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ABSTRACT

Estimating the seismic wavefields response corresponding to the small model parame-
ters’ perturbations is a classical problem in inverse scattering problem of exploration geo-
physics. The Fréchet derivatives or sensitive matrices play a crucial role in perturbation
analysis and are considered as sensitivity kernels in least-squares inverse problems. The
forward modeling problem in poroelastic media has been studied by many researchers,
while the inverse problem for poroelastic media has rarely been investigated. The scat-
tering potentials indicating the perturbations of model parameters can be considered as
engines for seismic wave scattering. And they are closely related to the Fréchet derivatives.
In this research, we reviewed the Biot’s theory for poroelastic wave equations and derived
the poroelastic scattering potentials represented by different field variables firstly. And then
we derived the coupled poroelastic Fréchet derivatives with respect to 9 poroelastic param-
eters, namely, the Lamé coefficients of the dry frame A4, and p, porosity/fluid term f,
density of saturated medium p;,, fluid density ps, C', M, p,and mobility of the fluid m us-
ing perturbation method and non-perturbation method. The porosity/fluid term f involved
by Russell et al. (2011) for linearized AVO analysis is considered as a poroelastic parameter
for sensitivity analysis. The explicit expressions for these Fréchet derivatives with respect
to different poroelastic parameters are provided. When wave propagating in poroelastic
media, there are two kinds of compressional waves: the fast compressional wave and the
slow compressional wave. In this research, we also derived the P-SV Fréchet derivatives in
which the fast compressional wave and slow compressional wave are coupled together.

A REVIEW OF BIOT’S THEORY FOR POROELASTIC WAVE EQUATIONS

Biot (Biot, 1955, 1956a,b; Biot and Willis, 1957; Biot, 1962) developed classic theory
of the propagation of the stress waves in porous elastic solid containing a compressible vis-
cous fluid. He found that the poroelastic material can be described by four nondimensional
parameters and a characteristic frequency. In this section, the concepts of the stress and
strain in the aggregate including the fluid pressure and dilatation are reviewed following
Biot. For a volume of the porous elastic solid saturated by a viscous fluid system repre-
sented by a cube of a unit size. The stress tensor can be separated into two parts: one
denotes the stress acting on the solid parts of each face of a cube,

S: Oy  Sa (1)

and the other denotes the stress acting on the fluid parts of each cube face,

S 0 0
0 S 0 (2)
0 0 S

where S is a scalar and it is proportional to the fluid pressure p, which can be expressed as:
S = —up, 3)
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where v denotes the porosity, which is designated as that which is connected with the bulk
motion of the fluid relative to the solid (Biot, 1955). Such that, the stress field of the porous
medium can be denoted as:

Ope + 5 S: Sy
Sz Oyy + 5 Sz 4
Sy Sz 0.+ 8

In this research, the sealed space is considered part of the solid. The strain tensor in the
solid can be denoted as:

€z V2 Ty
Y= Yy €2z

where

Crx = axu:m
eyy = Oyuy,

€2z = azuz )

1
Yz = 3 (Oyu. + 0zuy) ©)

1
Yy = ) (8zux + axuz) )
1
Y, = 3 (Opty + Oyuy) ,
€ = €yp + Eyy + €.

where u;,7 = x,y, z is the components of the displacement vector of the solid. These theo-
ries are based on the assumptions that the size of the unit elements is very large comparing
with the size of the pores and the displacement of the material is uniform and averaged over
the element. Similarly, the strain in the fluid can be defined as:

e = 0,U, + 0,U, + 0.U., 7

where U;,1 = x,y, z is the average fluid displacement vector. And the displacement of the
fluid relative to the solid is:

¢ = — (Opwy + Oywy + 0,w,) , )]

where w; = v (U; — u;) ,i = x,y, 2. with the vector notation:

Uy, U,
u=| vy |,U=[ U, | ,w=0v(U-—nu). 9)
U, U,

e, € and ¢ are equal to applying divergence operation to u, U and w respectively, which can
be written as:
e=V-u,e=V-Uf=-V-w (10)

Now we can establish the relationship between the stress and strain of the solid-fluid ag-
gregate. All dissipative forces are disregarded here for convenience, which means that the
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system is conservative. Further, Biot (1955) assumed that the solid-fluid system is statisti-
cally isotropic and took the properties of the symmetry of the material into consideration.
Then the complicated stress-strain relations are simplified considerably:

Oge = 2[L€xx + )\sate - @Mga
Oyy = 2fieyy + Asare — @ME,
Ozz = 2ﬂ€zz + )\sate - @Mgv

Sz = KUYz, (11)
Sy = U7y,
Se = MYz,

p=—pMe+ M,

where A\ and 4 are the Lamé coefficients. In abbreviated notation, the above equations can
also be written as:

Vij = 2pei; + 0ij (Asare — pME) ,
0ij = 1,1 =7, (12)
0y = 0,0 # j.

