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ABSTRACT

Full Waveform Inversion (FWI) employs full waveform information to inverse the sub-
surface properties through a iterative process. This method has been widely studied in
recent years but still cannot be practiced effectively in industry. FWI with a steepest de-
scent method assumes the Hessian matrix as an identity matrix and suffers from slow con-
vergence rate. The Hessian matrix can compensate the geometrical spreading effects and
then improve the convergence rate of FWI. While calculating the inverse Hessian matrix
directly is thought to be unfeasible because of its extensively computational cost. Even
though the researchers have developed various methods to approximate the full Hessian
matrix, this problem remains to be addressed. It is known that FWI and Reverse Time
Migration (RTM) share the same algorithmic structure and the gradient calculation in FWI
is formally identical to a RTM image with a cross-correlation imaging condition. In this
research, we found that auto-correlation of the forward modeling wavefields, namely, the
source illumination is actually equivalent to the diagonal part of the pseudo-Hessian. And
the gradient scaled by the auto-correlation of the forward modeling wavefields is equivalent
to a RTM image based on the deconvolution imaging condition. Furthermore, deconvolu-
tion imaging condition based gradient is much more close to the reflectivity. Hence, it is
possible for us to estimate the model perturbation through the traditional impedance in-
version method. Combing FWI and traditional impedance inversion forms the Iterative
Modelling Migration and Inversion (IMMI) method by Margrave et al.(2012). Finally, we
practiced this strategy on a portion of Marmousi model and the phase encoding method
was introduced to construct the gradient and diagonal pseudo-Hessian. And the iteration-
dependent ray parameter setting strategy in the iterative process has also been involved to
reduce the computational burden and balance the update.

INTRODUCTION

Full waveform Inversion (FWI) is a very important method to build the velocity model
for high resolution seismic imaging (Tarantola, 1984; Virieux and Operto, 2009; Margrave
et al., 2011) by minimizing the difference between the synthetic data and observed data.
It has been widely observed that the calculation of the gradient of a least-squares FWI
objective function corresponds to migrating the data residuals(Gao et al., 2012). Reverse
time migration and full waveform inversion share the same algorithmic structure (Shin et
al., 2001) and the gradient calculation in FWI is formally identical to constructing a Reverse
Time Migration (RTM) image with a cross-correlation imaging condition. Margrave et al.
(2011) states that any other wave-equation migration technology is also able to calculate
an approximate gradient.

The classical imaging principle given by Claerbout (1971) states that: the reflector ex-
ists where the downgoing wavefields and upgoing wavefields coincide in time and space,
which is equivalent to a zero-lag cross-correlation of the two wavefields (Claerbout, 1971;
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Kaelin and Guitton, 2006; Chattopadhyay and McMechan, 2008). While this cross-correlation
imaging principle actually provides a blurred image for that it employs the adjoint of the
forward modeling operator (Lailly, 1983). The imaging problem can be posed as an inverse
problem based on the minimization of a least-squares function (Tang, 2009) to deblur the
migrated image using the Hessian operator. Thus, the imaging problem is related to what
are discussed in waveform inversion problem(Ben-Hadj-Ali et al., 2011).

The gradient based method, which simplifies the Hessian matrix to an identity matrix,
has been proved to be a crude strategy in scaling. The un-scaled or blurred image can
be enhanced considerably by multiplying the inverse Hessian. Pratt et al. (1998) showed
that the Hessian can sharpen the blurred images obtained by the less expensive gradient
method and the diagonal terms of the approximate Hessian is a zero-lag correlation of the
scattered waves, which represent the geometrical spreading effects as the scattering point
moves away from the sources and receivers. While the explicit calculation of the Hessian
matrix is extremely expensive.

In this research, we found that the cross-correlation based gradient can be enhanced
obviously by the source-side illumination, which forms the standard deconvolution imag-
ing condition in RTM. And the source illumination is actually equivalent to the diagonal
part of the pseudo-Hessian, which was proposed by (Shin et al., 2001a). Furthermore,
the deconvolution imaging condition actually transforms the unit of the gradient from the
square of the amplitude to the reflectivity, which makes it possible for us to combine FWI
with traditional impedance inversion method. We applied the Iterative Modelling Migra-
tion and Inversion (IMMI) method by Margrave et al. (2012a) on a modified Marmousi
model. The phase encoding method was also introduced to construct the gradient and di-
agonal pseudo-Hessian and preconditioning the phase encoded gradient using the diagonal
pseudo-Hessian is equivalent to the deconvolution imaging condition (Pan et al., 2013a,b,c,
2014). In the iterative process, we varied the ray parameter regularly during the iterative
process, namely, iteration-dependent ray parameter setting strategy (Pan et al., 2014). The
effectiveness for combing these strategies was presented by the inverted result.

