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ABSTRACT

We present a review of the classical concept of instantaneous frequency, obtained by dif-
ferentiating the instantaneous phase and also show how the instantaneous frequency can
be computed as the first frequency moment of the Gabor or Stockwell transform power
spectrum. Sample calculations are presented for a chirp, two sine waves, a geostationary
reflectivity trace and a very large quarry blast. The results obtained clearly demonstrate
the failure of the classical instantaneous frequency computation via differentiation of the
instantaneous phase, the necessity to use smoothing and the advantage of the first moment
computation which always results in a positive instantaneous frequency as a function of
time. This research points to the necessity of devising an objective means to obtain optimal
smoothing parameters. Future work will focus on using linear and nonlinear inverse theory
to achieve this goal.

INTRODUCTION

While the concept of frequency is very old, dating back to Pythagoras,( 529-570 B.C.),
creator of the Pythagorean scale, a system of tuning that was used until the early 1500’s,
the concept of instantaneous frequency is relatively new, originating with Nobel Laureate,
Dennis Gabor (Gabor, 1946). In exploration seismology, instantaneous frequency has been
used as one of number of seismic attributes, beginning with the work of Taner (Taner et al.,
1979) and extended by Barnes (1992, 1993), In electrical engineering, an excellent re-
view of the theory and application of the instantaneous frequency is provided by Boashash
(1992a,b).

In this research work, we will first review the basic theory of the classical method of
computing the instantaneous frequency in the continuous domain. Then we will review an
application of a technique developed by Fomel (Fomel, 2007b) to address the smoothing
issues arising in the computation of the instantaneous frequency. We will then present the
method using the moments of the linear time-frequency transforms as applied by Margrave
(Margrave et al., 2005) and Stockwell (Stockwell et al., 1996). In addition to the linear
time-frequency transform analysis, there exists the bi-linear Wigner-Ville transform Wigner
(1932); Ville et al. (1948), which has also been applied to dispersive signal detection in
earthquake records (Prieto et al., 2005). This bi-linear transform will not be considered in
the present research scope.
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THEORY

Classical Instantaneous Phase

The classical instantaneous phase originates with phase modulation concepts (Boashash,
1992a,b), in which the signal, f(t), has a representation of the form,

f(t) = amplitude(t)eiω0t+i
∫ t
0 mod(τ) dτ . (1)

In (1), amplitude(t), is a very slowly-varying function of time, with ω0 the carrier fre-
quency, with mod(τ) a slowly-varying modulation function. Thus the signal f(t) does not
look very different from the basic exponential,

ei ω0 t = cos(ω0 t) + sin(ω0 t), (2)

which is represented graphically in polar form as a rotating vector with instantaneous an-
gular frequency, ω0.

The above can be generalized to a general complex signal, known as the analytic signal,
given by

A(t) = f(t) + iH[f(t)] = f(t) + ig(t) (3)

where g(t) is obtained by the Hilbert transform (see APPENDIX ), a convolution operation
defined by

g(t) =

∞∫
−∞

f(τ)
1

π(t− τ)
dτ. (4)

Basically the Hilbert transform maps cosines into sines and sines into negative cosines.
Thus each Fourier transform component is phase rotated by

π

2
, with positive frequency

components phase-delayed by
π

2
and negative frequency components phase-advanced by

π

2
. The resultant inverse Fourier transform of this phase rotation yields the Hilbert trans-

form. The application of the Hilbert transform to whole earth seismology, as an arrival
diagnostic is elegantly presented in the paper by Choy and Richards (Choy and Richards,
1975), titled "Pulse distortion and Hilbert transformation in multiply reflected and refracted
body waves".

From (3), A(t) can be written in polar form with magnitude Env(t) and phase, Φ(t)
given by

A(t) = f(t) + ig(t) = Env(t) exp [iΦ(t)], where (5)

Env(t) =
√
f(t)2 + g(t)2, and (6)

Φ(t) = tan−1

[
g(t)

f(t)

]
(7)

From the foregoing, following the electrical engineering literature in communication theory
Wikipedia (2013), we can write that

f(t) = I(t) = Env(t) cos[Φ(t)], and (8)
g(t) = Q(t) = Env(t) sin[Φ(t)] where (9)
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I(t) is denoted as the in-phase component of the analytic signal and Q(t) is denoted as the
quadrature component.