In other publications of (Biot, 1956a,b, 1962), the equation denoting fluid pressure can also

be written in the form of:
S = Qe+ Re, (13)

where R = v?M is a measure of the pressure required on the fluid to force a certain volume
of the fluid into the aggregate while the total volume remains constant (Biot, 1955) and it
is also called Biot elastic coefficient. () = v(¢ — v)M is the coefficient which couples the
volume change of the solid and that of the fluid. If the fluid pressure s is equal to zero, the
fluid strain € can be written as:

Qe
e=—2 14
R (14)
The equations of motion are:

a$0-2?$ + 8y<z _'_ azgy — _CL)Q psatu:r + pfwﬁ) 9

ayayy + azgz + azgz = _w2 PsatUy + pfwy) 5

aza,z,z + 0 S+ &cg = _C‘-)Q satUz + wy),
Y y Psat Prw;) (15)

- w2 (pfu:r + mwm) + ZW(W/E)wz = 8x ((pMe - M’S) )
— w? (pruy + mwy) +iw(n/k)w, = 0, (pMe — ME),
—w? (prus + mw,) +iw(n/k)w, = 0, (pMe — M) ,

Then inserting equation (11) into equation (15) and for constant values of the parameters,
these equations can be written as:

PV A+ (p+ Asar) Ve — pMVE = —w® (psartt + pyW) 6)
V (pMe — M¢) = —w? (ppu + mw) + iw(n/k)w,

By introducing the operations V- and V X, the shear waves can be uncoupled from the
compressional waves and obey independent equations of propagation.

Vu=¢e,V-w=—-¢(Vxu=AV xw=( (17)
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Applying the divergence operation on both sides of equation (16) gives:

Vg [()‘Sdt + 2:“)6 - @Mﬂ = _w2(psat6 - pfg)’
Vi(—pMe + M¢) = —w?(—pse +m&) +iw(n/K)E,

These two equations correspond to the propagation of two compressional waves. And each
of the compressional wave coupled motion in the fluid and the solid. Similarly, by applying
the V x operation on both sides of equation (16), we can get the equations corresponding
to the two shear waves:

(18)

MVQA = _w2<psatA + pfﬂ)7

19
W/ R)R2 = —w(pgA + mY), 1

where m = p;~. And these two shear waves couple the rotation of the solid and that of the
fluid. In other publications of Biot (1956a), the compressional waves and shear waves are
also written in the form of:

V2 [(Asat + 20)e + Q] = —w?(p11e + pr2e),
V3(Qe + Re) = —w?(prae + pae),
—w?(puA + p1oT) = pVA,

— w?(pr2A + pT') =0,

(20)

where I' = V x Uand ¢ = V - U. And p;1, p12 and poo are the mass coefficients and if
there is no relative motion between the solid and fluid, we can get that:

P11+ 2p12 + P22 = Psat,
P11 = Psat — 2Upf + mU2>
p12 = vpy —mu?,

2
P22 = MU,

21

The fast compressional wave and slow compressional wave

To discuss the compressional waves, we can introduce a reference velocity «.. firstly.
If the relative motion between the fluid and solid were completely prevented in some way,
which means that e = € in equation (16). Then we can get the reference velocity of a
compressional wave:
VZ= H

¢ Psat 7

where H = P+ R+ 2@ and P = \,,; + 2u. The solutions of equation (20) can be written
in the form (Biot, 1956a):

(22)

_ i(lz+at
e = Chell ),

€ — CQGi(lx+at), (23)

Then the velocities can be determined by inserting equation (23) into equation (20)(Biot,
1956a):

2
V= Yo (24)

Zi
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where , o ,
PO+ 20220105 + 2G5
Lot +2%CiCi+ £
where ¢ = 1,2 indicates the fast P-wave and slow P-wave respectively. We can also

find the solutions for fast P-wave and slow P-wave in the papers by Morency and Tromp
(2008), Morency et al. (2009) and Yeh et al. (2004).

Zi = )

The shear wave

Considering equation (17), to get the shear waves, we can eliminate I in the equations,
which gives:

2
pViA = —w’py (1 - £> A, (25)
P11P12

We can see that there is only one shear wave exists and the velocity of this S-wave can be

expressed as:
Hsa
ES Y (26)
pll (1 o ,0111/)212>

POROELASTIC SCATTERING POTENTIALS

The poroelastic wave equations were obtained through Biot’s pioneering work (Biot,
1956a,b; Biot and Willis, 1957; Biot, 1962), just as what we have discussed above. The
solutions of the two wave equations have been studied by many authors. However, the
Green’s functions can be different because of different combinations of field variables.
One set of field variables used to express the poroelastic wave equations are average solid
displacements u and relative fluid-solid displacements w and another method is using aver-
age solid displacements u and fluid displacements U. In this section, we will extend the 3D
isotropic elastic methods of Stolt and Weglein (2012) to treat the problem of poroelastic
scattering , invoking each of the two representations in turn.

Solid and Relative fluid-solid Displacement Representation

Recall the poroelastic wave equations represented using solid displacements u and rel-
ative fluid-solid displacements w:

V- DtV -u+CV-w)I+2uV*u+F = —w? (pggut + PFIW),

27
V- (OV-u+ MV -w)I+f=—w(psu+ pw-+mw), 7

where I is the identity tensor and p = w%. And the poroelastic governing wave equations
can be expressed in matrix form (Karpfinger et al., 2009):

Lo(r,w)- ( e ) — - ( p ) , (28)

. .. T T
where r = (x, y, z) indicates the subsurface position, u = ( Uy Uy Uy ) LW = ( Wy Wy W, ) ,
F = F(w)d(r —r') and f = f(w)d(r — ') are the sources applied to solid and fluid phases

CREWES Research Report — Volume 25 (2013) 5



Pan et. al

Tablel. Nomenclature, listed as introduced in the text

Symbol Description

r=(z,y,2) Spatial coordinates (m)

w Temporal frequency

Asats Adry Lamé coefficients of the saturated material and skeletal frame

sats Hdry Shear modulus of the saturated material and skeletal frame

Kt Kary, Ks, Ky Bulk modulus of the saturated material, dry frame, solid material, and
fluid