THEORY AND METHOD

The deconvolution imaging condition and cross-correlation imaging condition are re-
viewed firstly in this part. And the deconvolution imaging condition effects are presented
based on Marmousi model. And we compared and discussed the cross-correlation based
gradient and deconvolution based gradient. And we proposed to estimate the model per-
turbation using the traditional impedance inversion method. The combination of decon-
volution based gradient and impedance inversion method forms the Iterative Modelling
Migration and Inversion (IMMI) method by Margrave et al. (2012a).

Deconvolution and cross-correlation imaging conditions

The approximation to reflectivity I is always given as the ratio of upgoing wavefields
U(r, ω) to downgoing wavefields D(r, ω) (Claerbout, 1971):

I(r) =

∫ ωN

ω

dω
U(r, ω)

D(r, ω)
, (1)
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where r = (x, y, z) is the Euclidean coordinate of a subsurface position, ω is the temporal
frequency, and ωN is the Nyquist frequency. Equation (1) is unstable when D(r, ω) is 0 (or
very close to 0). To avoid this instability, the complex conjugate of downgoing wavefields
D∗ ("∗" denotes the complex conjugate) is always multiplied in denominator and numerator
of equation (1) (Guitton et al., 2007; Scheleicher et al., 2008), which gives:

I(r) =

∫ ωN

ω

dω
D∗(r, ω)U(r, ω)

D∗(r, ω)D(r, ω) + λAmax
, (2)

where λAmax is further stable term, λ is the damping factor, a small constant value and
Amax means the maximum value ofD∗(r, ω)D(r, ω). Equation (2) is equivalent to equation
(1) multiplied by an optimal Wiener filter (Guitton et al., 2007). The term D∗(r, ω)D(r, ω)
in the denominator is the auto-correlation of the downgoing wavefields, which is also called
the source illumination. And the unit of source illumination is the square of amplitude,
which means that it is independent of the frequency ω. Thus, the source illumination can be
approximated as a constant A2

D and we can take it out from the integration. Then equation
(2) becomes:

I(r) ' 1

A2
D

∫ ωN

ω

dωD∗(r, ω)U(r, ω) '
∫ ωN

ω

dωD∗(r, ω)U(r, ω), (3)

A2
D can be considered as a further stable term (Scheleicher et al., 2008). Thus, equa-

tion (3) becomes the so called cross-correlation imaging condition. The cross-correlation
imaging condition corresponds to Claerbout’s (1971) imaging principle: the reflector ex-
ists where the downgoing wavefields D(r, ω) and upgoing wavefields U(r, ω) coincide in
time and space, which is equivalent to a zero-lag cross-correlation of the two wavefields
(Claerbout, 1971; Kaelin and Guitton, 2006; Chattopadhyay and McMechan, 2008). The
cross-correlation imaging condition is similar to the deconvolution imaging condition but
lacks the intrinsic gain correction of the former. And the equations for reverse time migra-
tion with cross-correlation and deconvolution imaging conditions are shown in equations
(4) and (5) respectively:

Icross(r) =
∑

rs

∫
dω<{ω2fs(ω)G(r, rs, ω)G(rg, r, ω)ψ∗(ω)}, (4)

Idec(r) =

∑
rs

∫
dω<{ω2fs(ω)G(r, rs, ω)G(rg, r, ω)ψ∗(ω)}∑

rs

∫
dω<{ω4|fs(ω)|2|G(r, rs, ω)|2ψ∗(ω)}+ λAmax

, (5)

where Icross and Idec mean the images based on cross-correlation and deconvolution imag-
ing conditions respectively, fs(ω) is the source function, rs = (xs, ys, zs) and rg = (xg, yg, zg)
are the positions of sources and receivers,G(rs, ω) indicate the source wavefields,G(rg, r, ω)ψ∗(ω)
mean the backpropagated wavefields from all receivers by adjoint state technique, ψ∗(ω)
is the complex conjugate of the observed data, <{·} means the real part of the value and
Amax indicates the maximum value of the source illumination.

