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ABSTRACT 
When using pseudo – spectral methods to reduce to the spatial dimensionality of the 2.5D 

coupled VqP qS− wave propagation problem in a transversely isotropic ( )TI medium to that in 
one spatial dimension and time, the introduction of an absorbing boundary, at least at the model 
bottom is useful in the removal of spurious arrivals. The top model boundary is usually wanted 
in the numerical calculations and reflections from the model sides may be removed by a 
judicious choice of model parameters, which does not significantly increase the run time. In this 
report, a method similar to that presented in Clayton and Engquist (1977, 1980) and is derived 
for the coupled VqP qS− wave propagation problem in a transversely isotropic medium. Finite 
Hankel transforms are used to remove the radial coordinate ( )r  in what is assumed to be a 
radially symmetric medium. The problem that remains is a coupled problem in depth ( )z , where 
the anisotropic parameters may arbitrarily vary, in depth and time ( )t . 

INTRODUCTION 
This method is most often referred to as the pseudo-spectral method, but due to the extensive 

work done in this area by B.G. Mikhailenko and A.S. Alekseev it is sometimes referred to, in 
seismic applications, as the Alekseev-Mikhailenko Method (AMM), (Alekseev and Mikhailenko, 
1980). It falls within the genetic class of pseudo-spectral methods, but is possibly more formal 
and rigorous in its development.  However, much of their work is relatively physically 
inaccessible and a considerable number of the more significant contributions are in Russian. 
Other works of interest in this area are Gazdag (1973), Gazdag (1981) and Kosloff and Baysal 
(1982). 

One numerical advantage of applying finite integral transforms is that the resultant FD 
problem is in one spatial variable and time and there are no cross derivative terms. These are 
differentials of the form ( )1 2 3, , , , 1, 2,3 :i k jx c x x x u x i j k i j ∂ ∂ ∂ ∂ = ≠  .  Several approaches 
for dealing with these in a finite difference context may be found in Zahradník et al. (1993). 

Apart from a number of other numerical considerations, the removal of spurious reflections 
from the pseudo model bottom is required. This is done here using the method described in 
Clayton and Engquist (1977), but modified for the transversely isotropic case. Initially, this may 
appear as a simple transition. However, it is slightly more complicated than is first apparent. 

 

THEORETICAL OVERVIEW 

Consider the problem of coupled VqP qS−  wave propagation in a radially symmetric (no 
lateral inhomogeneities), vertically inhomogeneous transversely isotropic half space. The 
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equations of motion are defined by the elastodynamic (Navier) equations (Martynov and 
Mikhailenko, 1984 Mikhailenko and Korneev, 1984, or Mikhailenko,  1985, as examples)  
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where the particle displacement vector u  is of the form 

 ( ) ( ) ( )( ), , , , , , ,r z t U r z t V r z t≡ =u u .  (3) 

Here ( ), ,U r z t  and ( ), ,V r z t are the radial (horizontal) and vertical components of vector 
particle displacement, the azimuthal component of displacement being zero for the coupled 

VqP qS−  problem. The coordinates andr z  are the radial and vertical coordinates in a 
cylindrical coordinate system, respectively, t is time In Voigt notation, the ijc are the stiffness 
parameters of the medium and ρ  is the density, all of which may be dependent on the vertical 
( )z  coordinate. The density normalized anisotropic parameters, ij ija c ρ= , having dimensions of 
velocity squared, may also be used at some points within this report. 

The problem is solved subject to the initial conditions 
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and the free surface boundary conditions that are required to be satisfied are 

 
0 0

0 , and 0 .zz rzz z
σ σ

= =
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That is, the normal stress and shear stress are zero at the free surface. In terms of  ( ), ,U r z t , 

( ), ,V r z t  and the anisotropic stiffness coefficients, ijc , the expressions for the normal and shear 
stresses at the free surface are given by 
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rU Vc c
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∂ ∂ = + = ∂ ∂ 
 (7) 

Introducing the finite Hankel integral transforms and the vector designation 

( ) ( ) ( )( ), , , , , , , ,i i i ik k z t S k z t R k z t=G    has 
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i iS k z t U r z t J k r r dr= ∫

 (8) 

 
( ) ( ) ( )0

0

, , , ,
a

i iR k z t V r z t J k r r dr= ∫ 

 (9) 

where the ik  and ik  are the roots of the transcendental equations 

 ( )0 0iJ k r =  (10) 

and 

 ( )1 0iJ k r = , (11) 
respectively. Using the two formulations of the Hankel transforms discussed in Appendix A, it 
may be shown that both of the inverse series summations may be accomplished using only the 
roots of one of the Bessel function transcendental equation, ( )1 0iJ k r = , so that the inverse 
transforms are defined by 
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Thus both inverse series summations may be taken over the roots of one rather than two 
transcendental equations and as a consequence, ( ) ( ) ( )( ), , , , , , ,i i ik z t S k z t R k z t=G . The matter 
of what, numerically, constitutes an infinite number of terms in the inverse series summations is 
addressed in Daley (2011). It is shown there that an earlier assumption that the source wavelet be 
band limited is significant in this determination. As the only spatial direction in which a finite 
difference is used is the z direction the most economical manner to introduce a damping 
conditions at the lower z boundary, i.e., ( )1 z R tγ ∂ ∂  and ( )2 z S tγ ∂ ∂ . A safe estimate for the 
length of this damping region is of the order of 1 wavelength (WL) but 2WL are commonly used 
(B.G. Mikhailenko, 1980). 