Psats Pss Pf Densities of the saturated material, solid material, and fluid

v Porosity of the saturated material

K Permeability of material

i Viscosity of the fluid

T Turtosity of the matrix

p=1-— % Biot-Willis coefficient (Biot and Willis, 1957)

M1t = "”_j +% Pore space modulus

f=¢©*M Fluid/porosity term

Qsat Bsat Compressional and shear velocities of the saturated material

P Fluid pressure

u=(u, u, u, )T The average solid displacement vector

U= ( v, U, U, )T The average fluid displacement vector

w=v(U-—u) Relative fluid to solid displacements

m = = Mobility of the fluid

Q=v(pe—v)M The coefficient which couples the volume change of the solid and that
of the fluid

R =1v?’M Biot elastic coefficient

C=pM

p=1
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respectively. F'(w) and f(w) are the source signatures, and §(r — r’) is the Dirac delta
function. Lp is a 6 x 6 matrix:

(L (rw) L (r,w)
£P(ra w) — ( 552 (I', w) £f2<r’ w) (29)
where £, £°2, £/! and £/? are all 3 x 3 matrices and they can be written as:
le le le Ls? L52 L82
sl s s s s s s s
ct=| Ly Ly L. |,c”=| L2 L L2 |,
le Ls le L52 Ls L82
2y 2y 2z (30)
Lttt L2 L2 L2
cio= | oiooit i) peo [ Lot L
Lf 1 Lz”g Lf 1 Lf 2 LZ% sz

And we can notice that £°? = £7! and each element in these matrices can be written as:
Ly} = 0\ary0; + 0 f0; + 2010 + > 03105 + pear® 4, j = 7,y %1
JFi
LSl = 8')\dry8j -+ @fa] + a]/-'[/a’L?Z 7é ]
L” L' = L2 = 0,00, + pju® i, j = x,y, 2
Ly = L? = 0,00;,i # j.
Llff = —O;MO; + pw —mw?,i,j =x,y, 2
L} = —0;M0;,i # j.

(D

The poroelastic scattering potentials Vp are the difference between the perturbed wave
operator £ p and unperturbed wave operator £%:

Vp=~Lp— LY, (32)

The poroelastic scattering potentials are also a 6 x 6 matrix, which can be written as:
vsl vsf

where V*!, v/ and V/? are all 3 x 3 matrices and the elements in these matrices can be
written as:

‘/1151 = /\ghya a)\dryai + foaiafai + pgat (apw + (Bsat) a alia + em‘ Za a’lt ) aZa =Y, %,
J#i
VSI ()\dry) a'a)\drya‘ + foaiafaj + pgat( sat)Qa aﬂa“ ! 7é .]
st Cy0;a.0; +pfapf i =z, 2
Vil = Co0ia.0;,i # j. (34)
Vi{2 = —moamw — MyO;an0; + ﬁOCLﬁWQ, 1,] =2,Y,%
Vif = —MyO;an0j,1 # .

I
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where

_ Psat — pgat ~ Apsat.

a - bl
g pgat Psat
iy _ /\dry - Agry ~ A/\dry_
dry )\27,1/ - )\dry )
CF-1 Af
YT T
N A
T T
0
o =PIl Aﬂf; (35)
g Y Py
O - CY N AC
B m — m° N Am'
m = me m’
M- MO N AM
=P A
TR T

Solid and fluid displacement representation

In this part, we will express the poroelastic scattering potentials using the solid displace-
ments u and the relative fluid displacements U. Recall the poroelastic wave equations:

V- AtV -u+QV-U)I+2uV?u+F = —w? (pru + pp), (36)

V-(QV-u+ RV -UI+f=—w?(pu+p,U).

Similarly, it can written in a matrix form:

£t (r,w) ﬁsf(r, w) ‘ u(r,w) - F -
L w) L7 (rw) wir,w) | R
And the elements in differential matrix can be written as:
Lii = 0:ary: + 2000, + 0:f 0; + Z ;pd; + pnw i, j = x,y, 2;
1#]
ijl = OiAary0; + 0; fO; 4+ O;110;,1 # j.
Lzszf - azQaz + p12w27 Z’] =Y, %; (38)
Ly = 0:Q0; i # .
LZJ-? = &R@ + ,022w2, 27] =2x,vY, 2;
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And the corresponding scattering potentials are:
Vifl = p(l)lapn(’UQ + )\(d)’f‘yaia/)‘dryai + Qﬂoaiauai + Mo Z aja,uajv i;j =T,Y,%;
i#]
V;;l = )\gry&a)\dryﬁj -+ fo&-afaj + uo@auﬁj,i 7é ]
V{:f = )90,,w* + Qosagdi,i, j = Ty, 2; (39)
Vil = Quoiaqd;,i # j.
‘/i{? = p(2]2ap22w2 + Qoaia’Raiv ZJ] =T,Y,%;
V? = Rodiard;,i # j.
where

0
_Pu— P Npiy
Qpyy =

P i
_ P12 — P(1)2 -~ Apm,
Ap1p = 0 - )
P12 P12
_ P22 — P ~ Apa
P 05  p2
. )\dry - Agry A>\dry .
a)\d,«y - )\0 = )\ Y
dry dry (40)
S A
ay = f() - f )
_nme b
T T
Q-Q" _AQ
T T
_R-R" AR
aRp = RO ~ R .