Analytic Solution of the Imaging Conditions

Figure 1 shows an analytic analysis for the two imaging conditions. Assuming that the
reflector is embedded in a homogeneous background with a constant velocity of c0. The
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wavenumber becomes k0 = ω/c0. The analytic expression of the downgoing wavefields ca
be written as:

D = A
eik0r̃s

4πr̃s
, (6)

where r̃s =
√

(x− xs)2 + (y − ys)2 + (z − zs)2 indicate the distance from the source to
reflector. When the incident wavefields illuminate the reflector, the scattered wavefields or
upgoing wavefields can be recorded at the receiver position:

U = AR
eik0(r̃s+r̃g)

4π (r̃s + r̃g)
, (7)

where R is the true reflection coefficient and r̃g denotes the distance from the receiver to
the reflector. The wavefields backpropagated from the receiver can be expressed as:

Ũ = AR
eik0r̃s

4πr̃s
, (8)

So, the analytic solution of the cross-correlation imaging condition can be obtained by
cross-correlating the downgoing wavefields and the complex conjugate of the backpropa-
gated wavefields:

Icross = DŨ∗ =
1

r̃2s

A2

(4π)2
R, (9)

And the analytic solution of the deconvolution imaging condition can be written as:

Idec =
ŨD∗

DD∗
= R, (10)

It can be seen that the unit of the cross-correlation imaging condition is the square of the
amplitude A2. However, the unit of the deconvolution imaging condition is reflectivity R.
Further, we can notice that the image by the cross-correlation imaging condition is poorly
scaled and the reflectivity estimation is off by a spatially variant factor r̃−2s , which can be
compensated in deconvolution imaging condition. Another advantage of the deconvolution
imaging condition is that it can improve resolution and suppress crosstalk noise, which
cannot be observed obviously (Poole et al., 2010).

Here, we presented a numerical example based on the Marmousi model with 2km in
depth and 4.5km in wide. Firstly, we use one shot record to image and examine the imag-
ing result. Figure 2 shows the imaging results based on cross-correlation imaging condition
when the source is located at 0.75km (a), 2.25km (b) and 3.75km (c) respectively. And
Figure (d), (e) and (f) are the corresponding source illuminations for different source loca-
tions.

Fig. 3a, b and c show the single shot imaging results based on deconvolution imaging
condition without damping term λAmax in equation (5). We can see that some extremely
large values appear, as indicated by the blue areas in Fig. 3a and c. Fig. 3d, e and f show the
imaging results based on stabilized deconvolution imaging condition with λ = 0.01. The
damping term suppressed the noise at far offset and stabilized the deconvolution imaging
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FIG. 1. Analytic solution of the cross-correlation and deconvolution imaging conditions. k0 is the
wavenumber, r̃s and r̃g indicate the distances from the source and receiver to the reflector, A and
R indicate the amplitude and the reflection coefficient, Icross and Idec are the images based on
cross-correlation and deconvolution imaging conditions respectively.

FIG. 2. Imaging results based on cross-correlation imaging condition. (a), (b) and (c) are the
Imaging results based on cross-correlation imaging condition when the source is located at 0.75km,
2.25km and 3.75km respectively. And (d), (e) and (f) are the source illuminations corresponding to
different source locations.
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FIG. 3. Imaging results based on deconvolution imaging condition. (a), (b) and (c) are the Imaging
results based on deconvolution imaging condition when the source is located at 0.75km, 2.25km and
3.75km respectively. And (d), (e) and (f) are the imaging results based on stabilized deconvolution
imaging condition.

FIG. 4. RTM imaging results before filtering based on cross-correlation imaging condition (a) and
deconvolution imaging condition (b).
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FIG. 5. RTM imaging results after filtering based on cross-correlation imaging condition (a) and
deconvolution imaging condition (b).

condition. Compared to the imaging results in Fig.2, it can be seen that the deconvolution
imaging condition can enhance the deep reflectors amplitudes of the imaging results.