Applying the appropriate Hankel transforms to equations (1) and (2) results in 
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while the transforms of the shear and normal stresses at the free surface, which is assumed to be 
planar, have the form 
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The transformed initial conditions at 0t =  are 
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where ik  are the roots of the transcendental equation ( )1 0iJ k a =  which requires additional 
boundary conditions at r a=  (pseudo boundary such that) 

 
0

r a
r a

VU
r=

=

∂
= =
∂  (19) 

The pseudo boundary is placed at some distance r a=  so that no spurious reflections from 
this boundary are present in the synthetic traces. The unwanted reflections may be removed 
using variation of the methods described in works such as Clayton and Engquist (1977), Cerjan 
et al. (1985) or Reynolds (1978). Care is required in choosing this distance, as the number of 
terms in the inverse series summation depends on it in a linear fashion. More on this may be 
found in Daley (2011). 

If it is assumed that the anisotropic parameters (stiffness coefficients) are spatially independent 
the Hankel transformed equations take on the simplified forms given below. For convenience, it 
is assumed that the first two grid points in ( )0 1andz z z , at the free surface are of this form so 
that equations (14) and (15) may be written there as 
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and the Hankel transformed shear and normal stresses required at the free surface as boundary 
conditions have been given in equations (16) and (17). 

An explicit finite difference scheme will be introduced into the transformed equations in depth 
and time ( )andz t . Equal grid spacing of h  in the z direction and δ  in time so that an arbitrary 
depth and time point are specified by kz nh=  and mt mδ= . The order of accuracy of the finite 
difference process is 2nd order, ( )2 2,O h δ . 

An explosive point waveP − source is most commonly used in producing synthetic 
seismograms using this method. The transformed radial and vertical components of the source 
term are given as 

 
( ) ( )1ˆ

2rF z d f tδ
π

= −
 (22) 

 
( ) ( )1
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δ
π

= −    (23) 

where ( )δ ζ  is the Dirac delta function and ( )f t is the time dependence of the source wavelet, 
which is assumed to be band limited. 

 ABSORBING BOUNDARY AT MODEL BOTTOM 
If it is assumed that the last 3 grid points in depth are homogeneous (independent of z)  so that 

the Hankel transformed equations of motion have the form  

 ( )
2 2

2
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2 2
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 (25) 

and a plane wave solution is assumed  as 

 [ ] [ ]andz zR exp i t ik z S exp i t ik zω ω∝ − + ∝ − +  (26) 

Pseudo-differential operators are defined as 
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 ( ) ( )and zi ik
t z

ω ∂ ∂
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 (27) 

Applying the plane wave solution to equations (24) and (25) the results are 

 ( ) ( )( ) ( )2 22
55 13 55 11 0z i z ia ik S k a a ik R k a S i Sω− + − − − =  (28) 

 ( ) ( )( ) ( )2 22
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Putting (28) and (29) in matrix form has, with I being the ( )2 2×  identity matrix, 
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Further rearrangement of the above equation is of the form  
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An initial approximation to the above is obtained by truncating (31) to read 
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This preliminary approximation is not generally used in practice, but rather to enable the solution 
of (31). In matrix form (31) now appears as 
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Return to (30) with (34) and (35) results in 
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Approximating the above by conventional means has 
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where 
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It is convenient at this point to define three ( )2 2×  matrices ( )1,2,3j j =X  as 
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so that (38) may be written as 
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This expression leads to the two equations 
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2
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z
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When the pseudo-differential operators are introduced the follow equations are the 15
approximations to the absorbing equations at the model bottom. 

