> 1, the value of the second step should be positive, as shown in Figure 7.

Then, we set the gradient to be 0 when z < Z1 and eliminate these noise. And then we
integrate over time again and we found that the value of the second step changes to positive,
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FIG. 13. Gradient g1 in the second iteration.

which is in consistent with our prediction (as shown in Figure 13). So, we can conclude
that the noise present in the gradient produce negative influence to the amplitude recovery,
but has no obvious influence to the placement recovery. These noises will decrease the
convergence rate of FWI.

FIG. 14. Gradient g1 after elimination the noise.

The second numerical example is used to verify that the placement error E ′ in the
second iteration will become larger comparing with the placement E in the first iteration.
The velocity models are shown in Figure 14 (a). In Figure 14 (a), the blue-dash line is the
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initial velocity model. The black-solid line is the true velocity model. And the red-dash
line is the velocity model after the first iteration. It can be seen that the velocity contrast
between C2 and C1 is very large.

FIG. 15. (a) Velocity models. The blue-dash line is the initial velocity model. The black-solid line is
the true velocity model. And the red-dash line is the velocity model after 1st iteration. (b) The data
residual in the second iteration.

The gradient g1 obtained in the second iteration for this numerical example is shown
in Figure 15. We can see that the placement error E ′in the second iteration is close to
the placement error E in the first iteration or even larger. Through numerical calculation,
we get that E ′ = 208.5370m is actually larger than E = 195.5034m, which testifies our
discussions and predictions in equation (40) further.

CONCLUSION

In this research, we analyzed the 1D scalar FWI using the analytic method. And then
we use the numerical examples to testify our predictions. Combining the two methods
helps understand how FWI does its job clearly. And several interesting conclusions have
been achieved. The placement errors in the first and second iterations are all influenced by
the velocity contrast and interfaces distance. And what’s more, the placement error in the
second iteration becomes smaller than that of the first iteration for small velocity contrast.
While for large velocity contrast, this placement error may become larger. Another thing
found in this research is that the noise produced in the cross-correlation produce a nega-
tive influence to the amplitude recovery of the second interface, which will decrease the
convergence rate of FWI.
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FIG. 16. Gradient g1 in the second iteration. The red and green lines are the interface locations
in the true velocity model. And the black-solid and black-dash lines indicate the locations of the
second interface in the first and second iterations respectively.
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