Fig. 4a and b show the imaging results by cross-correlation imaging condition and de-
convolution imaging condition respectively before filtering by 18 sources distributed from
0.25km to 4.5km with a spacing of 0.15km. And Fig. 5a and b show the imaging results
after filtering based on different imaging conditions. We can see that amplitudes of the
deep reflectors in Fig. 5b have been obviously enhanced, compared to Fig. 5a.

FWI gradient based on deconvolution imaging condition

Full waveform inversion estimates the subsurface parameters through an iterative pro-
cess by minimizing the difference between the synthetic data Bu and observed data d
(Lailly, 1983; Tarantola, 1984) .The misfit function φ is formulated in a least-squares form
(Virieux and Operto, 2009):

φ =
1

2
‖d− Bu‖2, (11)

where B is the forward modeling operator, u mean the wavefields and ‖ ·‖2 means the `−2
norm.

The minimum value of the misfit function is sought in the vicinity of the starting model
m0(r) and the updated model can be written as the summation of the starting model and a
model perturbation δmk(r) (Virieux and Operto, 2009).

mk+1(r) = mk(r) + µkδmk(r), (12)

where µk is the step length in kth iteration, which is a scalar constant used to scale the
model perturbation δmk(r) and can be obtained through a line search method (Gauthier
et al., 1986; Pica et al., 1990).

CREWES Research Report — Volume 25 (2013) 7



Pan et. al

Then we can apply a second order Taylor-Lagrange development of the misfit function
and take partial derivative with respect to the model parameter. When the equation towards
to zero, the misfit function approaches its minimum value and the model perturbation can
be expressed as:

δm = −H−1g, (13)

where g = ∂φ
∂m

is the gradient and H = ∂2φ
(∂m)2

is the Hessian matrix. For gradient, the first
order partial derivative of the misfit function φ with respect to the model parameters, can
be obtained by a zero-lag correlation between the complex conjugate of the data residuals
and the first order partial derivative wavefields:

g =
∂φ

∂m
= <

(
JT∆d∗

)
, (14)

where J = ∂u
∂m

is the Jacobian matrix (or sensitive matrix), ∆d∗ denote the complex con-
jugate of the data residuals. T and ∗ indicate the transpose and complex conjugate respec-
tively. While it is extremely expensive to calculate the Jacobian matrix or the first order
partial derivative wavefields directly. For the Jacobian matrix, we can reexamine the wave
equation firstly:

B(r, ω)u(r, ω) = f(r, ω), (15)

where r = (x, y, z) means the subsurface position, ω is the angular frequency and f(r, ω)
is the source term. And according to the virtual source theory (Pratt et al., 1998; Virieux
and Operto, 2009), we can take partial derivative on both sides of equation (15):

B
∂u
∂m

= − ∂B
∂m

u, (16)

The right hand side of the above equation is always referred to as "scattered sources" or
"secondary Born sources". It underlines the fact that the scattered wavefields due to the
perturbations in the model parameters can be interpreted as the wavefields generated by a
set of secondary body sources. Isolating the Jacobian matrix on the left hand side of gives:

J =
∂u
∂m

= −B−1
∂B
∂m

u, (17)

Then substituting equation (17) into equation (14) and the gradient can be expressed as:

g = −<

{(
B−1

∂B
∂m

u
)T

∆d∗

}
, (18)

Because ∂B
∂m

= ω2, expansion of the transpose in the above equation results in the final
expression for the gradient:

g = −
∑
ω,rs

ω2<
{

uT ⊗
(
B−1

)T
∆d∗

}
, (19)

where ⊗ means cross-correlation. Hence, the gradient can be calculated using the adjoint
state method by applying a zero-lag convolution between the forward modeling wavefields
and back-propagated data residuals (Lailly, 1983; Tarantola, 1984), which avoids the direct
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computation of the first order partial derivative wavefields. The analytic expression of the
gradient can be obtained as:

g = −
∑
ω,rs

ω2<
{
A
eik0r̃s

4πr̃s
⊗ ARe

−ik0r̃s

4πr̃s

}
= −

∑
ω,rs

ω2<
{

1

r̃2s

A2

16π2
R

}
, (20)

And furthermore, we can notice that the gradient is indeed a poorly scaled image and it
decays as r̃−2s for this analytic example.