INVERSION SENSITIVITIES

Recent developments in least-squares inverse problem has stimulated new interests in
the classic problem in exploration geophysics, which is the estimation of the sensitivity
of the seismic wavefield response corresponding to the small perturbations in the model
properties. The sensitivity operator, which is often referred as the Fréchet derivative, plays
a crucial role in the least-squares inverse problems (Tarantola and Valette, 1982; Dietrich
and Kormendi, 1990), such as Full Waveform Inversion (FWI) and Least-squares Migration
(LSM).

Scattering Potential and Fréchet Derivative

The Fréchet derivatives are always introduced to express the inversion sensitivities in
forward and inverse scattering problems which begin with a wave equation operator £ and
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a Green’s function G:
L(ry,w)G(ry,rs,w) =4d(r, —ry), 41)

where L is also called the differential operator, r, = (z4,9,,2,) and ¥y = (x5, Ys, 25)
indicate the receivers’ locations and sources’ locations respectively. We can define the
unperturbed and perturbed wave equations as follows:

Lo(ry, w)Go(ry, 1y, w) =0(ry —1y), (42)

L(ry,w)G(ry, ry,w) =0(ry —ry), (43)

where £ = Ly + 0L, and )L is the model perturbation which is identical to the scattering
potential V.

Fréchet Derivative: Perturbation Derivation
Substituting perturbed wave modeling operator £ = L, + V into equation (51) gives:
(Lo+V)G =d(ry —ry), (44)

Isolating the Green’s function G in the perturbed medium on the left hand side of the
equation forms the classical Lippmann-Schwinger equation (Newton, 1966; Taylor, 1972;
Stolt and Weglein, 2012):

G = Gy + Gy VG (45)

The wavefield response 6G = G — G corresponding to the model perturbation can be
formulated in a series in the quantity GoV (Innanen, 2008; Stolt and Weglein, 2012):

0G = Go(VGy)" = Go (VGy)' + Gy (VGo)* + Gy (VGo)* + ..., (46)

n=1

When considering a small scattering potential V or the norm of the operator GV is smaller
than 1, the high order terms in the above equation can be ignored:

0G ~ GQVGO, (47)

So, the Fréchet derivatives can be expressed as:

G )%
5 = Go5.Go, (48)

Fréchet Derivative: Non-Perturbation Derivation

Reexamine the perturbed and unperturbed wave equations (50) and (51), all of the left
hand side terms are functions of model parameters, while the source term on the right hand
side is not. Taking partial derivative on both sides of the wave equation with respect to the
model parameters s gives:

oG oy
07 — _EG’ (49)
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Substituting G for G in the above equation forms the single scattering or Born approxi-
mation under the assumption of small model perturbation:
oG oy

“8s ~  Os Go, (50)
The right hand side of the above equation is always referred to as "scattered sources" or
"secondary Born sources". It underlines the fact that the scattered wavefields 6G due to
the perturbations in the model parameters such as density dp, Lamé coefficients oA and
0 K, can be interpreted as the wavefield generated by a set of secondary body forces, which
propagate in the current, unperturbed medium L, (Dietrich and Kormendi, 1990). The
inversion sensitivities or perturbation analysis is to compute the Fréchet derivatives for the
slight perturbations of various model parameters. Because the wave modeling operator L
can be expressed using —Gy ', the Fréchret derivative can be expressed as:

—_— EGO—GO, (51)
S S

Poroelastic Fréchet Derivatives
I: Perturbation Derivation

In this part, we derived the coupled poroelastic Fréchet derivatives using the field vari-
ables solid displacement u and relative fluid-solid displacement w. The poroelastic wave
equations in equation (27) can be formulated in matrix form:

(s o) (i) -(es) @

)

where ¢ = x,y, 2. And the solutions of the displacements can be obtained in the integral
representation (Pride and Haartsen, 1996; Muller and Gurevich, 2005):

(s = e (G0 G02) (B00) - e

0
If we define the unperturbed displacements as ( llvo > and the perturbed displacements as

u . . . . .
( W ) , the basic poroelastic scattering equation can be written as:

u; u? ciaex] vl vt u
i\ i AV ij i ) ik Vjk ) k 54
( w ) ( w! ) +/ﬂ ( cil ol )\ vt v ) w S
where (2 indicates the three dimentional volume and j, k = x,y, z. The unperturbed and

perturbed medium can be denoted using the Greens’s functions. And the Green’s functions
for the inhomogeneous medium can be written as:

s s s S 0/vs 0vsf s sf s s
(G0 95 ) = (o8 oG )+ [av (ogd oo )-( 5 VR ) (S8 G )
Gi Gy Gi Gy Q G Gy Vi Vik G Gu

Z (55)
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And the above equation can be formulated in a shothand notation:
G=Gy+ / dV Gy VG, (56)
Q
And it can be expanded as the scattering series:

G - GQ + /Gong + //GOVGOVGO + .. oy (57)

(N

Vv
NONLINEAR

According to the Born approximation which assumes the week inhomogeneity, we can ig-
nore the nonlinear terms in the scattering series which is equivalent to replacing the Green’s
function G with the Green’s function G in equation (71):

5G ~ / AV G VG, (58)
Q

We can notice that the scattered wavefields dG can be presented by the volume integrals
with kernels involving the Green’s tensors G and the scattered source. The scattered
source is composed of the scattering potentials and the Green’s funtcion in the unperturbed
medium. And the scattering equation becomes:

0G5 6GY / Gl Gy vl vl e anlex
z 7 ~ av 1) ? . J J . kl kl 59
<6sz sz ) = W gt ol )\ vy v ) ey ez )0 O

where ¢, j, k,l = x,y, 2. And dividing model perturbations on both sides of the scattering
equation gives:

oGy 8Gy Vi Vi

s os | o / dv(OGf; p ) Bs b ,(002% "Gy ) (60)
oG oGl | e NG G ) vy v | NGl e )

0s 0s 5s  ds

II: Non-Perturbation Derivation

The perturbed poroelastic wave equations can be written as:

Orsl Orsf /
Lst PLY u; F;é(r—r')
] 7 3 J — J
< oLy OL{;Z > ( w; > < fi0(r =) ) ©b
Takaing partial derivative with respect to model parameters on both sides of the equation
gives:

071 sl 0rsf

0 ij 0 ij O0rsl Ofsf %

Ly LY Wk oL oL % ’
0s O0s S
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And replacing the displacements using the Green’s tensors, as shown by equation (61):

aGsl  aGe! vt v
0rsl O7sf Jl Jl _Jk ik s sf
(L L) | o ds | _ | 9s 0Os | Gl G (63)
Ly L)\ oGy oGy vil v \af 6lf)
0s ds Js 0Os

Isoloating the Fréchet derivatives ob the left hand side of the equation:

oGs  aGs! Vi Vi

0rst O7sf\ 1 L s sf
as  os | _ (L i | as os | (Gh G 64)
ocy ocp | =\ o) vy vp | ey o)
ds ds Jds  0s

The inverse of the wave modeling operator can be replaced using the Green’s tensors in the
unperturbed medium:

oGy oGy Vi Vi

S Sf _ s S
Os ds | _ (OGiJ‘l "G ) | 9s  0s |. (G,ﬁ Gk{) (65)
oo oo | = e o) | v ve | ey op

0s 0s Js Os

Under the assumtpion of week inhomogeneties, the Green’s tensors in the perturbed medium
can be replaced by the Green’s tensors in the unperturbed medium:

oGy 0Gy/ Vi Vi

oGs oGl? Gl OGE vyl v oGl °ql? )’
0s 0s ds  0Os

Coupled Poroelastic Fréchet Derivatives

In this research, we defined 9 Fréchet derivatives matrices: A, B, C, D, E, F, Q, T
and Z corresponding to the 9 poroelastic model parameters: gy, f, ity Psat> P> C, M, p
and m respectively. The parameter f = ¢*M is fluid/porosity term defined by Russell
et al. (2011) for linearized poroelastic AVO analysis. In this research, we will discuss the
wavefields response with respect to the perturbation of this parameter. The first element in
the scattered wavefields matrix G can be expressed as:

5G;;1y — OGsl VSlOG;}E + OGsl VSlOGzlx + OGsl VSlOGii; + OGsl VSlOG;;lE + OGsl VSIOGZ;;

rx ' xT zx ' XY i Ty ' yx Ty 'Yy

(67)
FOGLVG + (GG, + GV G + GV + GV G,
FOGLVE G+ GV G+ GV Gl 4+ PG VA Gl + GV G
FOGVEOGH + GV Gyl + CGHLVEOGH 4 GV Gl + GV G
HOGE VG + GV Gl + GV Gl 4+ OGH VA G + GV Gl
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+0GLVEG

zz ¥ 2y

sl
yx

Tz ZZ

Ty Yy

zy ¥ yz Tz ¥ zx

O ysfy/sf0, sl O ysfy/f20 sf 0 vsfy/f20 ysf 0 ysfy/f20 sf
+O0GEIVEIOGE, 4 0GEEVIZ0GE, 1 0GP Ge! 4 OGlvIoGs]

Txr " TXT

rr " xY Txr " Tz

0 vsfy/f20vsf 0, ~f217sf0 sf 0 vsfy 20 vsf 0 vsfy/f20,vsf 0, vsfy/f20 sf
G VOGS, 1 0GRV 0Ge] 1 0GEyI20Ga! 4 0GEVI20Gs! 4 0GeTvI20Ge

G VPG

xz B zZZz

rz ¥ 2y

Similarly, the other elements in /G can be expressed as:

sait = Y (epvitai+avila +oalvila + alviia)

i7j7k7l:x7y7z
f_ 0vsly s10vsf | O0vsly s sf0f2 | 0vsfy sfOsf | 0vsfy f20~f2
6l = > (GG +evilial + eVl Gl - caviral)
i7j7k7l:x7y7z
2 _ 0sfy froysf | 0vsfy sfOf2 | 0vf2y,5f0ysf | 0 1f2y,f20~f2
5Gil = Z (ij V;k GZZ + ij Vﬁg le + Gij ka GZZ + Gij Vﬂc le)
i7j7k7l::l/l?y’z

(68)

And to calculate these Fréchet derivatives matrices with respect to different parameters,
firstly, we can derive the scattering potentials for different model parameters, which are
listed in APPENDIX A. So, the Fréchet derivatives for different parameters become:

G ac

ANy AN\ gy

A =
sGsl sGi?
a')\dTy a’)\dry
e Tex
E— Qp, ap,

sasf 8GI?