We can differentiate (7) with respect to time by simple application of the chain rule to
obtain the instantaneous angular frequency (IAF), Ω(t), given by

Ω(t) =
dΦ(t)

dt
=

n(t)

d(t)
=

f(t)
d

dt
g(t)− g(t)

d

dt
f(t)

f(t)2 + g(t)2
. (10)

This estimate is divided by 2π to obtain the instantaneous frequency.

We can anticipate the following problems in the computation of the instantaneous fre-
quency (IF) from (10). First, the denominator, d(t), the envelope squared, may approach
zero at various times. Second, the numerator n(t) is composed of a difference of the pair-
wise multiplication of two signals, involving both the differentiation operation and con-

volution with the Hilbert kernel,
1

πt
. All of the above amplify the noise. Furthermore,

point-wise computation of the instantaneous frequency is somewhat paradoxical, given
that in general, we need an time-interval to estimate frequency. A partial solution to these
problems is outlined in the following section.

Smoothed Classical Instantaneous Phase – Local Frequency

Fomel (2007a,b) has initiated a technique to address the noise amplification issues. The
origin of this analysis stems from previous work with Claerbout (Fomel and Claerbout,
2003) and was also employed by Liu (Liu et al., 2011).

To facilitate the development of Fomel’s technique we redefine our signals in discrete
time and cast our instantaneous frequency, Ω(t), as computed in (10), in matrix-vector
form. In what follows, the variable, t will be implicitly associated with the vector indices.
Using Fomel’s notation, n(t) in (10) will be written as n. In addition, we define f as the
discrete version of Ω(t) divided by 2π and represent the point-wise division of the two
signals in (10) as a matrix-vector operation given by

f = D−1n, (11)

where D is a diagonal matrix whose elements are the discrete time values of the envelope
squared multiplied by 2π. As Fomel points out, due to the envelope squared possibly
approaching zero, the inverse must be regularized. A straightforward way to do that is use
a Marquardt type of regularization. Thus we modify (11) and propose to calculate f by
writing that

f =
(
D+ ε2R

)−1
n, (12)

where R is the matrix representation of a regularizing operator. In his paper on shape
regularization, (Fomel, 2007b), Fomel writes the regularization operator R in terms of a
smoothing operator S, as

S =
(
I+ ε2R

)−1
, (13)
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and then after scaling by λ, writes the estimated instantaneous frequency (now smoothed)
floc as

floc =
[
λ2I+ S

(
D− λ2I

)]−1
Sn, (14)

It is (14) that we will use for calculating a local rather than instantaneous frequency in the
section PRACTICE.

First Moment Computation of the Local Frequency

An alternative to the Fomel smoothing technique is provided in the book by Cohen
(Cohen, 1995). He presents an estimate of the local frequency by taking the frequency
moment of a time-frequency transform. Thus the local frequency, floc, which we will use
in the section PRACTICE, is given in continuous time, by

floc =
1∫

|S(t, f)|2 df

∫
f |S(t, f)|2 df. (15)

In (15), the time-frequency transform, S(t, f), can be computed using either the Gabor
transform or the Stockwell transform. These are both given here for completeness:

SGabor(t, f) =

∫ ∞

−∞
g(τ) |f | win(τ − t)e−i 2πfτdτ and (16)

SStockwell(t, f) =
1√
2π

∫ ∞

−∞
g(τ) |f | e[−(t−τ)2 f2]/2e−i 2πfτdτ, (17)

where g(t) is our seismic trace, and in (16), win(t) is chosen to be a fixed-width Gaussian
window. We note that the Stockwell transform’s window is also Gaussian, whose width
decreases as the frequency increases. For both moment computations, the integrals are
performed over the signal bandwidth.

PRACTICE

We now apply the theory to four different signals:

1. A linear chirp.

2. Two sine waves.

3. A non-stationary trace.

4. A quarry blast.

The results are presented in the following four figures which clearly demonstrate the use-
fulness of the instantaneous frequency. For the computations, we use (10) for the instanta-
neous frequency, (14) for Fomel’s floc and (15) for floc obtained using the time-frequency
moments, obtained from either the Gabor or Stockwell transforms. All frequency axes have
units of Hz.
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FIG 1.