The Hessian matrix is the second order partial derivative of the misfit function with
respect to the model parameters. Under the assumption of small model perturbation, the
nonlinear term in the Hessian matrix can be ignored and the linear term forms the approxi-
mate Hessian, which can be written as a scalar product between two Jacobian matrices:

Ha = J∗J, (21)

Substituting equation (17) into the above equation forms:

Ha =

(
B−1

∂B
∂m

u
)∗(

B−1
∂B
∂m

u
)

(22)

The above equation can be expanded as:

Ha = ω4<
(
u∗u

(
B−1

)∗ (B−1)) , (23)

The pseudo-Hessian proposed by (Shin et al., 2001a) is constructed by two virtual sources:

Hpseudo = f ∗virtualfvirtual =

(
∂B
∂m

u
)∗(

∂B
∂m

u
)

= ω4< (u∗u) , (24)

Compared to the approximation Hessian Ha, we can see that the pseudo-Hessian Hpseudo

actually ignores the back propagation operator
(
B−1

)∗ (B−1). The model perturbation can
be obtained by plugging equation (14) and equation (21) into equation (13):

δm = −(J∗J + λI)−1(JT∆d∗), (25)

where I is an identity matrix and λ is an constant value. And λI is stable term which
makes Hessian matrix invertible. When considering high frequency asymptotics, the Hes-
sian matrix is highly diagonal dominant and the inverse of the approximate Hessian can be
replaced by its reciprocal:

δm = − JT∆d∗

J∗J + λI
, (26)

Plugging the gradient and approximate Hessian into the above equation gives:

δm = −<

{ (
B−1 ∂B

∂m
u
)T

∆d∗(
B−1 ∂B

∂m
u
)∗ (B−1 ∂B

∂m
u
)} , (27)

After a further derivation, the model perturbation becomes:

δm = −<

 1(
B−1

)∗ (B−1)
∑

ω,rs ω
2<
{

uT ⊗
(
B−1

)T
∆d∗

}
ω4u∗u

 , (28)
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The convolution of the forward modeling wavefields u∗u compensate the geometrical spread-
ing effects on the source-side and the backward propagation operator

(
B−1

)∗ (B−1) com-
pensates the geometrical spreading effects on the receiver-side. Under the assumption of
infinite receiver coverage, this part can be approximated as an constant. And the diagonal
part of u∗u is the auto-correlation of the forward modeling wavefields and the gradient pre-
conditioned by Diag (u∗u) is equivalent to the deconvolution imaging condition in reverse
time migration:

δm ' −<


∑

ω,rs ω
2<
{

uT ⊗
(
B−1

)T
∆d∗

}
Diag (ω4u∗u)

 , (29)

The analytic expression for the pseudo-Hessian can be written as:

Hpseudo = <
{
ω4u∗(r′s, ω)u(r′′s , ω)

}
= <

{
ω4

(
A
e−ik0r̃′s

4πr̃′s

)(
A
eik0r̃′′s

4πr̃′′s

)}
, (30)

The diagonal part of the pseudo-Hessian can be obtained when r′s = r′′s :

Diag (Hpseudo) = <
{
ω4u∗(rs, ω)u(rs, ω)

}
= <

{
ω4

(
A
e−ik0r̃s

4πr̃s

)(
A
eik0r̃s

4πr̃s

)}
= <

{
ω4 A2

16π2r̃2s

} (31)

Hence, we can obtain the analytic expression for the model perturbation by inserting equa-
tion (20) and (31) into equation (29):

δm ' <

{
−
∑

ω,rs ω
2 1

r̃2s
A2

16π2R

ω4 A2

16π2r̃2s

}
= −<

{∑
ω

ω2R

}
, (32)

It is obvious that the model perturbation based on the deconvolution imaging condition
compensate the energy loss in the cross-correlation based gradient and estimate the reflec-
tivity directly.

Phase Encoded Gradient and Phase Encoded Pseudo-Hessian

While it is still extremely expensive to construct the gradient using the traditional shot-
profile method. Simultaneous source technique was introduced in seismic imaging for re-
ducing the extensively computational buren firstly, namely, delayed-shot migration (Zhang
et al., 2005). As we mentioned above, the construction of the gradient is equivalent to a
migration process. Hence, it is also possible for us to create the gradient using multisource
technique for improving the efficient of FWI.