Qpy

Qp

f

oGzt oay 5Gst  8Gs e Tex
’B _ af af ) ’ C _ a//"' aMQ ,D — apsat a'psa; ,
sGsl 8GY sGsl 8GY; sGsl 8GY
a'f af a/" a/" apsat, apsat
(69)
ac ac an an ap ap
F - b Q - b T - b
sasl  6GI? eI Teth Sle I Teth
ac ac apnr apnr ags ags
(70)
sGst sasf
a a
7= m mn (71)
5Gs oGI]
A A

The elements in matrix A can be expressed as:

G _

a
Adry 0,5,k l=a,y,z

f
8G;;

12
oG,

= > G
Wdry ik l=a,y,z

= > G
Nary 44 kl=w,y,2

£ (o

0 sl
ij

0sf
ij

g

<
(

sl
Ik Xdry \ 051, 0-sf
— | G+ G

a)‘dTy

Vi
IR, dTy) 0G2{+OG:J1

a)‘dr'y

a>‘d7‘y

Vi
S oy 4063

vt vsf e

kA kA gy X koA gy

Ik, Adry 0G2{+0G5Jf Ik, Adry OGﬁ—‘rOijf Ik Adry OGz{ .
ANy ANy QX gy
vl 174 vi2

kA ko Agr kA
e ol o] (2R oyl oif (e ) oGf?).
ANy AN gy Xy

V'Ska V'Ska V‘J;CQA

IR Adry 0~f2 | 0~f2 IR Adry 0~sf | 0~f2 IR Adr 0 f2

o - | PG + G =) PG + G =) PG | -
>‘dTy G')‘dTy a/\dry

(72)
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We can substitute the scattering potentials V., for parameter A, into the above equation

and calculate the first element 2 N 9G3: in the Fréchet derivative matrix fG
dry dry
5G§:I OGsl )\ a 8 OGsl OGsl )\ a 8 OGsl OGsl )\ a a OGsl
ay ( dry~x CC) xT + Tx ( dry~x y) yx ( dry“x Z) zZT
dry

B 73

OGsl ()\drya ax) OGsl OGsl ()\dTya ay) OGsl OGsl ()\dTya az) 1 Onglp ( )
OGS1 ()\drya 833) Ochl OGS1 ()\drya 6y) OGzl OG51 ()\drya 82) OGZ}C.

And the elements in matrices B, C, D, E, F, Q, T and Z can be expressed as:

Gt

V'Slcl ngf ngf
azl _ Z OG?;( ;m) 0GZ%+°G§{ .(71 P OGZ{JFOGZ@‘ ;A,p oGt 4 onf onf
P i,5,k,l=x,y,z p P P
saf vl vl A (V2
il _ Z onjl< ik,p OGZ{+OG?J‘1 ik,p 0G£?+°ijf ik,p OG2{+OGZf Jkp on2
RN T r “r o
5GI2 vl vl vsf
azl — Z (OG:](’( ;k,p OGZ{"‘OGZf ;km 0G£l2+0G{j2 ;k,p OGZ{+OG{]'2 Jkp OGf2
P ke l—= P P P
i,k l=a,y,2

(74)

where p indicate the model parameters: p = Mgy, f, 14, Psats Pf, C, M, p and m and a,
indicate the model perturbations: a, = ax,,,, af, Qu; p,ps Qppy A0, Qpr, G5 AN Gy

Coupled P-SV Fréchet Derivatives

According to Biot’s theory, when wave propagating in poroelastic media, there are two
kinds of P-wave and one kind of S-wave. As indicated by Fig.1, when the incident fast
P-wave illuminates the scattering potential, the reflected fast P-wave, slow P-wave, SH
wave and SV wave can be produced. The reference plane is defined by the incoming fast
P-wave and outgoing fast P-wave. The SV wave and slow P-wave are lying within the
reference plane. While the SH wave is normal to the reference plane. In low frequency
limitation, the slow P-wave wavenumber is quite larger than fast P-wave wavenumber. So,
the open angles ¢, and 6, are different.

In this section, we follow Barros et al. (2008, 2010)’s method to analyze the P-SV
Fréchet derivatives in poroelastic media. The governing equations for P-SV wave system
are given in matrix form:

PSVyrPSV PSV
LPSYyPsY — Frsv. (75)

. pPSV . . . )

where matrix £ is the differential operator:
0z (Ndry + [ +2u)0: + (p — p2,u)w2 —wp(Agry + f + p)0: 0:C0, + pfw2 —0:Cwp
£Psv _ ()‘dry + f + p)wpd: 02110z + psatw2 - p2w2()‘dry + f+2u) COrwp *WQPQC
0,CO, + pfw2 —Cwpd 0, MO, + ﬁw2 —Mwpd

wpCa, pfw2 — p?w?C wpM O, pw? — Mp2w?

(76)
where p = iw?, p is the ray parameter and f = @M in the fluid/porosity term (Russell
etal., 2011). And UP5V and F5V are the displacements and source vectors respectively:

UPsv — ( U. U, U. U, )T FPSV _ ( F,. F,, Fp, Fy, )T’ (77)
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FIG. 1. Scattering scheme in poroelastic medium. k}, is the incident fast P-wave wavenumber.
kL, and k3%, are the reflected fast P-wave and slow P-wave wavenumbers respectively. égy; and
esy; are the unit direction vectors for incident SV wave and SH wave. ésy,. and eg g, are the unit
direction vectors for reflected SV wave and SH wave. 6, is the open angle between the incident
fast P-wave and reflected fast P-wave. 6, is the open angle between the incident fast P-wave and
reflected slow P-wave.