Panel (a) :Linear Chirp – 10 to 100 Hz
Panel (b) : Instantaneous Frequency
Panel (c) :Fomel’s floc and Gabor’s floc.
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FIG 2.

Panel (a) :Two sine waves: 40 and 60 Hz
Panel (b) : Instantaneous Frequency
Panel (c) :Fomel’s floc and Gabor’s floc.
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FIG 3.

Panel (a) :Nonstationary Seismic Signal
Panel (b) : Instantaneous Frequency
Panel (c) :Fomel’s floc and Gabor’s floc.
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FIG 4.
Panel (a) :104kg TNT Quarry Blast
Panel (b) : Instantaneous Frequency
Panel (c) :Fomel’s floc, Gabor’s floc and Stockwell’s floc.

In Fig. 1, we have generated a linear chirp signal with frequency range 10 to 100 Hz. We
clearly see that the instantaneous frequency and floc computed via either Fomel’s method
or the frequency-moment method yield the same results. In the frequency-moment method,
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there is a slight discrepancy due to edge effects. This edge-effect is clear on all the exam-
ples.

In Fig. 2, composed of the sum of two sine waves of 40 and 60 Hz, there is clear
departure between the instantaneous frequency calculation in Panel(b) and floc of Panel(c).
The correct instantaneous frequency is 50 Hz, which is correctly demonstrated in Panel(c).
Panel(b), the classical instantaneous frequency, is completely dominated by artifacts due to
the numerical instability of dividing by the envelope squared in (10). In fact, between the
erroneous impulses in Panel(b), the value of the instantaneous frequency is 50 Hz, which is
not apparent due to the scale distortion. Furthermore, the instantaneous frequency artifacts
are negative, a non-physical result.

Panel(a) of Fig. 3 is a non-stationary seismic trace, our first realistic simulation exam-
ple. Again the classical instantaneous frequency shown in Panel(b) has artifact impulses
and negative values. The curves of floc in Panel(c) are comparable, with floc obtained via
the Gabor transform, much smoother, due to the wide size of the Gaussian window cho-
sen. The Fomel method results in a somewhat noisier result that depends on the size of the
smoothing window and scale factor, λ. We have found that it is not easy to choose these
values to obtain results that are close to floc obtained using the frequency-moment calcula-
tion. The general trend in frequency as a function of time, shown in Panel(c) was verified
by computing a windowed frequency spectrum for a number of different window positions
along the trace.

In Fig. 4 we present the analysis from a quarry blast near Malkishua, Israel, consist-
ing of 20000 kg of AFNO ( ammonium nitrate) explosive, which has an approximate TNT
equivalent of 10000 kg. Panel(a) shows the data from the blast, which has a highly non-
stationary character. The signal begins with high frequency noise, then the main explosion
arrival with high frequency surface waves, whose frequency content decays with time un-
til the noise reappears. The instantaneous frequency shown in Panel(b) is again artifact-
dominated. In Panel(c), we compare three measures of floc: Fomel’s method, the Gabor
frequency-moment computation and the Stockwell frequency-moment computation. All
three behave in a similar fashion. The Gabor curve is the smoothest and generally agrees
with the Fomel curve. The Fomel curve does go negative near 10 seconds. The Stockwell
curve is shifted up from the other two curves, has a similar character to the Fomel curve,
and clearly shows the return of the high frequency noise just after 40 seconds. This data
set is clearly a challenge for the estimation of the instantaneous frequency as a function of
time, regardless of the methods chosen.

CONCLUSIONS

We have presented three techniques to compute the instantaneous frequency attribute:

1. The classical method based on the direct differentiation of the instantaneous phase;

2. A smoothed version of the classical method based on a regularization technique de-
vised by Fomel (Fomel, 2007b);

3. A frequency-moment method based on integration of the time-frequency spectrum
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obtained using either the Gabor or Stockwell transform.

From the examples, it is clear that the classical method fails except in very simple situ-
ations, a fact also alluded to by Fomel (Fomel, 2007a). The most stable computations,
that never go negative, are the frequency-moment computations, based on either the Ga-
bor or Stockwell transforms. Future work will focus on an objective means of choosing
the smoothing parameters in both the Fomel and frequency-moment methods, in order to
obtain consistent results.