While when the sources are densely distributed, the multisource method can introduce
seriously crosstalk noise arising from undesired interactions between unrelated source and
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receiver wavefields. The phase encoding method can be employed to disperse or shift these
unwanted crosstalk terms. The linear phase encoding technique is performed by applying
linear phase shifts (or time delays in time domain) to the shot records. The phase shift
function γ(xs, p, w) = ωp(xs − x0) is controlled by the ray parameter (or slant parameter)
p and source’s position xs. Generally, sufficient ray parameters can disperse or reduce these
crosstalk terms effectively. And a common-receiver gather can be transformed into a single
trace from a linear source wavefields by τ − p transform (Zhang et al., 2005):

d̃ (rg, rs, p, ω) =

∫
d (rg, rs, ω) eiωp(xs−x0)drs (33)

where rg = (xg, yg = 0, zg = 0) and rs = (xs, ys = 0, zs = 0) mean the locations of the
receivers and sources. Actually, equation (12) can be considered as a Fourier transform, re-
placing the wavenumber k with ωp. This theory can be used to determine the ray parameter
spacing4p for slant stacking (Zhang et al., 2005).

The slant gradient with ray parameter pi can be expressed as:

g̃ (r, pi, ω) =
∑
ω

∑
rs

∑
r′s

<
{
ω2 | A(ω) |2 G̃ (r, rs, ω) Ḡ∗ (r, r′s, ω) eiωpi(rs−r′s)

}
, (34)

In the above equation, when rs = r′s, the linear phase encoded gradient g̃ (r, pi, ω) is equal
to the conventional shot-profile gradient gsp (r, ω). And when rs 6= r′s, the linear phase
encoded gradient g̃ (r, pi, ω) becomes the cross terms gcross. So, the linear phase encoded
image can be written as a summation of the conventional shot-profile gradient and the
crosstalk term:

g̃ (r, pi, ω) = gsp (r, ω) + gcross, (35)

To disperse the crosstalk term in the above equation, we can construct the gradient by slant
stacking a set of ray parameters:

g̃ (r,pg, ω) =
∑
ω

∑
rs

∑
r′s

Ng
p∑

i=1

<
{
ω2 | A(ω) |2 G̃ (r, rs, ω) Ḡ∗ (r, r′s, ω) eiωp

g
i (rs−r′s)

}
,

(36)
where i and N g

p indicate the ray parameter index and the maximum number of the ray
parameters used to construct the phase encoded gradient. And pg means the ray parameters
vector:

pg = [ p
g
1 pg2 pg3 . . . pg

Ng
p

], (37)

We can also use the phase encoding method to construct the pseudo-Hessian, which can be
expressed as:

H̃pseudo

(
pH , ω

)
=
∑
ω

∑
rs

∑
r′s

NH
p∑

i=1

<
{
ω4 | A(ω) |2 G̃ (r, rs, ω) G̃∗ (r′, r′s, ω) eiωp

H
i (rs−r′s)

}
,

(38)
where NH

p is the maximum number of ray parameters for constructing the phase encoded
pseudo-Hessian and pH is the ray parameter vector:

pH = [ pH1 pH2 pH3 . . . pHNH
p

], (39)
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Similarly, the phase encoded pseudo-Hessian can be written as a summation of the exact
pseudo-Hessian and the crosstalk term:

H̃pseudo

(
pH , ω

)
= Hpseudo (ω) +Hcross, (40)

And the diagonal part of the phase encoded pseudo-Hessian can be obtained by setting
r = r′:

Diag
(
H̃pseudo

(
pH , ω

))
=
∑
ω

∑
rs

∑
r′s

NH
p∑

i=1

<
{
ω4 | A(ω) |2 G̃ (r, rs, ω) G̃∗ (r, r′s, ω) eiωp

H
i (rs−r′s)

}
,

(41)
So, preconditioning the phase encoded gradient using the diagonal part of the phase en-
coded pseudo-Hessian can give a crude approximation of the reflectivity:

R̃
(
pg,pH , ω

)
=

g̃ (r,pg, ω)

Diag
(
H̃pseudo (pH , ω)

)
+ λÃmax

, (42)

The above equation can be named as phase encoded deconvolution imaging condition,
which is actually equivalent to the shot-profile deconvolution imaging condition with suf-
ficient ray parameters in pg and pH .