 ( ) 22 2
13 55 11

2
55 33 55
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∂ ∂ ∂ ∂
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With ( ),S R=G and using the finite difference template introduced in Clayton and Engquist 
(1977) the following definition may be employed 
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where the ( )1,2,3j j =X  have been redefined as 

 2
1 1 2 2 3 3, ,j jk k= = =X X X X X X  (49) 

The operators qD+ , qD−  and 0
qD  are the forward, backward and center difference finite 

difference analogues with respect to the variable q and are defined as  

 ( )1Forward : z n n n
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Employing these relations the following intermediate results are obtained: 
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   − + − +   + ≈ + =
   ∆ ∆   
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Introducing equations (53) – (57) into (48) results in the following two equations for the 
transformed radial and vertical components of the paraxial wave equation approximation for the 
absorbing boundary conditions at the model bottom for the problem considered here: 
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 (59) 

 

NUMERICAL RESULTS 
The model used for testing the absorbing boundary conditions at the model bottom of a plane 

layered transversely isotropic media is given in Table 1 and Figure (1). The recording geometry 
is a vertical seismic profile (VSP) with a surface source offset ( )250 0.25m km from the well 
bore. The receivers are located in the well bore at depths from ( )150 0.15m km to ( )1900 1.9m km
at ( )12.5 0.0125m km intervals. Numerical experiments, based on the isotropic case, have 
indicated that the 15 degree paraxial approximations to the equations of motion to introduce 
damping may appear not to be the optimal manner of proceeding. Much of this is a consequence 
of the display options available in the CREWES toolbox. It is much too easy to introduce scaling 
(high clip) leading to noise having amplitude of the order of the seismic signal. To overcome 
this, the 15 degree approximation is used until it is determined that what may appear to be 
spurious arrivals due to high clip begin to be seen. At this point, the finite difference 
computations are terminated. To compensate for this, a input parameter has been introduced that 
has the effect of allowing for the required length in time of the synthetic traces may be obtained. 
This is shown in the two panels in Figures (2) and (4) (vertical and radial components).  The full 
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synthetics for the vertical and radial components are shown in Figures (3) and (5) using the 
CREWES toolbox utility plotseismic . The same results (vertical and radial components) using 
the utility plotimage  are shown in Figures (6) and (7). It is clear that there are no spurious 
arrivals appearing in the synthetic traces, even at a level of high scaling. This refinement comes 
at a quite minimal cost in run time. 

CONCLUSIONS 
Using the paper of Clayton and Engquist (1977), which treats seismic wave propagation for 

the coupled VP S−  modes in a 2D elastic medium, as a template, absorbing boundary conditions 
are derived for the model bottom boundary in a transversely isotropic medium. A vertically 
inhomogeneous medium has been assumed with the radial derivatives of particle motion being 
transformed away using finite Hankel transforms. This produces a coupled set of equations for 
the vertical and radial components of displacement that are to be solved using finite difference 
methods in the remaining spatial coordinate depth ( )z and time. This problem is at least 
marginally different than what appears in Clayton and Engquist (1977), but a similar solution 
method may be employed. What results are the so called 15 degree paraxial approximations to 
the equations of particle displacement. Numerical experiments have shown that what was 
derived provides a reasonable solution and does remove spurious reflections from the model 
bottom, if the synthetics are not “over scaled”. A modification was introduced to account for the 
effects of unwanted arrivals appearing in the synthetics when various forms of scaling are 
introduced. This alteration is a temporary measure and other forms of damping are being 
considered, specifically some form of exponential damping. 
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     Thickness        Density         A11          A33          A55          A13 
          0.5           1.0         5.0          4.0          2.0          1.12 
          0.5           1.0         7.0          6.25          2.25          2.17 
          0.5           1.0        11.0          9.0          3.0          3.22 
      Hspace           1.0        16.0        12.96          3.75          4.74 

 
Table 1: The parameters for the transversely isotropic plane layered medium used in testing the model 
bottom absorbing boundary condition are given in the table. Density is in gm/cm3, thickness in km and the 
Aij in km2/s2. 
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Figure 1: The vertical P – wave velocity in km/s plotted versus depth in km in the upper panel. In the 
lower panel the scaled velocity is plotted versus the number of depth grid points.  
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Figure 2: The two panels in this figure are examples where the computation was halted as the spurious 
arrivals (reflections) from the model bottom became of the order of the noise.  Two examples od the 
vertical component are shown for a VSP with a surface source located at 250m (0.250km) from the bore 
hole. 
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Figure 3: The vertical component of the VSP synthetic of the model described in the text. In this panel the 
computations continued to the proper time indicating that no spurious reflections from the model are 
included in the traces. 
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Figure 4: The two panels in this figure are examples where the computation was halted as the spurious 
arrivals (reflections) from the model bottom became of the order of the noise.  Two examples of the radial 
component are shown for a VSP with a surface source located at 250m (0.250km) from the bore hole. 
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Figure 5: The radial component of the VSP synthetic of the model described in the text. In this panel the 
computations continued to the proper time indicating that no spurious reflections from the model are 
included in the traces. 
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Figure 6: The vertical component of the VSP synthetic of the model described in the text. In this panel the 
computations continued to the proper time indicating that no spurious reflections from the model are 
included in the traces..Plotted with plotimage and is the master of the following figure. 
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Figure 7: The radial component of the VSP synthetic of the model described in the text. In this panel the 
computations continued to the proper time indicating that no spurious reflections from the model are 
included in the traces. Plotted with plotimage and a slave of the master in the previous figure. 
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