U, and U, are the vertical and radial components of the solid displacements and U, and
Uy, indicate the vertical and radial components of the relative fluid-to-solid displacements.
And F,, F,,, Fy, and Fy, are the corresponding sources. Here, we define the Fréchet
derivatives A, B, C, D, E, F, Q and T for the model parameters of \gy.f, (L, Psats Pf

C, M and p. So, the Fréchet derivatives J;; = %, J =ABCDEFQT,p=

dp
Ndrys [y 1 Psat, p£, C, M, p; @ = s, f;j = z,r. we can define the unperturbed wavefields

and perturbated wavefields as:
Upt = (0L U g g ) (78)

U™V = (U, U, Up U )",

So, the scattered wavefields corresponding to the small perturations of the model parame-
ters can be writen as:

6UPSV —_ UPSV _ UOPSV = ( 6Usz 6Usr 5Uf2 6UfT )T (79)

We can also define the wave operators £ SV and £7°Y in the unpertirbed and unperturbed

medium:
£P5V — E(I]:’SV + 5£PSV, (80)

where L7 can also be written as the scattering potentials V7*V. The unperturbed and
perturbed wave equations can be expressed as:

‘COPSVU(I;')SV — FPSV, (81)
(£0PSV + 5£PSV) (U(I;SV + 5UPSV) — j:PSV7

Based on the Born approximation, we can get:

EOPSV6UPSV — _5LPSVUPSV ~ _5£PSVU(I)DSV — 6.7:'PSV7 (82)
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The right hand side of the above equation is always referred to as "scattered sources" or
"secondary Born sources”. The scattered wavefields 60U due to the perturbations in the
model parameters, can be interpreted as the wavefields generated by a set of secondary
body forces propagating in the current, unperturbed medium L (Dietrich and Kormendi,

1990). Isolating the scattered wavefields on the left hand side of the equation gives:

where G7° and § F75V are the Green’s functions and scattered sources vectors:

gPSV —

(STPSV — _VPSVU(};SV = ( 5Fsz 5Fsr 6Ff2 (5Ff7' )T’

5UPSV:/ gPSV(')‘FPSVdZ
M

W W

EEEE
QD
S SRR e

where the P-SV scattering potentials V7°V are:

where

PSV
Vi

PSV
Via
VPSV

= az<>\27'ya>‘dry + foaf + 2/’L0a,u)az + (p(s)atapsat -

P
vSV:

e

oy
31

‘/41135V

PSV
Viz
v,

PSV
iz,
Vi

= _wp<)\2’l”ya/Adry + /’[/Oaﬂ)az7

= C%),a00, + p?apfw
= —0,Cwp,
= (AgyOra,, + flay + pla,)wpds,

— P’ (NG ng,, + flar +2u°a,),

= /jjoazauaz + pgatapsatw
—0,Cwp,
_w2p200a07

= C0,a00, + p?apfw

—Cacwpd,,
= M°0,a,,0, + ﬁoaﬁw2,

= _Moa'waam

= wpCacd,,
= p?capwa
= proaMaza

= ﬁ0a5w2 — M%appu?.

. p2w200ac7

2

N
<

W
NNN:N
EEEE

Q

N

Q

e e R e

N

Q

SN wIaeNn

(83)

(84)

(85)

(86)

(87)
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So, the P-SV Fréchet derivatives can be expressed in a integral representation:

PSV SV
6I§P — / gPSV (V(SP UPSV) dZ, (88)
M

Fréchet derivatives with respect to Agq;

The Fréchet derivatives with respect to )4, mean the wavefields response correspond-
ing the change in the model parameter \4.,. Firstly, we can obtain the P-SV scattering
potential V e SV for Adry Dy setting all of the other model perturbations a dry> Qs Qpaars Qp s
ac, ay, and a,, as 0:

Ay 0=, O wp)\drya,\dryaz 00
Ao ax, wpd, —p2w?X) a 00
PSV _ dryArary WPOz b dryPary
Vi 0 0 0 0 89
0 0 0 0
Substituting VP 5V into equation (96), we can get the Fréchet derivatives for parameter
/\dry g
PSV
A / grsv [ X Ul | dz (90)
a)‘d'r'y M a/)‘dry ’
_ (SUsz 6Usr 6Ufz 6Uf7' T
A - < (Z)‘d'r‘y a>‘dr'y a)‘d'r“y a>‘d'r'y ) (91)

So, the Fréchet derivatives for parameter )4, can be expressed using the displacements
and Green’s functions:

(SUij .

a')\dry

— Ny 0-UL, G 0.4 XG,, wpUe 0. G54, wpd. G UL, =N, w*p* UGS i = s, f1 ] = 2,7
(92)

Fréchet derivatives with respect to f

The porosity/fluid term f = ©? M was involved by (Russell et al., 2011) for linearized
poroelastic AVO analysis. In this research, we derived the Fréchet derivative matrix with
respect to f:

d.fa;0, —wpfas;0, 0 0
0 2,2 £0
psv _ | fraywpd. —p wifiay 0 0
Vi 0 0 0 0 ©3)
0 0 00
Substituting VP 5V into equation (96), we can get the Fréchet derivatives for parameter f:
5UPSV (5£PSV
A = — _/ gPSV UPSV dZ, (94)
af M af
T
A — ( ez Uy 8Upz  0Usr ) 95)
af  af af af
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So, the Fréchet derivatives for parameter f can be expressed using the displacements and
Green’s functions:

5Uij

ar

z
J

0.+ fOwpUy, 0G5+ fPwpd. Gy UL — fw?p? UL G i = s, [ = 2,7
(96)
Fréchet derivatives with respect to |

To obtain the Fréchet derivatives with respect to parameter i, we can calculate the
scattering potentials for parameter y firstly:

20.1°a,0, — p*ula,w? —wppla,d, 00
0 0 22,0
PSV pa,wpd, 0.1a,0, — 2p*w*p’a, 0 0
Vi = 0 0 00 D
0 0 00
The Fréchet derivatives vector B for parameter
SU PSV vPSV
B = = — / gV | L _Ul®V ) dz, (98)
a, M au
T
§Up,  8Uy,
B (M S Q= N (99)
And Fréchet derivatives with respect to parameter  can be expressed as:
oU;; . .
a_] = — (207 — p’w® + wpd.) p’UL G+ (wpd. + 02 — 2p°w?) pPULGY i = s, 3] = 2,7
”w
(100)
Fréchet derivatives with respect to pgq
The scattering potentials for parameter p,,; can be written as:
p(s]atapsatw2 O 0 0
0 2
V;D;itv = 8 psata’(l;satw 8 8 (101)
0 0 00

And the corresponding Fréchet derivatives with respect to parameter p,,; can be expressed
as:

C — — _/ gPSV Psat U(I;SV dZ, (102)
aﬂsat M apsat
_ (U su, 0Up 0U, \T
C o ( 6pSllt a‘Psut apsat a/’sut ) (103)
5Uij 0 2U0 G5* 0 2y70 ysroc o R
= PsatW Ys iJ + PsatW Uerij 0 =25, f7] =z,T. (104)
apsat
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Fréchet derivatives with respect to ps

The scattering potentials for parameter p; are:

0 0  ay,w 0

prsv_| 0 0 00
pr | agwt 0 0 0
0 apw 0 0

And the corresponding Fréchet derivatives D are:

PSV
D_ sursv _ _/ GPsv MLUPSV "
apf M 5Pf 0 9

D o 6Usz (SUST (SUfz 5Uf'r T
- Ap s Ap ap s App

§Uij

ap

0 2970 0 2710 0 2710 , ,
= —p;w U GIF — pyw USZG{jZ — pjw USTG{;,Z =s,f1j==zr1.
!

Fréchet derivatives with respect to C

The scattering potentials for parameter C' are:

0 0 0.C% 0, —0,Cacwp

YPSV _ 0 0 CacO,wp —w*p?Cla,
c 0.C%ac0, —Cacwpd, 0 0
wpClacd, —p*w?Clac 0 0

And the corresponding Fréchet derivatives can be expressed as:

PSV PSV
E = oU — _/ gPSV <5‘CC UéDSV> dZ,
ac M ac

T
E — 6Us, 6Ugr 5Ufz 5Uf7'
ac ac ac ac

= O (UG5 — 0.pUf, G — 0.opU]. G5 — WPV, G + PULGYS

—c° (waZUO GI7 4+ wpa, U GIT — pPuw?U? Gfr) Ji=38,f17=2zm.

sr"4j sz1g sr"1j

Fréchet derivatives with respect to M

The scattering potentials for parameter M are:

00 0 0
00 0 0
0 0 0.M%p0. —MOYapwpd,
0 0 wpM®ap 0, —MOayp*w?

PSV _
V' =

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)
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And the Fréchet derivatives are:

sursy v
F = P _/M gPSV( a;@ U{;SV> dz, (114)
F:(wi U Vg M)T (115)
apnr ans an apnr
‘5Uij 092710 Sz 0 0 ~fz 0 0 ~fr 0,2, 2y10 ~fr - .
S M O.U;, Gy =M wpd, Uy, Gy + M wpd, Uy Gy — M p w Uy, Gy i = s, f1§ = 2,7
(116)
Fréchet derivatives with respect to p
The scattering potentials for parameter p are:
0 0 0 0
0 0 0 0
vgsv I O pazw? 0 (117)
00 0 pazw?
And the corresponding Fréchet derivatives are:
SUFSV SCESV
=== /MgPSV <—5pﬁ Uubsv | dz, (118)
o
1= (e e L B (119)
oUs; ~0, 2710 ~fz | =0, 2770 ~fr ;
— =pwU;,Gii +pwlUp, Gy i=s, fij=zT. (120)
p
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APPENDIX A: SCATTERING POTENTIALS FOR DIFFERENT POROELASTIC
PARAMETERS

The whole poroleastic scattering potentials are listed from equations (35) to (39). And
the poroelastic scattering potential for model parameter p can be obtained by keeping model
perturbation a, and setting other model perturbations as 0. So, the poroelastic scattering
potential V,_,, for model parameter ps,; can be obtained by setting ay = 0, ay,,, = 0,
au:O,apf =0,ac =0,a, =0,ay =0and a; = 0:

8;:0° 2.0
vpsat=(ojp sat 1o 0>,z‘,j=x,y,z, (121)
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This means that the whole scattering potential can be written as a summation of the scat-
tering potentials for different poroelastic model parameters:

V=V, tVi+V.+ V.tV +Vc+Vu+V;+Vn, (122)

Similarly, we can get the scattering potentials V., .Vy, Vi, V.. Ve, Vi, V; and V,,
for other model parameters respectively:

0; 9; 0 .
v}\dw — ( dry (C)D\dry 0 ) 1, ] = X,Y, 2

Vf: faafa O)7i7j:x7yaz7

)2 a0
V, = ( wat)*05a,0; + 5mgsat( sat)’ 221 05005 8 ) =y, 2,

i p%a,,w? o
— E f Pf —
Pf ( 5ijpfafpfw2 0 X2 T, Y, z,

. 0 C(]aiacaj .o
V _(Cgﬁaca 0 ),Z7j—l',y,z

v [0 0
M=\ 0 —Mydayd; bl =Ty, %

<

(123)
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