Model Perturbation Estimation Using Impedance Inversion Method

As discussed above, deconvolution imaging condition actually transforms the unit of
the gradient from square of amplitude to reflectivity. Now, it is able for us to convert the
reflectivity to impedance using the theory in impedance inversion. Recall that at normal
incidence, the reflection coefficients and the impedance have the relationship of:

Rn =
In+1 − In
In+1 + In

=
∆I

In+1 + In
, (43)

where Rn means the reflection coefficients at interface n, In and In+1 are the impedance at
n and n+ 1 layers respectively, and ∆I is the impedance difference. If In is close to In+1,
we can assume that:

In+1 + In ' 2In, (44)

And then the impedance perturbation can be approximated as:

∆I ' 2InRn, (45)

So, during iterative cycles of FWI, the impedance update can be written as:

Ik+1 = Ik + ∆Ik = Ik + 2IkRk, (46)

where Ik and Ik+1 are the impedances in the kth and k + 1th iterations and Rk is the
reflectivity in the kth iteration.
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Table1. Pseudo code for IMMI method

BEGIN← I0, initial model;
WHILE ε ≤ εmin or k ≤ kmax

1. Identify the ray parameter pgi,k for constructing the phase encoded gradient
2. Identify the frequency band fk = f0 → fmax, finterval, every n iterations
3. Generate the data residual δP and apply low-pass filtering δP̃ = low_pass

(
δP, fk

)
4. Create the phase encoded gradient g̃k

(
pgi,k, ω

)
5. FOR i = 1 to NH

p , every 1 or m iterations

Construct the diagonal part of the phase encoded pseudo-Hessian: Diag
(
H̃k
pseudo

)
END FOR

6. Impedance Perturbation Estimation:

∆I = 2Ik<
{

g̃k(pgi,k,ω)
Diag(H̃k

pseudo(pH ,ω))/NH
p +λAmax

}
7. Calculate the step length µk using the line search method
8. Update the impedance:

Ik+1 = Ik + 2µkIk<
{(

Diag
(
H̃k
pseudo

(
pH , ω

))
/NH

p + λAmax

)−1
g̃k
(
pgi,k, ω

)}
9. Calculate the relative least-squares error:

ε = ‖Ik+1−Itrue‖2
‖Itrue‖2

END WHILE
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FIG. 6. (a) True Velocity Model; (b) Initial Velocity Model.

FIG. 7. Shot records. (a) Observed data; (b) Synthetic data; (c) Data residual. The source location
is [3.75km, 0.025km]

Iterative Modeling Migration and Inversion (IMMI) Method

As proposed by Margrave et al. (2012b), the estimation of the reflectivity using decon-
volution imaging condition allows us to combine FWI with Standard Methodology (SM),
which forms the Iterative Modeling Migration Inversion (IMMI) method. The pseudo code
of the IMMI method is presented in Table 1.

NUMERICAL EXAMPLES

To verify the advantage and effectiveness of deconvolution imaging condition for FWI,
a numerical test was performed using a 2D Marmousi dataset. The true velocity model is
shown in Fig.6a and Fig.6b is the initial velocity model obtained by applying a 2D Gaussian
convolutional smoother to the true velocity model with half width of 30m. The model is
4.6km in wide and 2km in depth. We generate the synthetic data with 18 shots and 920
receivers located at the top surface of the model. The source interval is 50m and receiver
interval is 5m. And the dominant frequency of the source wavelet is 10Hz. Fig. 7a, b and
c show the observed data, synthetic data and data residual when the source is located at
(3.75km, 0.025km).

Fig.8a, b and c show the source illumination, cross-correlation based gradient, deconvo-
lution based gradient respectively, when the source is located at (x = 2.250km, z = 0.025km).
Fig.9a, b and c show the source illumination, cross-correlation based gradient, deconvolu-
tion based gradient respectively, when the source is located at (x = 3.750km, z = 0.025km).
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FIG. 8. (a) Source illumination; (b) Gradient by cross-correlation imaging condition; (c) Gradient by
deconvolution imaging condition. The source location is (2.25km, 0.025km).

FIG. 9. (a) Source illumination; (b) Gradient by cross-correlation imaging condition; (c) Gradient by
deconvolution imaging condition. The source location is (3.75km, 0.025km).