APPENDIX-HILBERT TRANSFORM

The Hilbert transform of a function, H[f(t)] is given by

H[f(t)] =

∞∫
−∞

f(τ)
1

π(t− τ)
dτ. (A-1)

We see that the Hilbert transform is the convolution of the function f(t) with the Hilbert
kernel, 1/π t. In the frequency domain, the Hilbert transform is the product of the Fourier
transform of f(t) and the Fourier transform of 1/π t. In this analysis of the Hilbert trans-
form, it is much easier to get an intuitive understanding in the frequency domain, so we
shall focus on explicitly obtaining the Fourier transform of the Hilbert kernel, 1/π t, which
we will denote by k(t)

The Fourier transform of F [k(t)] is given by

F [k(t)] =

∞∫
−∞

1

π t
e−iωt dt (A-2)

=

∞∫
−∞

cos(ω t)

π t
dt

︸ ︷︷ ︸
I1

− i

∞∫
−∞

sin(ω t)

π t
dt

︸ ︷︷ ︸
I2

(A-3)

Now let’s look at the integrals I1 and I2.

The integrand in I1 is odd over a symmetric interval and thus its value is zero. However,
there is a mathematical formality in obtaining this result, since the integrand goes to infinity
at t = 0. However, due to the anti-symmetry of 1/t, and by using an appropriate limiting
process, the positive and negative infinities cancel. This is what formal mathematics calls
the P.V. or Principal Value of an integral.

We now turn to I2, whose integrand is even and well-behaved at zero, where it ap-
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proaches 1. Thus we have,

I2 = −i

∞∫
−∞

sin(ω t)

π t
dt (A-4)

=
−2i

π

∞∫
0

sin(ω t)

t
dt =

−2i

π
I3 (A-5)

It is not clear how to evaluate I3 at this point. Normally one uses the method of residues
of complex variables. We will assume only first year calculus and use a clever limiting
process. The technique presented below was shown to Yedlin in 1968 by R.G. Sinclair, an
excellent first year calculus professor at the University of Alberta.

To do the evaluation of I3, we first create a new integral, I4(α), given by

I4(α) =

∞∫
0

sin(ω t)

t
e−α t dt, (A-6)

where α is a parameter. Then we have that

lim
α→0

I4(α) = I3 and (A-7)

lim
α→∞

I4(α) = 0 (A-8)

Since I4(α) is smooth, convergent function of α, we can differentiate it with respect to α
to obtain

d I4(α)

dα
=

d

dα

∞∫
0

sin(ω t)

t
e−α t dt (A-9)

=

∞∫
0

sin(ω t)

t

d

d α

[
e−α t

]
dt (A-10)

= −
∞∫
0

sin(ω t)e−α t dt, (A-11)

which we can easily integrate by using integration by parts twice, or consulting a table of
Laplace transforms. Thus we obtain

d I4(α)

dα
= − ω

α2 + ω2
, (A-12)

which, by simple integration over α, results in

I4(α) = − tan−1
(α
ω

)
+ constant. (A-13)
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Now use the limit given by (A-8). For ω > 0, tan−1(∞) = π/2 and the constant is π/2
and when ω < 0, the constant is -π/2. Finally, we have that

I4(α) = − tan−1
(α
ω

)
+ sgn(ω)

π

2
. (A-14)

We now apply the limit given (A-7) to get the final value for I3 as

I3 = sgn(ω)
π

2
. (A-15)

Finally we obtain the value for I2, which is the Fourier transform of 1/(πt) and given by

I2 =
−2i

π
I3 =

−2i

π
sgn(ω)

π

2
= −isgn(ω) (A-16)

which is our required Fourier transform for the Hilbert kernel k(t).

One standard time series result emerges from the foregoing analysis. In the frequency
domain, the analytic signal, A(ω) associated with a function f(t) having Fourier transform
F (ω) is given by

A(ω) = [1 + i(−isgn(ω)]F (ω) = [1 + sgn(ω)]F (ω) (A-17)

From the above result, we see that a quick way to obtain the analytic signal is first to
take the Fourier transform of the time signal, then double all positive Fourier transform
values, zero out the negative values, and then perform an inverse Fourier transform. The
real part of the resulting inverse is the original signal and the imaginary part is its Hilbert
transform.
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