The damping factor λ for the stabilized deconvolution imaging condition is 0.01. It can
be seen that the amplitudes of the gradient based on deconvolution imaging condition is
stronger than that of the gradient based on cross-correlation imaging condition, especially
for the deep reflectors.

Fig.10a and b are the normalized gradients with 18 sources based on cross-correlation
imaging condition and deconvolution imaging condition respectively. It is obvious for us
to observe that the amplitudes of the deconvolution based gradient are stronger than that
of the cross-correlation based gradient. Then we can transform the gradient to impedance
perturbation following equation (20) and update the initial velocity model iteratively using
the model perturbation following equation (21). The estimated impedance perturbations are
shown in Fig.11a and b. The inverted velocity models after the first iteration are shown in
Figure 12. We can see that the updated velocity models have a big improvement comparing
with the initial velocity model just after first iteration in FWI. Furthermore, the deep parts of
the inverted velocity model based on deconvolution imaging condition are much better than
that based on cross-correlation imaging condition. Fig. 13 shows the inverted velocities of

FIG. 10. (a) Gradient by cross-correlation imaging condition; (b) Gradient by deconvolution imaging
condition.

4 well logs at the location of 0.5km, 1.5km, 2.5km and 3.5km respectively. Even though
it is not very obvious, we can still recognize that the inverted velocities by deconvolution
imaging condition (green lines) are more close to the true velocities than that of cross-

CREWES Research Report — Volume 25 (2013) 15



Pan et. al

FIG. 11. (a) Impedance perturbation by cross-correlation imaging condition; (b) Impedance pertur-
bation by deconvolution imaging condition.

FIG. 12. (a) Inverted velocity model by cross-correlation imaging condition; (b) Inverted velocity
model by deconvolution imaging condition.

correlation imaging condition (black lines).

Finally, we applied the Iterative Modelling Migration and Inversion (IMMI) method on
the modified Marmousi model using phase encoded gradient and phase encoded pseudo-
Hessian (Pan et al., 2013a, 2014). The true velocity model and initial velocity model are
shown in Fig.14a and b. We constructed the phase encoded gradient and preconditioning
the phase encoded gradient using the diagonal part of the phase encoded pseudo-Hessian is
equivalent to the deconvolution imaging condition. We varied the ray parameters regularly
for different iterations for reducing the computational cost and balancing the update itera-
tively. The impedance perturbation is estimated using the traditional impedance inversion
method. We also employed the multiscale approach with increasing the frequency band
from [0Hz, 5Hz] to [0Hz, 32Hz] with a step of 3Hz every 10 iterations. Fig.14c shows
the inverted velocity model after 100 iterations. We can see that the structures of the ve-
locity model are reconstructed very well. And the iterative inversion process is stable and
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FIG. 13. Comparison of the true velocity (red), initial velocity (blue), and inverted velocity based
on cross-correlation imaging condition (green) and deconvolution imaging condition (black) at the
location of 0.5km (a), 1.5km (b),2.5km (c) and 3.5km (d) respectively.

efficient, which proves the effectiveness of the IMMI method. Fig.15a, b and c compare
the true velocity model (red lines), initial velocity model (black lines) and inverted veloc-
ity model (blue lines) at 0.5km, 1km and 3km respectively. It can been that the inverted
velocity model match the true velocity model very well.

CONCLUSION

In this research, we analyzed the cross-correlation imaging condition and deconvolu-
tion imaging condition for RTM and we also gave an analytic solutions for the two imaging
conditions. And the deconvolution imaging condition actually transforms the unit of the
gradient from the square of the amplitude to the reflectivity, which enables us to use tradi-
tional impedance inversion method to estimate the impedance perturbation. Furthermore,
we found that the source illumination, the auto-correlation of the forward modeling wave-
fields, is actually equivalent to the diagonal part of the pseudo-Hessian. The phase encoded
gradient and phase encoded pseudo-Hessian are introduced to reduce the computational
cost and preconditioning the phase encoded gradient using the diagonal part of the phase
encoded pseudo-Hessian is also equivalent to the deconvolution imaging condition. So, we
implemented the IMMI method with phase encoded gradient and phase encoded pseudo-
Hessian and applied this strategy on a modified Marmousi model. The reconstructed ve-
locity model using IMMI method matches the true velocity very well, which proves the
effectiveness of the IMMI method.
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